Arxiv:2103.12494V4 [Math.AT] 27 Jun 2021 Orsodn Author: Corresponding Dimension Mological E Od N Phrases
PROPERTIES OF THE COMBINATORIAL HANTZSCHE-WENDT GROUPS J. POPKO AND A. SZCZEPANSKI´ Abstract. The combinatorial Hantzsche-Wendt group Gn = −1 2 2 {x1, ..., xn | xi xj xixj , ∀i 6= j} was defined by W. Craig and P. A. Linnell in [3]. For n = 2 it is a fundamental group of 3-dimensional oriented flat manifold with no cyclic holonomy group. We calculate the Hilbert-Poincar´eseries of Gn,n ≥ 1 with Q and F2 coefficients. Moreover, we prove that a cohomological dimension of Gn is equal to n +1. Some other properties of this group are also considered. 1. Introduction Let Γ3 be the fundamental group of an oriented flat 3-manifold with non-cyclic holonomy, which was the first time defined by W. Hantzsche & H. Wendt and W. Nowacki in 1934, see [7], [11]. From [18, ch. 9], Γ3 is a torsion free crystallographic group of a rank 3. Where, by crystallo- graphic group of dimension n we understand a discrete and cocompact subgroup of a group E(n)= O(n) ⋉Rn of isometries of the Euclidean space Rn. From Bieberbach theorems [18] any crystallographic group Γ of rank n defines a short exact sequence (1) 1 → Zn → Γ → H → 1, where Zn is a free abelian subgroup of all translations of Γ and H is a finite group, called a holonomy group of Γ. In the case of Γ3 a group H = Z2 ⊕ Z2. As a subgroup of E(3) 1 0 0 −1 0 0 Γ3 = gen{A =( 0 −1 0 , (1/2, 1/2, 0)), B =( 0 1 0 , (0, 1/2, 1/2))}.
[Show full text]