Nonlinear Tunneling of Surface Plasmon Polaritons in Periodic Structures Containing Left-Handed Metamaterial Layers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Giant Electron–Phonon Coupling Detected Under Surface Plasmon Resonance in Au Film
4590 Vol. 44, No. 18 / 15 September 2019 / Optics Letters Letter Giant electron–phonon coupling detected under surface plasmon resonance in Au film 1,2 3 3 1,2, FENG HE, NATHANIAL SHEEHAN, SETH R. BANK, AND YAGUO WANG * 1Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA 2Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA 3Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA *Corresponding author: [email protected] Received 4 July 2019; revised 22 August 2019; accepted 23 August 2019; posted 23 August 2019 (Doc. ID 371563); published 13 September 2019 Surface plasmon resonance (SPR) is a powerful tool to am- small change in reflectance/transmittance and can hardly be plify coherent phonon signals in metal films. In a 40 nm Au captured by regular coherent phonon spectroscopy. film excited with a 400 nm pump, we observed an abnor- Surface plasmon resonance (SPR) has been proven a power- mally large electron–phonon coupling constant of about ful tool to enhance the detection of CPs in metal films 17 3 8 × 10 W∕ m K, almost 40× larger than those reported [2,17–19] and dielectrics [14]. SPR is the coherent excitation in noble metals, and even comparable to transition metals. of a delocalized charge wave that propagates along an interface. We attribute this phenomenon to quantum confinement SPPs, which are the evanescent waves from the coupling be- and interband excitation. With SPR, we also observed tween light and SP in metals, can create a strongly enhanced two coherent phonon modes in a GaAs/AlAs quantum well electric field at the metal/air interface [20]. -
On Soft Matter
FASCINATING Research Soft MATTER Hard Work on Soft Matter What do silk blouses, diskettes, and the membranes of living cells have in common? All three are made barked on an unparalleled triumphal between the ordered structure of building blocks.“ And Prof. Helmuth march. Even information, which to- solids and the highly disordered gas. Möhwald, director of the “Interfaces” from soft matter: if individual molecules are observed, they appear disordered, however, on a larger, day frequently tends to be described These are typically supramolecular department at the MPIKG adds, “To as one of the most important raw structures and colloids in liquid me- supramolecular scale, they form ordered structures. Disorder and order interact, thereby affecting the put it in rather simplified terms, soft materials, can only be generated, dia. Particularly complex examples matter is unusual because its struc- properties of the soft material. At the MAX PLANCK INSTITUTES FOR POLYMER RESEARCH stored, and disseminated on a mas- occur in the area of biomaterials,” ture is determined by several weaker sive scale via artificial soft materials. says Prof. Reinhard Lipowsky, direc- forces. For this reason, its properties in Mainz and of COLLOIDS AND INTERFACES in Golm, scientists are focussing on this “soft matter”. Without light-sensitive coatings, tor of the “Theory” Division of the depend very much upon environ- there would be no microchip - and Max Plank Institute of Colloids and mental and production conditions.” nor would there be diskettes, CD- Interfaces in Golm near Potsdam The answers given by the three ROMs, and videotapes, which are all (MPIKG). Prof. Hans Wolfgang scientists are typical in that their made from coated plastics. -
Condensed Matter Physics Experiments List 1
Physics 431: Modern Physics Laboratory – Condensed Matter Physics Experiments The Oscilloscope and Function Generator Exercise. This ungraded exercise allows students to learn about oscilloscopes and function generators. Students measure digital and analog signals of different frequencies and amplitudes, explore how triggering works, and learn about the signal averaging and analysis features of digital scopes. They also explore the consequences of finite input impedance of the scope and and output impedance of the generator. List 1 Electron Charge and Boltzmann Constants from Johnson Noise and Shot Noise Mea- surements. Because electronic noise is an intrinsic characteristic of electronic components and circuits, it is related to fundamental constants and can be used to measure them. The Johnson (thermal) noise across a resistor is amplified and measured at both room temperature and liquid nitrogen temperature for a series of different resistances. The amplifier contribution to the mea- sured noise is subtracted out and the dependence of the noise voltage on the value of the resistance leads to the value of the Boltzmann constant kB. In shot noise, a series of different currents are passed through a vacuum diode and the RMS noise across a load resistor is measured at each current. Since the current is carried by electron-size charges, the shot noise measurements contain information about the magnitude of the elementary charge e. The experiment also introduces the concept of “noise figure” of an amplifier and gives students experience with a FFT signal analyzer. Hall Effect in Conductors and Semiconductors. The classical Hall effect is the basis of most sensors used in magnetic field measurements. -
