Les Péripates / Insectes N°
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Onychophora, Peripatidae) Feeding on a Theraphosid Spider (Araneae, Theraphosidae)
2009. The Journal of Arachnology 37:116–117 SHORT COMMUNICATION First record of an onychophoran (Onychophora, Peripatidae) feeding on a theraphosid spider (Araneae, Theraphosidae) Sidclay C. Dias and Nancy F. Lo-Man-Hung: Museu Paraense Emı´lio Goeldi, Laborato´rio de Aracnologia, C.P. 399, 66017-970, Bele´m, Para´, Brazil. E-mail: [email protected] Abstract. A velvet worm (Peripatus sp., Peripatidae) was observed and photographed while feeding on a theraphosid spider, Hapalopus butantan (Pe´rez-Miles, 1998). The present note is the first report of an onychophoran feeding on ‘‘giant’’ spider. Keywords: Prey behavior, velvet worm, spider Onychophorans, or velvet worms, are organisms whose behavior on the floor forests (pers. obs.). Onychophorans are capable of preying remains poorly understood due to their cryptic lifestyle (New 1995) on animals their own size, although the quantity of glue used in an attack and by the fact they are rare in the Neotropics (Mcglynn & Kelley increases up to about 80% of the total capacity for larger prey (Read & 1999). Consequently reports on hitherto unknown aspects of the Hughes 1987). It may be that encounters with larger prey items, such as biology and life history of onychophorans are urgently needed. that observed by us, are more common than previously supposed. Onychophorans are almost all carnivores that prey on small invertebrates such as snails, isopods, earth worms, termites, and other ACKNOWLEDGMENTS small insects (Hamer et al. 1997). They are widely distributed in Thanks to G. Machado (USP), T.A. Gardner (Universidade southern hemisphere temperate regions and in the tropics (Reinhard Federal de Lavras), and C.A. -
Onychophorology, the Study of Velvet Worms
Uniciencia Vol. 35(1), pp. 210-230, January-June, 2021 DOI: http://dx.doi.org/10.15359/ru.35-1.13 www.revistas.una.ac.cr/uniciencia E-ISSN: 2215-3470 [email protected] CC: BY-NC-ND Onychophorology, the study of velvet worms, historical trends, landmarks, and researchers from 1826 to 2020 (a literature review) Onicoforología, el estudio de los gusanos de terciopelo, tendencias históricas, hitos e investigadores de 1826 a 2020 (Revisión de la Literatura) Onicoforologia, o estudo dos vermes aveludados, tendências históricas, marcos e pesquisadores de 1826 a 2020 (Revisão da Literatura) Julián Monge-Nájera1 Received: Mar/25/2020 • Accepted: May/18/2020 • Published: Jan/31/2021 Abstract Velvet worms, also known as peripatus or onychophorans, are a phylum of evolutionary importance that has survived all mass extinctions since the Cambrian period. They capture prey with an adhesive net that is formed in a fraction of a second. The first naturalist to formally describe them was Lansdown Guilding (1797-1831), a British priest from the Caribbean island of Saint Vincent. His life is as little known as the history of the field he initiated, Onychophorology. This is the first general history of Onychophorology, which has been divided into half-century periods. The beginning, 1826-1879, was characterized by studies from former students of famous naturalists like Cuvier and von Baer. This generation included Milne-Edwards and Blanchard, and studies were done mostly in France, Britain, and Germany. In the 1880-1929 period, research was concentrated on anatomy, behavior, biogeography, and ecology; and it is in this period when Bouvier published his mammoth monograph. -
An Approach Towards a Modern Monograph
