Willow Bioenergy Crops: Locally Grown Renewable

Total Page:16

File Type:pdf, Size:1020Kb

Willow Bioenergy Crops: Locally Grown Renewable Biomass Workshop T. A. Volk SUNY-ESF, Syracuse, NY SURE Workshop, January 27, 2005 Overview • Objectives • Biomass Background and Drivers • Biomass Feedstocks: Production and Potential • Federal and State Policies • Biomass Terminology • Small Scale Biomass Systems • Large Scale Power Systems • Creating a Successful Wood Energy Project Objectives • Understand the drivers for biomass development and related state and federal policies • Understand terminology related to biomass in order to assess the value of different biomass sources and make basic calculations for biomass systems • Understand the potential of and important factors related to small and large scale biomass projects for heating and power production so that participants can explore these options for projects they are involved in Background and Drivers What is Biomass? • Recent organic material derived from plants or animals that is available on a renewable or recurring basis • A complex renewable resource made up of different feedstocks, conversion pathways, end products and energy forms • Can be used at a variety of different scales. (Sims 2002) Biomass Use for Energy in the U.S. (Bain and Overend, 2002) Biomass Flows in the U.S. Economy Materials Fiber pulp paper Process Residues lumber black liquor plywood cotton sawdust Consumers MSW clean fraction bark yard trimmings constr. & demolition Crops, Animals Food wood non-recyclable stalks & straws Process organics harvest residues Residues Energy bagasse forest slash Services dung heat CHP Biomass forest harvest for energy electricity short rotation woody crops herbaceous energy crops Bioenergy Biofuels charcoal ethanol Source: Overend, NREL hydrogen Range of Sizes Range of Sizes for Biomass Applications (Sims 2002) Drivers for Biomass • National security – Rising oil prices – Increasing dependency on imported oil (59% of our supply was imported in 2004) • Environmental impacts of fossil fuels – Increasing levels of CO2 – Air pollution that contributes to acid precipitation, mercury, particulates, ozone etc. Drivers for Biomass • Rural Development Opportunities – Agriculture and forestry are in decline in many areas of the country – Developing new markets and new crops for the bioenergy and bioproducts industry will help revitalize these industries – Limited transportation distances results in local fuel production, processing and conversion Benefits from Biomass • Green hardwood chips and other fuels used in heating systems in Vermont in 2003 • High end of range is retail price, low end is for wholesale price • Gross is fuel cost before combustion, net is fuel cost for useable heat output (Maker 2004) Benefits from Biomass • It is a renewable, sustainable resource • Fuel is available in large quantities across the northeast and elsewhere • Use of local, natural resources creates independence and reinforces local networking • Biomass fuel dollars and the value added from their conversion stays in the local economy Benefits from Biomass • Large or innovative projects pave the way for other projects or industries • Biomass fuel prices have historically been fairly stable • Biomass price increases will be more gradual than competing fuels Benefits from Biomass • Biomass pricing is not subject to monopolistic control • Future energy and carbon taxes should not impact biomass fuels • Low grade markets can improve opportunities for sustainable forest management Common Concerns • Higher capital and M&O costs • Biomass fuel requires more attention during operation • Attention to fuel quality is required • May have to build and maintain a local fuel supply network • Burning biomass is not as clean as natural gas • Biomass systems may require more maintenance than conventional fuel systems Biomass Feedstocks: Production and Potential Photosynthesis • Photo – to do with light • Synthesis – the linking of several parts • The process by which plants take in CO2 and water from their environment and, using energy from sunlight convert them into sugars, starches, cellulose, lignin etc. sunlight CO2 + 2H2O ([CH2O] + H2O) + O2 Photosynthesis – How much • Only about 0.02% of the suns energy that reaches the earth is fixed by terrestrial biomass • More is fixed by plankton, aquatic plants etc. • The amount of solar energy captured in biomass is seven to eight time greater than the total amount of energy used in the world Bioenergy Production Potential in 2050 Bioenergy Production Potential in 2050 (Faaj 2005) National Biomass Supply • Assessment of whether land resources in the US could sustainably produce over 1 billion tons of biomass • Enough biomass to replace about 30% of the country’s petroleum consumption National Biomass Supply • Over 1.3 billion tons from forest and agricultural land that is currently