Soft Matter Theory
Soft Matter Theory K. Kroy Leipzig, 2016∗ Contents I Interacting Many-Body Systems 3 1 Pair interactions and pair correlations 4 2 Packing structure and material behavior 9 3 Ornstein{Zernike integral equation 14 4 Density functional theory 17 5 Applications: mesophase transitions, freezing, screening 23 II Soft-Matter Paradigms 31 6 Principles of hydrodynamics 32 7 Rheology of simple and complex fluids 41 8 Flexible polymers and renormalization 51 9 Semiflexible polymers and elastic singularities 63 ∗The script is not meant to be a substitute for reading proper textbooks nor for dissemina- tion. (See the notes for the introductory course for background information.) Comments and suggestions are highly welcome. 1 \Soft Matter" is one of the fastest growing fields in physics, as illustrated by the APS Council's official endorsement of the new Soft Matter Topical Group (GSOFT) in 2014 with more than four times the quorum, and by the fact that Isaac Newton's chair is now held by a soft matter theorist. It crosses traditional departmental walls and now provides a common focus and unifying perspective for many activities that formerly would have been separated into a variety of disciplines, such as mathematics, physics, biophysics, chemistry, chemical en- gineering, materials science. It brings together scientists, mathematicians and engineers to study materials such as colloids, micelles, biological, and granular matter, but is much less tied to certain materials, technologies, or applications than to the generic and unifying organizing principles governing them. In the widest sense, the field of soft matter comprises all applications of the principles of statistical mechanics to condensed matter that is not dominated by quantum effects. -
7 Plasmonics
7 Plasmonics Highlights of this chapter: In this chapter we introduce the concept of surface plasmon polaritons (SPP). We discuss various types of SPP and explain excitation methods. Finally, di®erent recent research topics and applications related to SPP are introduced. 7.1 Introduction Long before scientists have started to investigate the optical properties of metal nanostructures, they have been used by artists to generate brilliant colors in glass artefacts and artwork, where the inclusion of gold nanoparticles of di®erent size into the glass creates a multitude of colors. Famous examples are the Lycurgus cup (Roman empire, 4th century AD), which has a green color when observing in reflecting light, while it shines in red in transmitting light conditions, and church window glasses. Figure 172: Left: Lycurgus cup, right: color windows made by Marc Chagall, St. Stephans Church in Mainz Today, the electromagnetic properties of metal{dielectric interfaces undergo a steadily increasing interest in science, dating back in the works of Gustav Mie (1908) and Rufus Ritchie (1957) on small metal particles and flat surfaces. This is further moti- vated by the development of improved nano-fabrication techniques, such as electron beam lithographie or ion beam milling, and by modern characterization techniques, such as near ¯eld microscopy. Todays applications of surface plasmonics include the utilization of metal nanostructures used as nano-antennas for optical probes in biology and chemistry, the implementation of sub-wavelength waveguides, or the development of e±cient solar cells. 208 7.2 Electro-magnetics in metals and on metal surfaces 7.2.1 Basics The interaction of metals with electro-magnetic ¯elds can be completely described within the frame of classical Maxwell equations: r ¢ D = ½ (316) r ¢ B = 0 (317) r £ E = ¡@B=@t (318) r £ H = J + @D=@t; (319) which connects the macroscopic ¯elds (dielectric displacement D, electric ¯eld E, magnetic ¯eld H and magnetic induction B) with an external charge density ½ and current density J. -
D0tc00217h4.Pdf
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020 Electronic Supporting Information What is the role of planarity and torsional freedom for aggregation in a -conjugated donor-acceptor model oligomer? Stefan Wedler1, Axel Bourdick2, Stavros Athanasopoulos3, Stephan Gekle2, Fabian Panzer1, Caitlin McDowell4, Thuc-Quyen Nguyen4, Guillermo C. Bazan5, Anna Köhler1,6* 1 Soft Matter Optoelectronics, Experimentalphysik II, University of Bayreuth, Bayreuth 95440, Germany. 2Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Bayreuth 95440, Germany 3Departamento de Física, Universidad Carlos III de Madrid, Avenida Universidad 30, 28911 Leganés, Madrid, Spain. 4Center for Polymers and Organic Solids, Departments of Chemistry & Biochemistry and Materials, University of California, Santa Barbara 5Departments of Chemistry and Chemical Engineering, National University of Singapore, Singapore, 119077 6Bayreuth Institute of Macromolecular Research (BIMF) and Bavarian Polymer Institute (BPI), University of Bayreuth, 95440 Bayreuth, Germany. *e-mail: [email protected] 1 1 Simulated spectra Figure S1.1: Single molecule TD-DFT simulated absorption spectra at the wB97XD/6-31G** level for the TT and CT molecules. TT absorption at the ground state twisted cis and trans configurations is depicted. Vertical transition energies have been broadened by a Gaussian function with a half-width at half-height of 1500cm-1. Figure S1.2: Simulated average CT aggregate absorption spectrum. The six lowest vertical transition transition energies for CT dimer configurations taken from the MD simulations have been computed with TD-DFT at the wB97XD/6-31G** level. Vertical transition energies have been broadened by a Gaussian function with a half-width at half-height of 1500cm-1. -