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte des naturwissenschaftlichen-medizinischen Verein Innsbruck Jahr/Year: 1992 Band/Volume: S10 Autor(en)/Author(s): Ruhberg Hilke Artikel/Article: "Peripatus" - an Approach towards a Modern Monograph. 441- 458 ©Naturwiss. med. Ver. Innsbruck, download unter www.biologiezentrum.at Ber. nat.-med. Verein Innsbruck Suppl. 10 S. 441 - 458 Innsbruck, April 1992 8th International Congress of Myriapodology, Innsbruck, Austria, July 15 - 20, 1990 "Peripatus" — an Approach towards a Modern Monograph by' Hilke RUHBERG Zoologisches Institut und Zoologisches Museum, Abi. Entomologie, Martin-Luther-King Pfalz 3, D-2000 Hamburg 13 Abstract: What is a modern monograph? The problem is tackled on the basis of a discussion of the compli- cated taxonomy of Onychophora. At first glance the phylum presents a very uniform phenotype, which led to the popular taxonomic use of the generic name "Peripatus" for all representatives of the group. The first description of an onychophoran, as an "aberrant mollusc", was published in 1826 by GUILDING: To date, about 100 species have been described, and Australian colleagues (BRISCOE & TAIT, in prep.), using al- lozyme electrophoretic techniques, have discovered large numbers of genetically isolated populations of as yet un- described Peripatopsidae. The taxonomic hislory is reviewed in brief. Following the principles of SIMPSON, MAYR, HENNIG and others, selected taxonomic characters are discussed and evaluated. Questions arise such as: how can the pioneer classification (sensu SEDGWICK, POCOCK, and BOUVIER) be improved? New approaches towards a modern monographic account are considered, including the use of SEM and TEM and biochemical methods. -
Smithsonian Miscellaneous Collections
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 65, NUMBER 1 The Present Distribution of the Onychophora, a Group of Terrestrial Invertebrates BY AUSTIN H. CLARK (Publication 2319) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JANUARY 4, 1915 Z$t £orb Qgattimovt (preee BALTIMORE, MD., U. S. A. THE PRESENT DISTRIBUTION OF THE ONYCHOPHORA, A GROUP OF TERRESTRIAL INVERTEBRATES. By AUSTIN H. CLARK CONTENTS Preface I The onychophores apparently an ancient type 2 The physical and ecological distribution of the onychophores 2 The thermal distribution of the onychophores 3 General features of the distribution of the onychophores 3 The distribution of the Peripatidae 5 Explanation of the distribution of the Peripatidae 5 The distribution of the American species of the Peripatidae 13 The distribution of the Peripatopsidae 17 The distribution of the species, genera and higher groups of the ony- chophores in detail 20 PREFACE A close study of the geographical distribution of almost any class of animals emphasizes certain features which are obscured, or some- times entirely masked, in the geographical distribution of other types, and it is therefore essential, if we would lay a firm foundation for zoogeographical generalizations, that the details of the distribution of all types should be carefully examined. Not only do the different classes of animals vary in the details of their relationships to the present land masses and their subdivisions, but great diversity is often found between families of the same order, and even between genera of the same family. Particularly is this true of nocturnal as contrasted with related diurnal types. As a group the onychophores have been strangely neglected by zoologists. -
Distribution of a Costa Rican Wet Forest Velvet Worm (Onychophora: Peripatidae)
ECOLOGY AND POPULATION BIOLOGY Distribution of a Costa Rican Wet Forest Velvet Worm (Onychophora: Peripatidae) 1 2 T. P. MCGLYNN AND C. D. KELLEY Ann. Entomol. Soc. Am. 92(1): 53Ð55 (1999) ABSTRACT The ecology of New World onychophorans is poorly known because individuals are rare and difÞcult to locate in the Þeld. The only descriptions of density and microhabitat associations are based on the Þeld observations of a few individuals. This paper presents the results of a 300-m2 search of leaf litter in a wet tropical forest at La Selva Biological Station, Republic of Costa Rica, during the dry season over a period of 4 mo. Density of this Epiperipatus sp. was 0.11 individuals per square meter. The age structure of the population was biased toward juveniles, but did not include newly born onychophorans; this suggests that reproduction occurs during the wet season. Epiperi- patus sp. nonrandomly selects microhabitats. It is strikingly associated with ants; 1-m2 plots con- taining onychophorans contained a mean of 7.4 ant nests, whereas plots without onychophorans had a mean of only 4.7 ant nests. In 2 instances, onychophorans were located inside large and active ant nests. KEY WORDS Epiperipatus, microhabitat, ants, leaf litter THE PHYLOGENY AND historical biogeography of the present the density, size distribution, and microhabi- phylum Onychophora are important to invertebrate tat selection of Epiperipatus sp. in a tropical wet forest systematists because of many traits shared with ar- in Costa Rica. This undescribed species will be de- thropods and annelids (Monge-Najera 1995). None- scribed later by Julian Monge-Najera of the University theless, the basic natural history of this phylum is of Costa Rica (J. -