not being utilized – 368 million from forests – 998 from agricultural land Agricultural Resources • 55 million acres of cropland, idle cropland and pasture would be used for perennial bioenergy crops • Yields of corn, wheat and small grains to increase by 50% • 75% of crops residues recovered • No-till on all cropland • Manure amounts in excess of what is needed for soil improvement Forest Resources • Forest biomass excludes – forestland not accessible by roads – environmentally sensitive areas – wood harvested for conventional forest products Crop Residues Forest Residues Primary Mill Residues Secondary Mill Residues Available Biomass New York State Land CoverCover -- MilesMiles Legend 015 306090120 306090120 NYS Land Cover Water Forest 19,557,155 ac. Pasture/Hay 6,033,572 ac. Map Created for the Willow Biomass Project Row Crops 1,694,229 ac. Map Created for the Willow Biomass Project Date:Date: JuneJune 14,14, 20052005 Reducing the Price of Forest Chips Short-Rotation Woody Crops • Short-rotation woody crops are unique: – produce environmental and rural development benefits in addition to bioenergy and/or bioproducts » Riparian buffer strips » Windbreaks and living snow fences » Nutrient and waste management systems » Brownfield restoration » Phytoremediation Willow Biomass Production Cycle Three years old after Site Preparation coppice Harvest Planting One year old after coppice Coppice First year growth Early spring after coppicing Regional Background • Northeast and mid- Atlantic region was the heart of the U.S. willow basket industry through Hubbard, W. 1904. the early 1900s Regional Background • Research on SRWC begins in early 1980s • Ranged from wide spaced poplars with 10-12 year rotations to wood grass trials on one year rotations SUNY-ESF research station in Tully, • Focus shifts to willow NY. Site of original willow biomass in the mid 1980s trials in the US. Willow Research and Demonstration Sites Legend ê Active biomass ê Previous biomass ê Phytoremediation ê Willow snowfences ê Riparian buffers Why Willow? • Very high biomass production potential • Produces uniform feedstock for bioproducts • Easily established with unrooted cuttings • Resprouts vigorously after each harvest Three-year old willow in Tully, NY Why Willow? • Limited insect and pest problems • Wide range of genetic variability • Very short breeding cycle for genetic improvement Willow seedlings from breeding efforts at SUNY- ESF What Willow? • Focus is on the development of shrub type willows, not the more conspicuous tree willows • Varieties selected do not root sucker or spread easily Weeping willow (Salix babylonica) Site Preparation Planting Stock Harvesting one year old whips for planting stock 25 cm long dormant cuttings Planting Stock Production • Fertilized and irrigated dedicated nursery beds with densities of about 36,000/ha • Whip production from cutting orchards appears to lower planting stock costs by 10 - 15% • Costs range from $0.07 Harvested willow whips in – 0.15/cutting temporary storage at the Saratoga Tree Nursery Site Preparation Planting willow biomass crops into a mowed cover crop of winter rye. Cut and Chip Harvesting Systems • Harvesting occurs during the dormant season to ensure vigorous regrowth • Modified agricultural equipment is used to cut and chip willow biomass in a single pass New Holland forage harvester being tested in three year old willow in Tully, NY ! ! ! ! ! ! ! New York State ! ! ! ! !! ! ! ! #! ! Wood Using Mills ! ! ! ! ! ! ! ! ! ! 302 Mills (1998 Survey Data) ! ! ! ! ! ! ! ! Legend ! ! ! ! ! ! ! ! " ! ! Mill Type ! ! ! ! ! ! ! ! Sawmill 296 ! # ! ! ! ! ! ! ! ! ! " ! ! ! Pulp Mill 3 ! ! ! ! ! "! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! # Veneer 3 ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! # ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! "! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! Miles ! - 030609012015 ! ! Map Created for the Willow Biomass Project Date: June 14, 2005 Volume of Mill Residues Total Residue Fiber Misc. Fuel Byproducts Unused Mill Residues (Tons) Product Byproducts Byproducts Mill Residues - Bark 252,212.41 13,951.68 67,537.45 163,323.26 7,400.02 Mill Residues - Coarse Wood 599,253.07 201,007.03 324,384.77 60,173.54 13,687.73 Mill Residues - Fine Wood 423,681.33 2,384.53 75,305.98 338,828.28 7,162.54 Total Mill Residues 1,275,146.81 217,343.24 467,228.2 562,325.08 28,250.29 Wood Residues • Supplies vary over time depending on wood manufacturing industries • Quality control is important • Requires time and site specific assessments – 1998 NREL report estimates that 3.7 million tons are produced annually in NY (Rooney 1998)
Recommended publications
  • Chinese Tallow Tree (Triadica Sebifera)
