Unsolved Problems in Group Theory. the Kourovka Notebook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2103.12494V4 [Math.AT] 27 Jun 2021 Orsodn Author: Corresponding Dimension Mological E Od N Phrases
PROPERTIES OF THE COMBINATORIAL HANTZSCHE-WENDT GROUPS J. POPKO AND A. SZCZEPANSKI´ Abstract. The combinatorial Hantzsche-Wendt group Gn = −1 2 2 {x1, ..., xn | xi xj xixj , ∀i 6= j} was defined by W. Craig and P. A. Linnell in [3]. For n = 2 it is a fundamental group of 3-dimensional oriented flat manifold with no cyclic holonomy group. We calculate the Hilbert-Poincar´eseries of Gn,n ≥ 1 with Q and F2 coefficients. Moreover, we prove that a cohomological dimension of Gn is equal to n +1. Some other properties of this group are also considered. 1. Introduction Let Γ3 be the fundamental group of an oriented flat 3-manifold with non-cyclic holonomy, which was the first time defined by W. Hantzsche & H. Wendt and W. Nowacki in 1934, see [7], [11]. From [18, ch. 9], Γ3 is a torsion free crystallographic group of a rank 3. Where, by crystallo- graphic group of dimension n we understand a discrete and cocompact subgroup of a group E(n)= O(n) ⋉Rn of isometries of the Euclidean space Rn. From Bieberbach theorems [18] any crystallographic group Γ of rank n defines a short exact sequence (1) 1 → Zn → Γ → H → 1, where Zn is a free abelian subgroup of all translations of Γ and H is a finite group, called a holonomy group of Γ. In the case of Γ3 a group H = Z2 ⊕ Z2. As a subgroup of E(3) 1 0 0 −1 0 0 Γ3 = gen{A =( 0 −1 0 , (1/2, 1/2, 0)), B =( 0 1 0 , (0, 1/2, 1/2))}. -
On Automorphisms of Structures in Logic and Orderability of Groups In
On Automorphisms of Structures in Logic and Orderability of Groups in Topology By Ataollah Togha A Dissertation Submitted to The Faculty of The Columbian College of Arts and Sciences ofTheGeorgeWashingtonUniversity in Partial Satisfaction of the Requirements for the Degree of Doctor of Philosophy August 30, 2004 Dissertation Co-directed by Valentina Harizanov The George Washington University and Ali Enayat American University Contents Dedication iv Acknowledgements v Abstract vii 1 Model-theoretic Preliminaries 1 1.1TheAutomorphismGroup...................... 1 1.2Saturation,Categoricity,andHomogeneity............. 6 1.3RecursivelySaturatedModels.................... 8 2 Automorphisms of Models of Set Theory 16 2.1Friedman’sTheorem......................... 16 2.2AutomorphismsthatFixOrdinalsFixaLotMore........ 22 2.3CutsinModelsofSetTheory.................... 24 2.4OpenProblems............................ 32 3 (Left-)orderability of Groups 34 i 3.1 (Left-)ordered Groups and (Left-)orderability . .......... 34 3.2CharacterizationsandConnectionswithLogic........... 39 3.3TheAbelianCase........................... 42 3.4 Left-orderability of Non-abelian Groups .............. 43 4 Non-left-orderability of Fundamental Groups of 3-Manifolds 49 4.1TopologicalPreliminaries...................... 49 4.2Non-left-orderable3-ManifoldGroups............... 52 4.3OpenProblems............................ 63 ii List of Figures Figure3.1.................................. 45 Figure3.2.................................. 46 Figure4.1................................. -
^H ^Fibonacci Quarterly
^h ^Fibonacci Quarterly THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION VOLUME 15 [l^WST NUMBER 1 CONTENTS Residues of Generalized Fibonacci Sequences C. C. Yalavigi 1 Composites and Primes Among Powers of Fibonacci V. E. Hoggatt, Jr., and Numbers, Increased or Decreased by One Marjorie Bicknell-Johnson 2 Divisibility by Fibonacci and Lucas Squares V. E. Hoggatt, Jr., and Marjorie Bicknell-Johnson 3 Letter to the Editor . John W. Jameson 8 An Elementary Proof of Kronecker's Theorem J. Spencer 9 Fibonacci Numbers in the Count of Spanning Trees Peter J. Slater 11 The Diophantine Equation 3 3 3 (x1 + x2 + - +xnf = x + x 2 + - + x . W. R. Utz 14 An Application of W. Schmidt's Theorem Transcendental