Onychophora: Peripatidae)
A new giant species of placented worm and the mechanism by which onychophorans weave their nets (Onychophora: Peripatidae) Bernal Morera-Brenes1,2 & Julián Monge-Nájera3 1. Laboratorio de Genética Evolutiva, Escuela de Ciencias Biológicas, Universidad Nacional, Heredia, Costa Rica; [email protected] 2. Centro de Investigaciones en Estructuras Microscópicas (CIEMIC), Universidad de Costa Rica, 2060 San José, Costa Rica. 3. Vicerrectoría de Investigación, Universidad Estatal a Distancia, San José, Costa Rica; [email protected], julian- [email protected] Received 17-II-2010. Corrected 20-VI-2010. Accepted 22-VII-2010. Abstract: Onychophorans, or velvet worms, are poorly known and rare animals. Here we report the discovery of a new species that is also the largest onychophoran found so far, a 22cm long female from the Caribbean coastal forest of Costa Rica. Specimens were examined with Scanning Electron Microscopy; Peripatus solorzanoi sp. nov., is diagnosed as follows: primary papillae convex and conical with rounded bases, with more than 18 scale ranks. Apical section large, spherical, with a basal diameter of at least 20 ranks. Apical piece with 6-7 scale ranks. Outer blade 1 principal tooth, 1 accessory tooth, 1 vestigial accessory tooth (formula: 1/1/1); inner blade 1 principal tooth, 1 accessory tooth, 1 rudimentary accessory tooth, 9 to 10 denticles (formula: 1/1/1/9-10). Accessory tooth blunt in both blades. Four pads in the fourth and fifth oncopods; 4th. pad arched. The previ- ously unknown mechanism by which onychophorans weave their adhesive is simple: muscular action produces a swinging movement of the adhesive-spelling organs; as a result, the streams cross in mid air, weaving the net. -
General Bibliography of Onychophora, 1826-2000
General Bibliography of Onychophora, 1826-2000 The Onychophora Project Director: Julián Monge-Nájera, Laboratorio Ecología Urbana UNED Costa Rica Editorial Assistants: Carolina Seas & Priscilla Redondo [email protected] [Anonymous]. (1885). Peripatus. In: Report on the Scientific Results of the Voyage of H.M.S. Challenger During the Years 1873-76 Longmans & Co, London. 284-286. [Anonymous]. (1895). Report of club meetings, 19 April 1895. Journal of the Trinidad Field Naturalists' Club 2: 187-189.Å Akcakaya, H. R., Burgman, M. A., Kindvall, O., Wood, C. C., Sjogren-Gulve, P., Hatfield, J. S., & McCarthy, M. A. (2004). Species conservation and management: case studies. New York: Oxford University Press. Alexander, A.J. (1957). Notes on onychophoran behaviour. Annals of the Natal Museum 14: 35-43. Alexander, A.J. (1958). Peripatus: Fierce little giant. Animal Kingdom 61: 122-125. Allwood, J., Gleeson, D., Mayer, G., Daniels, S., Beggs, J. R., & Buckley, T. R. (2010). Support for vicariant origins of the New Zealand Onychophora. Journal of Biogeography, 37(4), 669–681. DOI: 10.1111/j.1365-2699.2009.02233.x Altincicek, B., & Vilcinskas, A. (2008). Identification of immune inducible genes from the velvet worm Epiperipatus biolleyi (Onychophora). Developmental and Comparative Immunology, 32(12), 1416-21. Anderson, D.T. (1966). The comparative early embryology of the Oligochaeta, Hirudinea and Onychophora. Proceedings of the Linnean Society of New South Wales 91: 10-43. Anderson, D.T. (1979). Embryos, fate maps, and the phylogeny of arthropods. In: Arthropod Phylogeny. A. P. Gupta, ed. Van Nostrand Reinhold Company, New York. 59-105. Annandale, N. (1912). The occurrence of Peripatus on the North-East frontier of India. -
Onychophora: Peripatidae)