    THE WEEDY TRUTH ABOUT BIOFUELS TIM LOW & CAROL BOOTH Invasive Species Council October 2007 Title: The Weedy Truth About Biofuels Authors: Tim Low & Carol Booth Published by the Invasive Species Council, Melbourne October 2007 Updated March 2008 The INVASIVE SPECIES COUNCIL is a non-government organisation that works to protect the Australian environment from invasive pest species. Address: PO Box 166, Fairfield, Vic 3078 Email: [email protected] Website: www.invasives.org.au Further copies of this report can be obtained from the ISC website at www.invasives.org.au Cover photo: Spartina alterniflora, by the US Department of Agriculture CCOONNTTEENNTTSS Introduction ............................................................................................................................ 1 What are biofuels? ................................................................................................................ 2 The Biofuel industry .............................................................................................................. 4 The problems with biofuels ................................................................................................ 6 Social and economic issues ............................................................................................ 6 Greenhouse issues ............................................................................................................ 7 Biodiversity issues ...........................................................................................................
    [Show full text]
  • Feasibility Study for Developing a Microgrid to Serve the Ithaca South
    Feasibility Study for Developing a Microgrid to Serve the Ithaca South Energy District Final Report Fractal Energy Consulting Justyna Bujno, Allen Chien, Mark Flamme, Victoria Hu, Jeevan Kadam, Mauricio Medaets, Louis Monteagudo, Krishnamurthy Narayanan, Adam Schecter, Shankar Suresh Kartha, Felicia Violitta, Hanqing XiaoXiao Yang CEE 5910 Fall 2016 Table of Contents ........................................................................................................................................................ 1 Advisor Project Introduction ...................................................................................................................................... 3 Executive Summary ..................................................................................................................................................... 4 Introduction ................................................................................................................................................................. 6 Mission .................................................................................................................................................................. 6 Motivation ............................................................................................................................................................ 6 Objectives ............................................................................................................................................................. 7 Team Member
    [Show full text]
  • APSC 261 - Technology and Society I
    APSC 261 - Technology and Society I An Investigation into Fuelstock Production in the UBC Farm to Create Energy and Reduce Greenhouse Gas (GHG) Emissions Tutorial Instructor: Ms. Saloome Motavas Team Members: Wei-I (Winnie) Tseng, Sze Wah (Christy) Lui, Guanpeng (Justin) Li Date of Submission: November 28, 2013 ABSTRACT The project is to investigate the best plant as fuelstock that can be grown in UBC Farm, which is a 24 hectare farm on the southern end of the University of British Columbia (UBC). The Triple Bottom Line method is implemented during the entire investigation. Since several fuelstock options can be grown in UBC farm, the best candidate should chosen based on economical, ecological and social indicators. The result is derived by estimation since all data are collected from other papers and online resources. The economic indicators include input costs and profit generated by trading Miscanthus with the Bioenergy Research Demonstration Facility (BRDF). The ecological indicators applied are reusability of existing space and materials, improvement in environmental condition, protection from environmental degradation and increase in sustainable practice. Also, the social indicators consist of potential job increases, improvement of relations across sectors and providing educational opportunities. The result shows that Miscanthus is the best option and is highly recommended. Although the UBC farm may not provide the enough land to grow Miscanthus and supply the entire operation of BRDF, the pattern and model can be transferred to other parts of British Columbia (BC) and be implemented. In short terms, there is money input to the project, however, from long run perspectives, society and ecology environment will benefit of low greenhouse gas(GHG) emissions.