Numbers and Golden Number Maurice Mignotte 15 The Reciprocal Law W. E. Greig 17 Binet's Formula Generalized A. K. Whitford 21 On the Multinomial Theorem David Lee Hilliker 22 A Fibonacci Formula of Lucas and its Subsequent Manifestations and Rediscoveries . H. W. Gould 25 Numerator Polynomial Coefficient Arrays for Catalan V. E. Hoggatt, Jr., and and Related Sequence Convolution Triangles. Marjorie Bicknell-Johnson 30 Fibonacci-Like Groups and Periods of Fibonacci-Like Sequences .Lawrence Somer 35 Solution of a Certain Recurrence Relation .Douglas A. Fults 41 On Tribonacci Numbers and Related Functions Krishnaswami Alladi and V. E. Hoggatt, Jr. 42 Sums of Fibonacci Reciprocals W. E. Greig 46 Fibonacci Notes — 5. Zero-One Sequences Again L. Carlitz 49 On the A/"-Canonical Fibonacci Representations of Order N . Robert Silber 57 A Rearrangement of Series Based on a Partition of the Natural Numbers H. -
Kaplansky's Conjectures
Kaplansky’s conjectures Giles Gardam University of Münster New York Group Theory Seminar 11 March 2021 Giles Gardam (University of Münster) Kaplansky’s conjectures 11 March 2021 1 / 17 Links Giles Gardam. A counterexample to the unit conjecture for group rings. arXiv:2102.11818. These slides are available at www.gilesgardam.com/slides/nygt.pdf. Giles Gardam (University of Münster) Kaplansky’s conjectures 11 March 2021 2 / 17 Group rings Let G be a group and R be a ring. The group ring R[G] is the ring nX o rg g j rg 2 R; g 2 G of finite formal sums with multiplication X X X rg g · shh := (rg sh)(gh): × Note that g 7! 1R g is an embedding G ,! (R[G]) of G in the group of units and r 7! r1G embeds R as a subring of R[G]. An expression like r − g makes sense. G-actions on R-modules (e.g. vector spaces) are the same thing as R[G]-modules, so group rings are natural objects of study in representation theory, topology, etc. If K is a field then K[G] is an algebra over K and one might say “group algebra” instead of “group ring”. Giles Gardam (University of Münster) Kaplansky’s conjectures 11 March 2021 3 / 17 Group rings (continued) If G = Z = hti then R[G] is just finite formal sums of multiples of powers of −1 P i t, that is, the Laurent polynomials R[t; t ] = i ai t . k Similarly R[Z ] is just the Laurent polynomials in k unknowns. -
Non-Commutative Gröbner Bases and Applications
Dissertation Non-Commutative Gr¨obnerBases and Applications Xingqiang Xiu Eingereicht an der Fakult¨atf¨urInformatik und Mathematik der Universit¨atPassau als Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften Submitted to the Department of Informatics and Mathematics of the Universit¨atPassau in Partial Fulfilment of the Requirements for the Degree of a Doctor in the Domain of Science Betreuer / Advisor: Prof. Dr. Martin Kreuzer Universit¨atPassau May 2012 Non-Commutative Gr¨obnerBases and Applications Xingqiang Xiu Erstgutachter: Prof. Dr. Martin Kreuzer Zweitgutachter: Prof. Dr. Gerhard Rosenberger M¨undliche Pr¨ufer: Prof. Dr. Franz Brandenburg Prof. Dr. Tobias Kaiser Der Fakult¨atf¨urInformatik und Mathematik der Universit¨atPassau vorgelegt im Mai 2012 Dedicated to my parents and grandma ii Contents 1 Introduction 1 2 Preliminaries 7 2.1 Monoids and Groups . 7 2.2 Rings . 15 2.3 Modules . 21 3 Gr¨obnerBases in KhXi 27 3.1 Admissible Orderings . 28 3.2 The Division Algorithm . 34 3.3 Gr¨obnerBases . 40 3.4 Syzygies . 46 3.5 Gr¨obnerBases of Right Ideals . 52 4 Gr¨obnerBasis Computations in KhXi 55 4.1 The Buchberger Procedure . 57 4.2 Improved Buchberger Procedures . 68 4.2.1 Interreduction on Obstructions . 69 4.2.2 Improved Buchberger Procedures . 77 4.3 Homogenization and Dehomogenization . 96 4.4 Gr¨obnerBasis Computations for Right Ideals . 108 5 Gr¨obnerBasis Theory in (KhXi ⊗ KhXi)r 111 5.1 Module Term Orderings and the Division Algorithm . 112 5.2 Gr¨obnerBases and Gr¨obner Basis Computations . 118 iv CONTENTS 5.3 Improved Buchberger Procedures . 124 5.4 The F4 Procedure .