ATR-Chk1 Activation Mitigates Replication Stress Caused by Mismatch Repair-Dependent Processing of DNA Damage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DNA Damage Checkpoint Dynamics Drive Cell Cycle Phase Transitions
bioRxiv preprint doi: https://doi.org/10.1101/137307; this version posted August 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. DNA damage checkpoint dynamics drive cell cycle phase transitions Hui Xiao Chao1,2, Cere E. Poovey1, Ashley A. Privette1, Gavin D. Grant3,4, Hui Yan Chao1, Jeanette G. Cook3,4, and Jeremy E. Purvis1,2,4,† 1Department of Genetics 2Curriculum for Bioinformatics and Computational Biology 3Department of Biochemistry and Biophysics 4Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill 120 Mason Farm Road Chapel Hill, NC 27599-7264 †Corresponding Author: Jeremy Purvis Genetic Medicine Building 5061, CB#7264 120 Mason Farm Road Chapel Hill, NC 27599-7264 [email protected] ABSTRACT DNA damage checkpoints are cellular mechanisms that protect the integrity of the genome during cell cycle progression. In response to genotoxic stress, these checkpoints halt cell cycle progression until the damage is repaired, allowing cells enough time to recover from damage before resuming normal proliferation. Here, we investigate the temporal dynamics of DNA damage checkpoints in individual proliferating cells by observing cell cycle phase transitions following acute DNA damage. We find that in gap phases (G1 and G2), DNA damage triggers an abrupt halt to cell cycle progression in which the duration of arrest correlates with the severity of damage. However, cells that have already progressed beyond a proposed “commitment point” within a given cell cycle phase readily transition to the next phase, revealing a relaxation of checkpoint stringency during later stages of certain cell cycle phases. -
Cell Cycle Arrest and DNA Endoreduplication Following P21waf1/Cip1 Expression
Oncogene (1998) 17, 1691 ± 1703 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression Stewart Bates, Kevin M Ryan, Andrew C Phillips and Karen H Vousden ABL Basic Research Program, NCI-FCRDC, Building 560, Room 22-96, West 7th Street, Frederick, Maryland 21702-1201, USA p21Waf1/Cip1 is a major transcriptional target of p53 and there are an increasing number of regulatory mechan- has been shown to be one of the principal mediators of isms that serve to inhibit cdk activity. Primary amongst the p53 induced G1 cell cycle arrest. We show that in these is the expression of cdk inhibitors (CDKIs) that addition to the G1 block, p21Waf1/Cip1 can also contribute can bind to and inhibit cyclin/cdk complexes (Sherr to a delay in G2 and expression of p21Waf1/Cip1 gives rise and Roberts, 1996). These fall into two classes, the to cell cycle pro®les essentially indistinguishable from INK family which bind to cdk4 and cdk6 and inhibit those obtained following p53 expression. Arrest of cells complex formation with D-cyclins, and the p21Waf1/Cip1 in G2 likely re¯ects an inability to induce cyclin B1/cdc2 family that bind to cyclin/cdk complexes and inhibit kinase activity in the presence of p21Waf1/Cip1, although the kinase activity. inecient association of p21Waf1/Cip1 and cyclin B1 The p21Waf1/Cip1 family of CDKIs include p21Waf1/Cip1, suggests that the mechanism of inhibition is indirect. p27 and p57 and are broad range inhibitors of cyclin/ Cells released from an S-phase block were not retarded cdk complexes (Gu et al., 1993; Harper et al., 1993; in their ability to progress through S-phase by the Xiong et al., 1993; Firpo et al., 1994; Polyak et al., presence of p21Waf1/Cip1, despite ecient inhibition of 1994; Toyoshima and Hunter, 1994; Lee et al., 1995; cyclin E, A and B1 dependent kinase activity, suggesting Matsuoka et al., 1995). -
Molecular Anatomy and Regulation of a Stable Replisome at a Paused Eukaryotic DNA Replication Fork
Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork Arturo Calzada,1,2,3 Ben Hodgson,1,3 Masato Kanemaki,1 Avelino Bueno,2 and Karim Labib1,4 1Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester M20 4BX, United Kingdom; 2Cancer Research Institute, University of Salamanca/CSIC, 37007 Salamanca, Spain Eukaryotic cells regulate the progression and integrity of DNA replication forks to maintain genomic stability and couple DNA synthesis to other processes. The budding yeast proteins Mrc1 and Tof1 associate with the putative MCM–Cdc45 helicase and limit progression of the replisome when nucleotides are depleted, and the checkpoint kinases Mec1 and Rad53 stabilize such stalled forks and prevent disassembly of the replisome. Forks also pause transiently during unperturbed chromosome replication, at sites where nonnucleosomal proteins bind DNA tightly. We describe a method for inducing prolonged pausing of forks at protein barriers assembled at unique sites on a yeast chromosome, allowing us to examine for the first time the effects of pausing upon replisome integrity. We show that paused forks maintain an intact replisome that contains Mrc1, Tof1, MCM–Cdc45, GINS, and DNA polymerases ␣ and and that recruits the Rrm3 helicase. Surprisingly, pausing does not require Mrc1, although Tof1 and Csm3 are both important. In addition, the integrity of the paused forks does not require Mec1, Rad53, or recombination. We also show that paused forks at analogous barriers in the rDNA are regulated similarly. These data indicate that paused and stalled eukaryotic replisomes resemble each other but are regulated differently. -
Incision of Damaged DNA in the Presence of an Impaired Smc5/6 Complex Imperils Genome Stability Jie Peng and Wenyi Feng*
10216–10229 Nucleic Acids Research, 2016, Vol. 44, No. 21 Published online 17 August 2016 doi: 10.1093/nar/gkw720 Incision of damaged DNA in the presence of an impaired Smc5/6 complex imperils genome stability Jie Peng and Wenyi Feng* Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA Received February 01, 2016; Revised August 05, 2016; Accepted August 08, 2016 ABSTRACT cleotide excision repair (RER) pathways, respectively (7). / Virtually all DNA repair pathways require recognition and The Smc5 6 complex is implicated in homologous subsequent excisions of the damaged nucleotide, giving rise recombination-mediated DNA repair during DNA to a single-stranded gap in the DNA polymer (7). The mech- damage or replication stress. Here, we analysed anisms ensuring such a structural alteration of the chro- genome-wide replication dynamics in a hypomorphic mosome is efficiently repaired and does not lead to further budding yeast mutant, smc6-P4. The overall replica- degradation are underexplored. Conceivably, these mecha- tion dynamics in the smc6 mutant is similar to that nisms would involve protein complexes directly interacting in the wild-type cells. However, we captured a dif- with the chromosomal DNA and implicated in DNA dam- ference in the replication profile of an early S phase age or replication stress response. sample in the mutant, prompting the hypothesis that One of the three evolutionarily conserved Structure the mutant incorporates ribonucleotides and/or ac- Maintenance of Chromosome (SMC) protein complexes, the Smc5/6 complex, plays a key role in DNA damage re- cumulates single-stranded DNA gaps during replica- pair. -
Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase
cells Review Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase Jaroslav Kalous *, Denisa Jansová and Andrej Šušor Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic; [email protected] (D.J.); [email protected] (A.Š.) * Correspondence: [email protected] Received: 28 April 2020; Accepted: 24 June 2020; Published: 27 June 2020 Abstract: Cyclin dependent kinase 1 (CDK1) has been primarily identified as a key cell cycle regulator in both mitosis and meiosis. Recently, an extramitotic function of CDK1 emerged when evidence was found that CDK1 is involved in many cellular events that are essential for cell proliferation and survival. In this review we summarize the involvement of CDK1 in the initiation and elongation steps of protein synthesis in the cell. During its activation, CDK1 influences the initiation of protein synthesis, promotes the activity of specific translational initiation factors and affects the functioning of a subset of elongation factors. Our review provides insights into gene expression regulation during the transcriptionally silent M-phase and describes quantitative and qualitative translational changes based on the extramitotic role of the cell cycle master regulator CDK1 to optimize temporal synthesis of proteins to sustain the division-related processes: mitosis and cytokinesis. Keywords: CDK1; 4E-BP1; mTOR; mRNA; translation; M-phase 1. Introduction 1.1. Cyclin Dependent Kinase 1 (CDK1) Is a Subunit of the M Phase-Promoting Factor (MPF) CDK1, a serine/threonine kinase, is a catalytic subunit of the M phase-promoting factor (MPF) complex which is essential for cell cycle control during the G1-S and G2-M phase transitions of eukaryotic cells. -