    [Show full text]
  • Poplar and Willow News, Issue No 3, August 2014
    Poplar and Willow News Newsletter of the International Poplar Commission Issue N° 3, August 2014 Dear readers, PAST EVENTS Welcome to the 3rd Newsletter of the International Poplar Commission (IPC) of the Food and Agriculture Organization (FAO) of the United Nations. Below you will find the different activities that 6th International Poplar are taking place in the field of the Salicaceae: Symposium (IPS VI) conferences and meetings hosted by the Poplar National Commissions of the different member ‘Domestication of Populus and countries, as well as other events of interest related Salix: How far have we come, and to the production and research in poplar and willow. how far do we still have to go?’ Besides, this space aims to inform and review the Vancouver, British Columbia, main activities of the IPC and other organizations Canada 20-23 July 2014 with the aim of spreading useful information that may be of interest to the whole community of the Web site: www.2014ipsvi.com/ Salicaceae. The Symposium addressed topics dealing with Also, is included a section of publications with poplar and willow genetics, genomics, physiology, the aim of presenting papers, abstracts, books, pests & pathology, environmental applications research advances, among other things. and management applications and offered post- We invite you to participate with articles, papers, conference field trips on poplar and willow progress in research, discussions of papers, cultivation in British Columbia. interviews, etc. emailing to [email protected] Main contact: The editorial committee Cees (“Case”) van Oosten Chair – Organizing Team IPS VI c/o SilviConsult Woody Crops Technology Inc. Email: [email protected] 1 IV International Congress ARTICLES OF of Salicaceae in Argentina INTEREST "Willows and poplars for regional development" The Fourth International Congress of Salicaceae in Carbon Sequestration in Argentina was carried out from 18 to 21 March at the Faculty of Agricultural and Forestry Sciences an Agroforestry System of the National University of La Plata.
    [Show full text]
  • Workshop and Report on Implications of Bio-Refineries for Energy and Trade in the APEC Region
    Workshop and Report on Implications of Bio-refineries for Energy and Trade in the APEC Region (EWG 05/2008A) APEC 21st Century Renewable Energy Development Initiative (Collaborative IX) November 2009 APEC Project No. EWG 05/2008A Produced by Nexant, Inc. and Industrial Technology Research Institute (ITRI) Nexant team led by Larry Song, General Manager Nexant China 44 South Broadway White Plains, NY 10601, USA ITRI team led by Seng-Rung Wu, Senior Researcher Energy and Environment Research Lab. Bldg. 64, 195, Sec. 4, Chung Hsing Rd., Chutung Hsinchu 31040, Chinese Taipei Produced for Asia-Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace, Singapore 119616 Tel:(65) 68919 600 Fax: (65) 68919 690 Email: [email protected] Website: www.apec.org ○c 2009 APEC Secretariat ISBN:978-981-08-4588-9 [APEC# 209-RE-01.7] This report has been prepared for APEC Secretariat. The views and opinions expressed herein do not necessarily reflect those of APEC, of Nexant or of ITRI. Except where specifically stated otherwise in the report, the information contained herein was prepared on the basis of information that is publicly available and has not been independently verified or otherwise examined to determine its accuracy, completeness or financial feasibility. Neither Nexant, ITRI nor any person acting on behalf of either assumes any liabilities with respect to the use of or for damages resulting from the use of any information contained in this report. Nexant or ITRI does not represent or warrant that any assumed conditions will come to pass. This report speaks only as of the date herein and Nexant and ITRI have no responsibility to update this report.