Plasmon‑Polaron Coupling in Conjugated Polymers on Infrared Metamaterials
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials Wang, Zilong 2015 Wang, Z. (2015). Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/65636 https://doi.org/10.32657/10356/65636 Downloaded on 04 Oct 2021 22:08:13 SGT PLASMON-POLARON COUPLING IN CONJUGATED POLYMERS ON INFRARED METAMATERIALS WANG ZILONG SCHOOL OF PHYSICAL & MATHEMATICAL SCIENCES 2015 Plasmon-Polaron Coupling in Conjugated Polymers on Infrared Metamaterials WANG ZILONG WANG WANG ZILONG School of Physical and Mathematical Sciences A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy 2015 Acknowledgements First of all, I would like to express my deepest appreciation and gratitude to my supervisor, Asst. Prof. Cesare Soci, for his support, help, guidance and patience for my research work. His passion for sciences, motivation for research and knowledge of Physics always encourage me keep learning and perusing new knowledge. As one of his first batch of graduate students, I am always thankful to have the opportunity to join with him establishing the optical spectroscopy lab and setting up experiment procedures, through which I have gained invaluable and unique experiences comparing with many other students. My special thanks to our collaborators, Professor Dr. Harald Giessen and Dr. Jun Zhao, Ms. Bettina Frank from the University of Stuttgart, Germany. Without their supports, the major idea of this thesis cannot be experimentally realized. -
Cell Biology Befriends Soft Matter Physics Phase Separation Creates Complex Condensates in Eukaryotic Cells
technology feature Cell biology befriends soft matter physics Phase separation creates complex condensates in eukaryotic cells. To study these mysterious droplets, many disciplines come together. Vivien Marx n many cartoons, eukaryotic cells have When the right contacts are made, phase a tidy look. A taut membrane surrounds separation occurs. Ia placid, often pastel-hued lake with well-circumscribed organelles such as Methods multitude ribosomes and a few bits and bobs. It’s a In the young condensate field, Amy helpful simplification of the jam-packed Gladfelter of the University of North cytoplasm. In some areas, there’s even more Carolina at Chapel Hill says her lab intense milling about1–4. To get a sense of intertwines molecular-biology-based these milieus, head to the kitchen with approaches, modeling, and in vitro Tony Hyman of the Max Planck Institute reconstitution experiments using simplified of Molecular Cell Biology and Genetics systems. “You can’t build models that have and Christoph Weber and Frank Jülicher of all the parameters that exist in a cell,” she the Max Planck Institute for the Physics of says. But researchers need to consider that Complex Systems, who note5: “For instance, in vitro work or overexpressing proteins when you make vinaigrette and leave it, you will not do complete justice to condensates come back annoyed to find that the oil and in situ. “Anything will phase separate vinegar have demixed into two different in a test tube,” she says, highlighting phases: an oil phase and a vinegar phase.” Just Eukaryotic cells contain mysterious, malleable, experiments in which crowding agents as oil and vinegar can separate into two stable liquid-like condensates in which there is intense such as polyethylene glycol are used to phases, such liquid–liquid phase separation activity. -
Accounting for the Local Field When Determining the Dielectric Loss
materials Article Accounting for the Local Field When Determining the Dielectric Loss Spectra of Metals in the Region of the Frequencies of Volume, Surface and Localized Plasmon Oscillations Tatiana Perova 1,* , Igor Shaganov 2 and Kevin Berwick 3 1 Department of Electronic and Electrical Engineering, Trinity College Dublin, The University of Dublin, 2 Dublin, Ireland 2 Vavilov State Optical Institute, 199034 St.-Petersburg, Russia; [email protected] 3 School of Electrical and Electronic Engineering, Technical University Dublin, 8 Dublin, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +353-1-896-1432 Received: 12 December 2019; Accepted: 20 January 2020; Published: 31 January 2020 Abstract: The optical constant of bulk metal is used to determine the dispersion of the local field under one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) confinement. mic( ) 3D confinement, expressed as "2 !3D , corresponds to the dielectric loss spectra of spherical particles with a diameter, d, much less than the wavelength of the beam used to measure the spectrum (d << λ). Excellent agreement with the results of Mie theory and experimental data for solid colloids within mic( ) alkali halide crystals was observed. The function expressed as "2 !1D allows the measurement of spectral micro-characteristics in the frequency range of the longitudinal collective motion of the free electrons. This corresponds to the spectrum of dielectric losses of bulk plasma oscillations. mic( ) The function "2 !2D describes the spectra of the dielectric losses of surface plasma oscillations in mic( ) mic( ) mic( ) thin metal films. It is shown that the peak positions of "2 !3D , "2 !2D and "2 !1D spectra for simple metals, viz. -