Working on Genomic Stability: from the S-Phase to Mitosis
G C A T T A C G G C A T genes Review Working on Genomic Stability: From the S-Phase to Mitosis Sara Ovejero 1,2,3,* , Avelino Bueno 1,4 and María P. Sacristán 1,4,* 1 Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain; [email protected] 2 Institute of Human Genetics, CNRS, University of Montpellier, 34000 Montpellier, France 3 Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 4 Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain * Correspondence: [email protected] (S.O.); [email protected] (M.P.S.); Tel.: +34-923-294808 (M.P.S.) Received: 31 January 2020; Accepted: 18 February 2020; Published: 20 February 2020 Abstract: Fidelity in chromosome duplication and segregation is indispensable for maintaining genomic stability and the perpetuation of life. Challenges to genome integrity jeopardize cell survival and are at the root of different types of pathologies, such as cancer. The following three main sources of genomic instability exist: DNA damage, replicative stress, and chromosome segregation defects. In response to these challenges, eukaryotic cells have evolved control mechanisms, also known as checkpoint systems, which sense under-replicated or damaged DNA and activate specialized DNA repair machineries. Cells make use of these checkpoints throughout interphase to shield genome integrity before mitosis. Later on, when the cells enter into mitosis, the spindle assembly checkpoint (SAC) is activated and remains active until the chromosomes are properly attached to the spindle apparatus to ensure an equal segregation among daughter cells. -
S41467-017-00634-0.Pdf
ARTICLE DOI: 10.1038/s41467-017-00634-0 OPEN BRCA2 suppresses replication stress-induced mitotic and G1 abnormalities through homologous recombination Weiran Feng 1,2 & Maria Jasin1,2 Mutations in the tumor suppressor BRCA2 predominantly predispose to breast cancer. Paradoxically, while loss of BRCA2 promotes tumor formation, it also causes cell lethality, although how lethality is triggered is unclear. Here, we generate BRCA2 conditional non- transformed human mammary epithelial cell lines using CRISPR-Cas9. Cells are inviable upon BRCA2 loss, which leads to replication stress associated with under replication, causing mitotic abnormalities, 53BP1 nuclear body formation in the ensuing G1 phase, and G1 arrest. Unexpected from other systems, the role of BRCA2 in homologous recombination, but not in stalled replication fork protection, is primarily associated with supporting human mammary epithelial cell viability, and, moreover, preventing replication stress, a hallmark of pre- cancerous lesions. Thus, we uncover a DNA under replication-53BP1 nuclear body formation- G1 arrest axis as an unanticipated outcome of homologous recombination deficiency, which triggers cell lethality and, we propose, serves as a barrier that must be overcome for tumor formation. 1 Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. 2 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. Correspondence and requests for materials should be addressed to M.J. (email: [email protected]) NATURE COMMUNICATIONS | 8: 525 | DOI: 10.1038/s41467-017-00634-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00634-0 onoallelic inheritance of a deleterious mutation in Results the BRCA1 or BRCA2 tumor suppressor confers BRCA2 is essential for human mammary MCF10A cell viability. -
Cell Cycle Phase Influences Tumour Cell Sensitivity to Aminolaevulinic Acid-Induced Photodynamic Therapy in Vitro