    [Show full text]
  • Woody Biomass in the Northeast
    Woody Biomass in the Northeast Timothy A. Volk - SUNY- ESF, Syracuse, NY Woody Biomass Utilization Group, Washington DC, Oct. 16, 2012 Overview • Woody biomass supplies in the NE – USDA BCAP for willow biomass • NewBio - USDA AFRI regional feedstock project for the northeast New Woody Biomass Initiatives • Recent CHP, power and thermal projects Renewable Feedstock Supply (Niebling 2010) (Heating the Northeast) NY Renewable Fuels Roadmap: Potential Biomass Production Scenario 1 Scenario 2 & 3 9.5 million dry tons 14.6 million dry tons ~45% of perennial 46% crops are woody 54% 3% 36% 15% 2% 12% 32% Perennial Energy Crops Forest Biomass - Hardwoods Forest Biomass - Softwoods Corn Stover (Wonjar et al. 2012) USDA BCAP - Willow Biomass Project • USDA BCAP project for shrub willow in a nine county region in central and northern NY • Initiated in June 2012, sign up completed in September 2012 • 1,200 acres signed up • ReEnergy Holdings committed to purchasing all the willow biomass grown and using it in its Black River or Lyonsdale facilities The BCAP project crops covers a nine county region in central and northern NY NEWBio: Northeast Woody/Warm-season Biomass Consortium Extension Education Harvest Willow Biochemical Store Biofuel DoubleAWillow Mascoma Markets Densify American Transport Thermochemical Switchgrass Ernst Refining Case New Holland, Praxair Group Aloterra Primus Green Energy Miscanthus Ernst Bio-electricity Aloterra TerraGreen South Point Harvest, Feedstock Preprocessing & Human Systems HumanImprovement Systems Logistics Safety
    [Show full text]
  • MT2014-0020.Pdf
    ΠΕΡΙΕΧΟΜΕΝΑ 1. EΝΕΡΓΕΙΑ ΚΑΙ ΒΙΟΜΑΖΑ ...................................................................................................... 1 1.1 ΕΝΕΡΓΕΙΑΚΕΣ ΑΝΑΓΚΕΣ ................................................................................................ 1 1.2 ΒΙΟΜΑΖΑ .......................................................................................................................... 4 1.2.1 Η ΒΙΟΜΑΖΑ ΩΣ ΑΝΑΝΕΩΣΙΜΗ ΠΗΓΗ ΕΝΕΡΓΕΙΑΣ .................................................. 4 1.2.2 ΠΑΡΑΓΩΓΗ ΚΑΙ ΠΗΓΕΣ BΙΟΜΑΖΑΣ ......................................................................... 10 1.2.3 ΔΥΝΑΜΙΚΟ ΒΙΟΜΑΖΑΣ .............................................................................................. 12 1.2.4 ΕΝΕΡΓΕΙΑΚΗ ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΒΙΟΜΑΖΑΣ .......................................................... 17 2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ............................................................................................................. 24 2.1 ΕΝΕΡΓΕΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ .................................................................................... 24 2.2 ΠΥΡΟΛΥΣΗ ..................................................................................................................... 33 2.2.1 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ........................................................................................................... 33 2.2.2 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΠΡΟΪΟΝΤΩΝ ΠΥΡΟΛΥΣΗΣ ....................................................... 34 2.2.3 ΚΙΝΗΤΙΚΑ ΜΟΝΤΕΛΑ ................................................................................................
    [Show full text]
  • IEA Bioenergy: Task 17
    ORNL/TM-2000/311 IEA Bioenergy: Task 17 Short-Rotation Crops for Bioenergy Proceedings of the Third Meeting of IEA, Bioenergy, Task 17 in Auburn, Alabama, U.S.A., September 6 9, 1999 Lars Christersson and Lynn Wright, Editors Bioenergy Feedstock Development Program Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6285 Environmental Sciences Division Publication No. 5053 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 Contents Preface Lars Christersson Meeting Photographs Prospects for Bioenergy from Short-Rotation Crops in Australia T. Baker, J. Bartle, R. Dickson, P. Polglase, and S. Schuck Report on Bioenergy in Brazil D. G. Pinatti, L. Couto, À. G. Soares, C. A. Viera, and R. A. Conte Country Report for Denmark IEA Bioenergy Task 17 J. B. Kjeldsen Developing a Willow Biomass Crop Enterprise in the United States T. A. Volk, L. P. Abrahamson, E. H. White, and M. Downing Bioenergy Status and Expansion in the United States L. L. Wright and L. K. Kszos Status Report on Energy Crops in The Netherlands in 1999 L. Kuiper The Swedish Carbon Dioxide Tax 1990 95: Implications for Biofuel Use and Carbon Dioxide Emissions F. Bohlin and H. Rosenqvist Current Status of Short-Rotation Forestry in Sweden T. Verwijst Reed Canarygrass Development in Sweden R. Olsson Minutes from the Business Meeting of IEA Bioenergy Task 17, Short-Rotation Crops at Auburn, Alabama, September 9, 1999 S. Ledin and L. Christersson Preface Preface These proceedings are the results of the third meeting of Task 17 (Short-Rotation Crops for Bioenergy) within the framework of International Energy Agency (IEA), Bioenergy.