COMMUNICATION An undescribed species of velvet worm from Chiapas, Mexico (Onychophora: Peripatidae) Xocoyotzin Toledo-Matus1, Gustavo Rivera-Velázquez1,2, Julián Monge-Nájera3& Bernal Morera-Brenes4 1. Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Apartado postal 57, C.P.29000, Tuxtla Gutiérrez, Chiapas, México; [email protected] 2. Laboratorio de Acuacultura y Evaluación Pesquera, Universidad de Ciencias y Artes de Chiapas, A.P. 57, C.P.29000, Tuxtla Gutiérrez, Chiapas, México; [email protected] 3. Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, 2050 San José, Costa Rica; [email protected] 4. Laboratorio de Genética Evolutiva, Escuela de Ciencias Biológicas, Universidad Nacional, Heredia, Costa Rica; [email protected] Received 05-IX-2017 • Corrected 23-X-2017 • Accepted 16-XI-2017 ABSTRACT: Onychophoran worms are considered “living fossils” be- RESUMEN: Una especie no descrita de gusano de terciopelo de cause their basic body structure has changed little in 500 million Chiapas, México (Onychophora: Peripatidae). Los gusanos onicófo- years. Only two species have been properly recorded from Mexico: ros son considerados “fósiles vivientes” porque su estructura corporal Macroperipatus perrieri from Veracruz, and Oroperipatus eisenii from ha cambiado poco en 500 millones de años. En México solamente se Nayarit. Here we report an undescribed species of Oroperipatus from han confirmado Macroperipatus perrieri de Veracruz, y Oroperipatus eise- Tuxtla Gutiérrez, Chiapas. Males, which are rarer, smaller and reddish nii de Nayarit. Aquí reportamos una especie no descrita de Oroperipatus than females, are 3-4cm long and have 24-25 leg pairs (N=6). Females de Tuxtla Gutiérrez, Chiapas. Los machos, que son más escasos, peque- are 4-7,5cm long and have 28-29 pairs (N=19). -
Reproductive Trends, Habitat Type and Body Characteristics in Velvet Worms Onychophora)
Rev. Bicl.Trop.42L3: 611-622. 1994 Reproductive trends, habitat type and body characteristics in velvet worms Onychophora) Julián Monge-Nájera Centro de Investigación General, (UNED. Mailing address: Biología Tropical. Universidad de Costa Rica. San José. Costa Rica (Rec. 4-VII-1994. Acep. 5-IX-1994) Abstract: A quantitative analysis of several onychophoran characteristics shows that in habitats with lower rain levels females reproduce at an older age, are more fecund and tend to have reproductive diapause where rain does not exceed a mean of 200 cm/year. These habitat characteristics are associated with the southern family Peripatopsidae. Sex ratio and parental investment per young are not correlated with general environmental conditions. A comparison of 72 species showed that larger species are often more variable in morphometry, but species with the longest females do not always have the longest males. Larger Peripatus acacioi females (Peripatidae: Brazil) produce more and heavier off spring. Intrapopulation morphology was studied in 12 peripatid species for which samples of between II and 798 individuals were available. In general, within populations the females are more variable than males in’ length and weight, but similarly variable in the number of legs. The number of legs has a low variability (1.73- 2.45%). length is intermediate (22.4-25.3%) and weight is very variable (49.41-75.17%). When sexes are compared within a population, females can have 14-8.9 % more leg pairs, and be 47-63 % heavier and 26 % longer than males. Key words: Body siz.e. sex ratio, parental investment, legs, length, weight, evolutionary ecology. -
Unexplored Character Diversity in Onychophora (Velvet Worms): a Comparative Study of Three Peripatid Species