Au Nanoparticle Sub-Monolayers Sandwiched Between Sol-Gel Oxide Thin Films
materials Article Au Nanoparticle Sub-Monolayers Sandwiched between Sol-Gel Oxide Thin Films Enrico Della Gaspera 1, Enrico Menin 2, Gianluigi Maggioni 3 ID , Cinzia Sada 4 and Alessandro Martucci 2,5,* ID 1 School of Science, RMIT University, Melbourne 3000, Australia; [email protected] 2 Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova 35131, Italy; [email protected] 3 Materials and Detectors Division, INFN, Legnaro National Laboratories, Viale dell’Università, Legnaro 35020, Italy; [email protected] 4 Department of Physiscs and Astronomy, University of Padova, via Marzolo 8, Padova 35131, Italy; [email protected] 5 National Research Council of Italy, Institute for Photonics and Nanotechnologies, Padova, via Trasea 7, Padova 35131, Italy * Correspondence: [email protected]; Tel.: +39-049-8275506 Received: 22 February 2018; Accepted: 14 March 2018; Published: 14 March 2018 Abstract: Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. -
Soft Matter Research at Upenn Organize Anisotropic Bullet Shaped Particles Into 1D Chains 2D Hexag- Onal Structures (3)
Marquee goes here Soft Matter Research at UPenn organize anisotropic bullet shaped particles into 1D chains 2D hexag- onal structures (3). They have also shown that controlling boundary conditions and particle shape can allow the creation of hybrid washers which combine homeotropic and degenerate planar anchoring (4). The washers change their angle with respect to the far-field direction and are capable of trapping spherical colloids, allowing for the construc- tion of multi-shape colloidal assem- blages. These methods can be used to create complex shapes, further in- creasing the number of techniques Background image: An illustration of edge-pinning effect of focal conic domains (FCDs) in smectic-A liquid crystals available to those involved in creat- with nonzero eccentricity on short, circular pillars in a square array, together with surface topography and cross-polarized optical image of four FCDs on each pillar. The arrangement of FCDs is strongly influenced by the height and shape of the ing complex structures. pillars. Image courtesy of Felice Macera, Daniel Beller, Apiradee Honglawan, and Simon Copar. Advanced Materials Cover: This paper demonstrated an epitaxial approach to tailor the size and symmetry of toric focal conic domain (TFCD) arrays over large areas by exploiting 3D confinement and directed growth of Smectic-A liquid The team is actively contributing crystals with variable dimensions much like the FCDs. to the goals of the MRSEC by ex- panding the techniques available At the Materials Research Science The coalition has published sev- for use in the construction of com- & Engineering Center (MRSEC) at eral papers together. They have plex assemblies. -
High-Q Surface Plasmon-Polariton Microcavity
Chapter 5 High-Q surface plasmon-polariton microcavity 5.1 Introduction As the research presented in this thesis has shown, microcavities are ideal vehicles for studying light and matter interaction due to their resonant property, which allows individual photons to sample their environment thousands of times. Accurate loss characterization is possible through Q factor measurements, which can elucidate origins of loss if the measurements are performed while varying factors under study (e.g., presence of water). This chapter explores the interaction of light and metal in surface plasmon polariton (SPP) mi- crocavity resonators. The aim of this research effort is to accurately quantify metal loss for SPP waves traveling at the interface between glass and silver. The electric field components of SPP modes in the resonator are calculated by FEM simulation. Two types of plasmonic microcavity resonators are built and tested based on the microtoroid, and microdisk. Only dielectric resonances are observed in the microtoroid resonator, where the optical radiation is attenuated by a metal coating at the surface. However, a silver coated silica microdisk resonator is demonstrated with surface plasmon resonances. In fact, the plasmonic microdisk resonator has record Q for any plas- monic microresonator. Potential applications of a high quality plasmonic waveguide include on-chip, high-frequency communication and sensing. 5.1.1 Plasmonics A plasmon is an oscillation of the free electron gas that resides in metals. Plasmons are easy to excite in metals because of the abundance of loosely bound, or free, electrons in the highest valence shell. These electrons physically respond to electric fields, either present in a crystal or from an external source.