    [Show full text]
  • Curriculum Vitae Lawrence B
    Curriculum vitae Lawrence B. Smart Horticulture Section e-mail: [email protected] School of Integrative Plant Science phone: 315.787.2490 Cornell University, Cornell AgriTech Twitter: @CornellWillow 630 West North Street, Geneva, NY 14456 www.hort.cornell.edu/smart/ Cornell Hemp – http://hemp.cals.cornell.edu Willowpedia – http://willow.cals.cornell.edu Academic Background: 1992 Doctor of Philosophy, Genetics, Michigan State University, East Lansing, MI “Molecular analysis of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803”, Lee McIntosh, Ph.D. advisor. 1987 Bachelor of Science with Distinction, Biology, Cornell University, Ithaca, NY Professional Background: April 2016 – present Professor of Plant Breeding and Genetics Horticulture Section, School of Integrative Plant Science Joint Appointment: Plant Breeding and Genetics Section Cornell University, Cornell AgriTech, Geneva, NY Feb. 2018 – June 2021 Associate Director, Cornell AgriTech, Geneva, NY July 2016 – June 2019 Program Leader, Horticulture Section, Cornell AgriTech July 2009 – March 2016 Associate Professor of Plant Breeding and Genetics Horticulture Section, School of Integrative Plant Science Joint Appointment: Plant Breeding and Genetics Section Cornell University, Cornell AgriTech, Geneva, NY Aug. 2001 – June 2009 Associate Professor Department of Environmental and Forest Biology SUNY College of Environmental Science and Forestry, Syracuse, NY June 2003 – Jan. 2004 Visiting Fellow (Sabbatical appointment) Department of Plant Pathology Cornell University Cornell AgriTech, Geneva, NY Host: Harvey Hoch, Ph.D. Aug. 1996 – Aug. 2001 Assistant Professor Department of Environmental and Forest Biology SUNY College of Environmental Science and Forestry, Syracuse, NY 1 July 1996 – Aug. 1996 Postdoctoral Research Scientist Department of Agronomy and Range Science University of California, Davis Research Advisor: Thea Wilkins, Ph.D.