Britsh Joumal of Cancer (1998) 78(1). 50-55 C 1998 Cancer Research Cafpaign Cell cycle phase influences tumour cell sensitivity to aminolaevulinic acid-induced photodynamic therapy in vitro L WyIdl, 0 Smith2, J Lawry2, MWR Reed' and NJ Brown' IDepartment of Surgical and Anaesthetc Sciences. Sheffield University, Sheffield Sl0 2JF. UK. 2lnstitute for Cancer Studies, Sheffield University. Sheffield S10 2JF, UK Summary Photodynamic therapy (PDT) is a form of cancer treatment based on the destruction of cells by the interaction of light, oxygen and a photosensitizer. Aminolaevulinic acid (ALA) is the prodrug of the photosensitizer protoporphyrin IX (PpIX). ALA-induced PDT depends on the rate of cellular synthesis of PpIX, which may vary with cell cycle phase. This study has investigated the relationship between cell cycle phase, PpIX generation and phototoxicity in synchronized and unsynchronized bladder cancer cells (HT1197). In unsynchronized cells, relative PpIX fluorescence values (arbitrary units) were significantly different between cell cycle phases after a 1-h ALA incubation (G, 24.8 ± 0.7; S-phase, 32.7 ± 0.8, P < 0.05; G2 35.4 ± 0.8, P < 0.05). In synchronized cells after a 1 -h ALA incubation, cells in G, produced less PpIX than those in S-phase or G2 [6.65 ± 1.1 ng per 10 cells compared with 15.5 ± 2.1 (P < 0.05), and 8.1 ± 1.8 ng per 105 cells (not significant) respectively] and were significantty less sensitive to ALA-induced PDT (% survival, G, 76.2 ± 8.3; S-phase 49.7 ± 4.6, P < 0.05; G2 44.2 ± 2.4, P < 0.05). -
Activity of the GR in G2 and Mitosis
0888-8809/02/$15.00/0 Molecular Endocrinology 16(6):1352–1366 Printed in U.S.A. Copyright © 2002 by The Endocrine Society Activity of the GR in G2 and Mitosis G. ALEXANDER ABEL, GABRIELA M. WOCHNIK, JOE¨ LLE RU¨ EGG, AUDREY ROUYER, FLORIAN HOLSBOER, AND THEO REIN Max Planck Institute of Psychiatry, Munich D-80804, Germany To elucidate the mechanisms mediating the re- DEX-inducible in G2. Even in mitotic cells, only the ported transient physiological glucocorticoid re- stably transfected MMTV promoter was repressed, sistance in G2/M cell cycle phase, we sought to whereas the same promoter transiently trans- Downloaded from https://academic.oup.com/mend/article/16/6/1352/2741824 by guest on 29 September 2021 establish a model system of glucocorticoid-resis- fected was inducible. The use of Hoechst 33342 for tant cells in G2. We synchronized various cell lines synchronization in previous studies probably in G2 to measure dexamethasone (DEX)-induced caused a misinterpretation, because we detected transactivation of either two endogenous promot- interference of this drug with GR-dependent tran- ers (rat tyrosine aminotransferase and mouse me- scription independent of the cell cycle. Finally, GR tallothionein I) or the mouse mammary tumor virus activated a simple promoter in G2, excluding a (MMTV) promoter stably or transiently transfected. functional effect of cell cycle-dependent phos- To circumvent the need for synchronization drugs, phorylation of GR, as implied previously. We con- we stably transfected an MMTV-driven green fluo- clude that GR itself is fully functional throughout rescent protein to directly correlate DEX-induced the entire cell cycle, but GR responsiveness is re- transactivation with the cell cycle position for each pressed in mitosis due to chromatin condensation cell of an asynchronous population using flow cy- rather than to specific modification of GR. -
Exploiting DNA Replication Stress for Cancer Treatment Tajinder Ubhi1,2 and Grant W
Published OnlineFirst April 9, 2019; DOI: 10.1158/0008-5472.CAN-18-3631 Cancer Review Research Exploiting DNA Replication Stress for Cancer Treatment Tajinder Ubhi1,2 and Grant W. Brown1,2 Abstract Complete and accurate DNA replication is fundamental to associated with such therapies. We discuss how replication cellular proliferation and genome stability. Obstacles that stress modulates the cell-intrinsic innate immune response delay, prevent, or terminate DNA replication cause the phe- and highlight the integration of replication stress with immu- nomena termed DNA replication stress. Cancer cells exhibit notherapies. Together, exploiting replication stress for cancer chronic replication stress due to the loss of proteins that treatment seems to be a promising strategy as it provides a protect or repair stressed replication forks and due to the selective means of eliminating tumors, and with continuous continuous proliferative signaling, providing an exploitable advances in our knowledge of the replication stress response therapeutic vulnerability in tumors. Here, we outline current and lessons learned from current therapies in use, we are and pending therapeutic approaches leveraging tumor-specific moving toward honing the potential of targeting replication replication stress as a target, in addition to the challenges stress in the clinic. Introduction mental. In this review, we provide a summary of the therapies centered on enhancing both endogenous and drug-induced rep- The DNA replication machinery successfully carries out accu- lication stress and discuss the rationales associated with them. We rate genome duplication in the face of numerous obstacles, many also highlight the potential of using replication stress to stimulate of which cause DNA replication stress. -
