Multipartite Quantum States and Their Marginals
Total Page:16
File Type:pdf, Size:1020Kb
Diss. ETH No. 22051 Multipartite Quantum States and their Marginals A dissertation submitted to ETH ZURICH for the degree of Doctor of Sciences presented by Michael Walter Diplom-Mathematiker arXiv:1410.6820v1 [quant-ph] 24 Oct 2014 Georg-August-Universität Göttingen born May 3, 1985 citizen of Germany accepted on the recommendation of Prof. Dr. Matthias Christandl, examiner Prof. Dr. Gian Michele Graf, co-examiner Prof. Dr. Aram Harrow, co-examiner 2014 Abstract Subsystems of composite quantum systems are described by reduced density matrices, or quantum marginals. Important physical properties often do not depend on the whole wave function but rather only on the marginals. Not every collection of reduced density matrices can arise as the marginals of a quantum state. Instead, there are profound compatibility conditions – such as Pauli’s exclusion principle or the monogamy of quantum entanglement – which fundamentally influence the physics of many-body quantum systems and the structure of quantum information. The aim of this thesis is a systematic and rigorous study of the general relation between multipartite quantum states, i.e., states of quantum systems that are composed of several subsystems, and their marginals. In the first part of this thesis (Chapters 2–6) we focus on the one-body marginals of multipartite quantum states. Starting from a novel ge- ometric solution of the compatibility problem, we then turn towards the phenomenon of quantum entanglement. We find that the one-body marginals through their local eigenvalues can characterize the entan- glement of multipartite quantum states, and we propose the notion of an entanglement polytope for its systematic study. Next, we consider random quantum states, where we describe a method for computing the joint probability distribution of the marginals. As an illustration of its versatility, we show that a discrete variant gives an efficient algorithm for the branching problem of compact connected Lie groups. A recurring theme throughout the first part is the reduction of quantum-physical problems to classical problems of largely combinatorial nature. In the second part of this thesis (Chapters 7–9), we study general quantum marginals from the perspective of the von Neumann entropy. We contribute two novel techniques for establishing entropy inequalities. The first technique is based on phase-space methods; it allows us to establish an infinite number of entropy inequalities for the class of stabilizer states. The second technique is based on a novel characterization of compatible marginals in terms of representation theory. We show how entropy inequalities can be understood in terms of symmetries, and illustrate the technique by giving a new, concise proof of the strong subadditivity of the von Neumann entropy. Zusammenfassung Teilsysteme zusammengesetzter Quantensysteme werden durch reduzierte Dichtematrizen, auch bekannt als Quantenmarginale, beschrieben. We- sentliche physikalische Eigenschaften hängen oft nicht von der gesamten Wellenfunktion ab, sondern nur von den reduzierten Dichtematrizen weniger Teilchen. Nicht alle Sätze von Dichtematrizen können als Mar- ginale eines globalen Quantenzustands auftreten. Tiefgreifende Kom- patibilitätsbedingungen wie das Pauli’sche Ausschlussprinzip oder die Monogamie der Quantenverschränkung beeinflussen auf fundamentale Weise die physikalischen Eigenschaften von Vielteilchensystemen und die Struktur von Quanteninformation. Ziel dieser Dissertation ist eine systematische und rigorose Untersuchung der allgemeinen Beziehung zwischen multipartiten Quantenzuständen, d.h. Quantenzuständen von Vielteilchensystemen, und ihren Marginalen. Im ersten Teil dieser Dissertation (Kapitel 2–6) betrachten wir Ein- teilchenmarginale multipartiter Quantenzustände. Wir beginnen mit einer neuen, geometrischen Lösung des Kompatibilitätsproblems. Danach wenden wir uns dem Phänomen der Quantenverschränkung zu. Wir zeigen, dass sich mittels der Eigenwerte der Einteilchendichtematrizen Aussagen über die Verschränkungseigenschaften des Gesamtzustands tre- ffen lassen. Zur systematischen Untersuchung dieses Phänomens führen wir das Konzept eines “Verschränkungspolytops” ein. Des Weiteren betra- chten wir zufällige Quantenzustände. Hierzu entwickeln wir ein Verfahren, mit dessen Hilfe sich die gemeinsame Verteilung der Einteilchenmarginale exakt berechnen lässt. Wir illustrieren die Vielseitigkeit unseres Ansatzes, indem wir aus einer diskreten Variante einen effizienten Algorithmus für das Verzweigungsproblem kompakter, zusammenhängender Lie-Gruppen konstruieren. Ein wiederkehrendes Motiv im ersten Teil ist die Reduktion quantenphysikalischer Probleme auf im Wesentlichen kombinatorische, klassische Probleme. Im