Supporting Information Unexplored Character Diversity in Onychophora (Velvet Worms): a Comparative Study of Three Peripatid Species Ivo de Sena Oliveira, Franziska Anni Franke, Lars Hering, Stefan Schaffer, David M. Rowell, Andreas Weck-Heimann, Julián Monge-Nájera, Bernal Morera-Brenes & Georg Mayer 1 Supporting Figures Figure S1. Eversible coxal vesicles (arrowheads). (A) Principapillatus hitoyensis gen. et. sp. nov.. Light micrograph of ventral leg surface. (B) Eoperipatus sp.. Scanning electron micrograph of ventral leg surface. Anterior is right in both images. 2 Figure S2. Additional features of Principapillatus hitoyensis gen. et sp. nov.. (A) Characteristics of the inner and outer jaw blades. (B) Arrangement of transverse rings on legs. Anterior is left. Note the presence of thin semi-rings (arrowheads) between the complete rings (white dots). Circular inset shows an enlarged primary papilla. Abbreviations: at, accessory tooth; be, bean-shaped papillae; dt, denticles; ib, inner jaw blade; ob, outer jaw blade; pt, principal tooth. 3 Figure S3. Number of births during the lifespan in four females of Principapillatus hitoyensis gen. et sp. nov.. Lifespan is represented by horizontal lines; number of births is illustrated by vertical bars. The left and right filled circles associated with horizontal lines indicate birth and death of each female, respectively. 4 Figure S4. Maximum Likelihood topology illustrating the phylogenetic relationships of several species of Peripatidae. Combined analysis of nucleotide sequences of 12S rRNA and translated aminoacids of COI, with five peripatopsid species as an outgroup. Bootstrap values lower than 50 are not shown. Abbreviations correspond to the accession numbers of the COI sequence in GenBank. 5 Figure S5. -
How to Cite Complete Issue More Information About This Article
Uniciencia ISSN: 1011-0275 ISSN: 2215-3470 Universidad Nacional, Costa Rica Monge-Nájera, Julián Onychophorology, the study of velvet worms, historical trends, landmarks, and researchers from 1826 to 2020 (a literature review) Uniciencia, vol. 35, no. 1, 2021, January-June, pp. 210-230 Universidad Nacional, Costa Rica DOI: https://doi.org/10.15359/ru.35-1.13 Available in: https://www.redalyc.org/articulo.oa?id=475965979013 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Uniciencia Vol. 35(1), pp. 210-230, January-June, 2021 DOI: http://dx.doi.org/10.15359/ru.35-1.13 www.revistas.una.ac.cr/uniciencia E-ISSN: 2215-3470 [email protected] CC: BY-NC-ND Onychophorology, the study of velvet worms, historical trends, landmarks, and researchers from 1826 to 2020 (a literature review) Onicoforología, el estudio de los gusanos de terciopelo, tendencias históricas, hitos e investigadores de 1826 a 2020 (Revisión de la Literatura) Onicoforologia, o estudo dos vermes aveludados, tendências históricas, marcos e pesquisadores de 1826 a 2020 (Revisão da Literatura) Julián Monge-Nájera1 Received: Mar/25/2020 • Accepted: May/18/2020 • Published: Jan/31/2021 Abstract Velvet worms, also known as peripatus or onychophorans, are a phylum of evolutionary importance that has survived all mass extinctions since the Cambrian period. They capture prey with an adhesive net that is formed in a fraction of a second. -
Chapter 6-1 Onychophora
Glime, J. M. 2017. Onychophora. Chapt. 6-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological Interactions. Ebook 6-1-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 6-1 ONYCHOPHORA TABLE OF CONTENTS Phylum Onychophora (Velvet Worms) ............................................................................................................... 6-1-2 Feeding Habits ............................................................................................................................................. 6-1-3 Moisture and Light Relations ....................................................................................................................... 6-1-4 Mating and Reproduction ............................................................................................................................. 6-1-5 Mimics? ....................................................................................................................................................... 6-1-8 Summary ............................................................................................................................................................. 6-1-8 Acknowledgments ............................................................................................................................................... 6-1-8 Literature Cited ..................................................................................................................................................