    [Show full text]
  • Third Biennial Conference Short-Rotation Woody Crops Operations Working Group
    STATE UNIVERSITY OF NEW YORK College of Environmental Science and Forestry Third Biennial Conference Short-Rotation Woody Crops Operations Working Group October 10-13, 2000 Syracuse, New York Hosted by: State University of New York College of Environmenal Science and Forestry Sponsored by NCASI US DOE Oak Ridge National Laboratory USDA Forest Service Electric Power Research Institute Photo: David Parsons/NREL New York Center for Forestry Research and Development Short-Rotation Woody Crops Program ad SUNY ESF IUFRO Working Unit 1.09.00 Proceedings of the Short-Rotation Woody Crops Operations Working Group Third Conference October 10-13, 2000 Syracuse, New York USA Hosted by: State University of New York College of Environmental Science and Forestry Administrative Sponsors: Electric Power Research Institute National Council of the Paper Industry for Air & Stream Improvement US Department of Energy Oak Ridge National Laboratory Biomass Feedstock Development Program USDA Forest Service Research and Development Sustaining Sponsors: BASF Corporation B. B. Hobbs Company Boise Cascade Corporation DuPont Forestry Products Morbark Inc. Netafim Irrigation Inc. Rain Bird Agri-Products Toro Ag/Drip In Irrigation Company Westvaco Corporation Compiled by Timothy A. Volk, Lawrence P. Abrahamson, and Jennifer L. Ballard August 2001 These proceedings include papers or abstracts of presentations given by the authors and submitted to the organizers of the Third Conference of the Short-Rotation Woody Crops Operations Working Group. The authors are responsible
    [Show full text]
  • Poplar and Willow News Newsletter of the International Poplar Commission Issue N° 3, August 2014
    Poplar and Willow News Newsletter of the International Poplar Commission Issue N° 3, August 2014 Dear readers, PAST EVENTS Welcome to the 3rd Newsletter of the International Poplar Commission (IPC) of the Food and Agriculture Organization (FAO) of the United Nations. Below you will find the different activities that 6th International Poplar are taking place in the field of the Salicaceae: Symposium (IPS VI) conferences and meetings hosted by the Poplar National Commissions of the different member ‘Domestication of Populus and countries, as well as other events of interest related Salix: How far have we come, and to the production and research in poplar and willow. how far do we still have to go?’ Besides, this space aims to inform and review the Vancouver, British Columbia, main activities of the IPC and other organizations Canada 20-23 July 2014 with the aim of spreading useful information that may be of interest to the whole community of the Web site: www.2014ipsvi.com/ Salicaceae. The Symposium addressed topics dealing with Also, is included a section of publications with poplar and willow genetics, genomics, physiology, the aim of presenting papers, abstracts, books, pests & pathology, environmental applications research advances, among other things. and management applications and offered post- We invite you to participate with articles, papers, conference field trips on poplar and willow progress in research, discussions of papers, cultivation in British Columbia. interviews, etc. emailing to [email protected] Main contact: The editorial committee Cees (“Case”) van Oosten Chair – Organizing Team IPS VI c/o SilviConsult Woody Crops Technology Inc. Email: [email protected] 1 IV International Congress ARTICLES OF of Salicaceae in Argentina INTEREST "Willows and poplars for regional development" The Fourth International Congress of Salicaceae in Carbon Sequestration in Argentina was carried out from 18 to 21 March at the Faculty of Agricultural and Forestry Sciences an Agroforestry System of the National University of La Plata.
    [Show full text]
  • Minnesota Statewide Conservation and Preservation Plan Energy Production &
    Minnesota Statewide Conservation and Preservation Plan Energy Production & Use/ Mercury Team 7/17/08 1 Presenters/Team Members • Deb Swackhamer, Univ. of Minnesota • Dave Mulla, Univ. of Minnesota • Bill Berguson, Univ. of Minnesota, NRRI • Laura Schmitt Olabisi, Univ. of Minnesota Goals of the Project • Comprehensive inventory and assessment of Minnesota’s environment and natural resources • Review, analyze, integrate, & build upon existing information and plans pertaining to Minnesota’s environment and natural resources • Identify & prioritize important issues and trends affecting MN’s environment and natural resources • Develop and prioritize recommendations for strategies to best address issues and trends Key issues identified in Phase I Land/Water Habitat Fragment/Degrade/ Conversion/Loss Impacts of Invasive Species Resource Consumption Land Use Toxic Contaminants Practices Energy Production Transportation and Use Issue integration: Phase II and beyond Land/Water Im pa Habitat Re cts Co so o e n u f Fragment/ siv su rce va s mp Degrade/ In cie 2009 tio pe Trust Fund n Conversion/ S Project: Loss Future of Energy/ Energy Water Land Use Production Practices/ and Use/ Transportation Mercury Toxic Contamination (Other than Mercury) Interconnections Habitat Land Energy Consumption Toxics Transportation Invasives use Air Water Land Fish Wildlife Recreation Phase II Products • Priority area mapping • Recommended conservation strategies • Trend analysis supporting recommendations • Evaluating conservation strategies Phase II Project Organization
    [Show full text]