Exploiting DNA Replication Stress for Cancer Treatment Tajinder Ubhi1,2 and Grant W
Published OnlineFirst April 9, 2019; DOI: 10.1158/0008-5472.CAN-18-3631 Cancer Review Research Exploiting DNA Replication Stress for Cancer Treatment Tajinder Ubhi1,2 and Grant W. Brown1,2 Abstract Complete and accurate DNA replication is fundamental to associated with such therapies. We discuss how replication cellular proliferation and genome stability. Obstacles that stress modulates the cell-intrinsic innate immune response delay, prevent, or terminate DNA replication cause the phe- and highlight the integration of replication stress with immu- nomena termed DNA replication stress. Cancer cells exhibit notherapies. Together, exploiting replication stress for cancer chronic replication stress due to the loss of proteins that treatment seems to be a promising strategy as it provides a protect or repair stressed replication forks and due to the selective means of eliminating tumors, and with continuous continuous proliferative signaling, providing an exploitable advances in our knowledge of the replication stress response therapeutic vulnerability in tumors. Here, we outline current and lessons learned from current therapies in use, we are and pending therapeutic approaches leveraging tumor-specific moving toward honing the potential of targeting replication replication stress as a target, in addition to the challenges stress in the clinic. Introduction mental. In this review, we provide a summary of the therapies centered on enhancing both endogenous and drug-induced rep- The DNA replication machinery successfully carries out accu- lication stress and discuss the rationales associated with them. We rate genome duplication in the face of numerous obstacles, many also highlight the potential of using replication stress to stimulate of which cause DNA replication stress. -
Checkpoint Kinase 1 (Chk1) Is Required for Mitotic Progression Through Negative Regulation of Polo-Like Kinase 1 (Plk1)
Checkpoint kinase 1 (Chk1) is required for mitotic progression through negative regulation of polo-like kinase 1 (Plk1) Jiabin Tang*†, Raymond L. Erikson*‡, and Xiaoqi Liu*†§¶ *Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; †Department of Biochemistry and the Cancer Center, Purdue University, West Lafayette, IN 47907; and §The Walther Cancer Institute, Indianapolis, IN 46202 Contributed by Raymond L. Erikson, June 14, 2006 Although the essential function of checkpoint kinase 1 (Chk1) in Results DNA damage response has been well established, the role of Chk1 Chk1 Is Required for Cell Proliferation and Survival. To investigate in normal cell cycle progression is unclear. By using RNAi to the function of Chk1 during normal cell cycle progression in the specifically deplete Chk1, we determined loss-of-function pheno- absence of DNA damage, we first used vector-based RNAi to types in HeLa cells. A vector-based RNAi approach showed that specifically deplete Chk1 in HeLa cells. As indicated by Western Chk1 is required for normal cell proliferation and survival, inas- blotting, Chk1 was depleted efficiently with this approach (Fig. much as a dramatic cell-cycle arrest at G2͞M phase and massive 1A). We next determined whether Chk1 depletion influences the apoptosis were observed in Chk1-deficient cells. Coupling of siRNA proliferation of HeLa cells. Although transfection with the with cell synchronization further revealed that Chk1 depletion control vector did not affect the growth rate of the cells, leads to metaphase block, as indicated by various mitotic markers. transfection with the plasmid pBS͞U6-Chk1 strongly inhibited Neither bipolar spindle formation nor centrosome functions were cell proliferation (Fig.