zweiten Teil dieser Dissertation (Kapitel 7–9) untersuchen wir allge- meine Marginale aus dem Blickwinkel der von Neumann’schen Entropie. Hier tragen wir zwei neue Techniken zum Beweis von Entropieungleichun- gen bei. Die erste Technik basiert auf Phasenraummethoden und erlaubt es uns, eine unendliche Zahl an Entropieungleichungen für die Klasse der Stabilisatorzustände zu beweisen. Die zweite Technik beruht auf einer neuen Charakterisierung kompatibler Marginale mittels Darstellungsthe- orie. Wir zeigen, dass Entropieungleichungen im Sinne von Symmetrien verstanden werden können, und geben zur Illustration einen neuen, prägnanten Beweis der starken Subadditivität der von Neumann’schen Entropie. Acknowledgements I am greatly indebted to my advisor Matthias Christandl for his support and enthusiasm in research and otherwise. I sincerely thank Gian Michele Graf and Aram Harrow for accepting to be my co-examiners and for their careful reading of this thesis. I also thank Jürg Fröhlich for his support. Much of my research work has been done in collaborations, some of whose results are incorporated in this thesis. It is a pleasure to thank my collaborators Matthias Christandl, Brent Doran, David Gross, Stavros Kousidis, Marek Kuś, Joseph M. Renes, Burak Şahinoğlu, Adam Sawicki, Sebastian Seehars, Roman Schmied, Volkher Scholz, Michèle Vergne, and Konstantin Wernli for making research such an enjoyable enterprise. I would also like to extend my gratitude to Philippe Biane, Alonso Botero, Fernando Brandão, Peter Bürgisser, Mikhail Gromov, Patrick Hayden, Christian Ikenmeyer, Wojciech Kamiński, Eckhard Meinrenken, Graeme Mitchison, Renato Renner, Nicolas Ressayre, Mary Beth Ruskai, Philipp Treutlein, Stephanie Wehner, Reinhard Werner, and Andreas Winter for many inspiring discussions, helpful advice and well-appreciated support. I am grateful to the Institute for Theoretical Physics at ETH Zürich for providing an excellent environment for research. I also thank all the members of the Quantum Information Theory group for creating such a pleasant and productive atmosphere. In the course of my graduate studies, I have had the good fortune of a number of travel opportunities. In particular, I want to thank the Isaac Newton Institute and the Institut des Hautes Études Scientifiques for their hospitality during my research visits; I am grateful to Richard Josza, Noah Linden, Peter Shor, and Andreas Winter and to Mikhail Gromov for making these visits possible. Finally, I want to thank Christian Majenz, Burak Şahinoğlu, Volkher Scholz, and Jonathan Skowera for their careful reading of parts of a preliminary version of this thesis. Contents Page 1 Introduction 1 2 The One-Body Quantum Marginal Problem 5 2.1 Lie Groups and their Representations . .8 2.2 Geometric Invariant Theory . 15 2.3 Consequences for the Quantum Marginal Problem . 23 2.4 Kronecker coefficients, Schur–Weyl duality, and Plethysms . 26 3 Solving The One-Body Quantum Marginal Problem 31 3.1 Summary of Results . 34 3.2 The Torus Action . 35 3.3 Facets of the Moment Polytope . 36 3.4 Examples . 42 3.5 Discussion . 47 4 Multipartite Entanglement 49 4.1 Summary of Results . 49 4.2 Classification of Entanglement . 54 4.3 Entanglement Polytopes . 56 4.4 Examples . 60 4.5 Gradient Flow . 69 4.6 Experimental Noise . 75 4.7 Discussion . 78 5 Random Marginals 81 5.1 Summary of Results . 81 5.2 Duistermaat–Heckman Measures . 83 5.3 The Abelian Measure . 86 5.4 The Derivative Principle . 90 5.5 Examples . 93 5.6 Discussion . 99 6 Interlude: Multiplicities of Representations 101 6.1 Summary of Results . 102 6.2 Weight Multiplicities . 105 6.3 The Finite Difference Formula . 107 6.4 Multiplicities for the Subgroup Restriction Problem . 109 6.5 Kronecker Coefficients . 112 6.6 Asymptotics . 113 6.7 Discussion . 119 7 The Search for Further Entropy Inequalities 121 8 Entropy Inequalities from Phase Space 127 8.1 Summary of Results . 127 8.2 Discrete Phase Space . 129 8.3 Stabilizer States in Phase Space . 131 8.4 A Classical Model for Stabilizer Entropies . 134 8.5 Gaussian States . 137 8.6 Discussion . 139 9 Entropy Inequalities from Recoupling Coefficients 141 9.1 Summary of Results . 141 9.2 Recoupling Coefficients . 143 9.3 Overlapping Marginals and Recoupling Coefficients . 146 9.4 Symmetry Properties of the Recoupling Coefficients . 149 9.5 Application: Strong Subadditivity of the von Neumann Entropy . 155 9.6 Semiclassicality . 156 9.7 Sums of Matrices and Quantum Marginals . 156 9.8 Discussion . 162 Bibliography 165 List of Symbols 191 Index 195 List of Publications 199 Chapter 1 Introduction The pure state of a quantum system is described by a vector in a Hilbert space, or, more precisely, by a point in the corresponding projective space. Since the Hilbert space for multiple particles is given by the tensor product of the