VAMOS: Virtualization Aware Middleware Abel Gordon? Muli Ben-Yehuday? Dennis Filimonovy Maor Dahany
[email protected] [email protected] [email protected] [email protected] ?IBM Research—Haifa yTechnion—Israel Institute of Technology Abstract We argue that changes at the application layer are in- evitable: the shift to machine virtualization everywhere Machine virtualization is undoubtedly useful, but does requires that we adapt our applications to cooperate with not come cheap. The performance cost of virtualiza- the virtualization layer. tion, for I/O intensive workloads in particular, can be Adapting a nearly infinite number of applications is heavy. Common approaches to solving the I/O virtual- not feasible. However, in practice most server applica- ization overhead focus on the I/O stack, thereby missing tions depend on one or more middleware layers, such as optimization opportunities in the overall stack. We pro- a database server, a web server, or an application server. pose VAMOS, a novel software architecture for middle- By adapting the middleware to virtualized platforms, we ware, which runs middleware modules at the hypervisor can indirectly adapt many applications and regain lost level. VAMOS reduces I/O virtualization overhead by performance. We need to re-think the way we build mid- cutting down on the overall number of guest/hypervisor dleware. Most middleware have a modular design that switches for I/O intensive workloads. Middleware code already provides abstraction layers for operating system can be adapted to VAMOS at only a modest cost, by ex- services, such as memory management, disk or network ploiting existing modular design and abstraction layers.