And Khivorin-Derivatives Are Small Molecule Partial Agonists for Adhesion G Protein Coupled Receptors GPR56 / ADGRG1 and GPR114 / ADGRG5

Total Page:16

File Type:pdf, Size:1020Kb

And Khivorin-Derivatives Are Small Molecule Partial Agonists for Adhesion G Protein Coupled Receptors GPR56 / ADGRG1 and GPR114 / ADGRG5 Supplementary Data Gedunin- and Khivorin-Derivatives are Small Molecule Partial Agonists for Adhesion G protein Coupled Receptors GPR56 / ADGRG1 and GPR114 / ADGRG5. Hannah M. Stoveken, Scott D. Larsen, Alan V. Smrcka, and Gregory G. Tall Molecular Pharmacology Supplemental Figure 1 Quinacrine Nonspecifically Activates SRE-Luciferase. (A) Quinacrine activated GPR56 A386M-7TM-expressing HEK293 cells ~2-fold over non- receptor cells in the high throughput screen (values were taken from Figs. 1C-D). (B) Increasing concentrations of quinacrine were tested in a directed SRE-luciferase assay with the truncated tethered agonist receptor, GPR56 M389-7TM. Results are expressed as the firefly luciferase (FLuc) values normalized to the Renilla luciferase internal control (RLuc). Error bars are the mean ± S.D. of three technical replicates. Supplemental Figure 2 Synaptamide does not Enhance G protein Activation Kinetics by Intact GPR110. Urea-dissociated GPR110 robustly activated, (A) Gq, and did not activate, (B) Gs in biochemical G protein reconstitution assays. Mock-extracted GPR110 membrane preparations (i.e. intact NTF:GPCR domain GPR110) showed moderate Gq activation and no Gs activation, whether treated with ethanol vehicle (EtOH), or with 1 µM synaptamide attained from two independent commercial sources. The apparent increased activity of holo-receptor GPR110 (Mock extraction) over dissociated GPR110 (Urea extraction) for Gs activation is actually background activity contributed by endogenous insect cell membrane GTPases present in the mock extracted 1 membrane preparation. Urea removes a substantial portion of this background GTPgS binding activity. Supplemental Figure 3 GPR114 Synthetic Agonist Peptides Cross-Activate GPR56. (A) Amino acid sequence alignment of the tethered-peptide-agonist regions of GPR56 and GPR114 in comparison with the GPR56 / GPR114 P7 peptide and the GPR114 P18, P19, and P20 activating peptides (Wilde et al., 2016). (B) GPR114 P18-20 peptides were tested at increasing concentrations with the truncated tethered-peptide-agonist receptor, GPR114 A230M-7TM in a cAMP Response Element-luciferase (CRE-Luc) gene reporter assay (Chepurny and Holz, 2007). HEK293T cells were transfected with receptor or empty vector (350 ng), CRE-Luc (100 ng) and Renilla luciferase (1 ng) in a 24-well plate format. Twenty-four hours post transfection, cells were treated with peptide or DMSO and incubated for an additional five hours. CRE-Luc signal was normalized to RLuc and expressed as fold increase over cells transfected with CRE-Luc alone. Error bars are the mean ± S.D. of three technical replicates. (C) GPR114 activating peptides (20 µM) were incubated for five hours with HEK293 cells expressing GPR56 A386M-7TM receptor in a directed SRE-luciferase reporter assay. Error bars are the mean ± S.D. of three technical replicates. (D) GPR114 P18 peptide enhanced the kinetics of GPR56 A386M-7TM- mediated G protein 13 activation in the receptor reconstitution assay. Error bars are the mean ± S.D. of three technical replicates. 2 Chepurny OG and Holz GG (2007) A novel cyclic adenosine monophosphate responsive luciferase reporter incorporating a nonpalindromic cyclic adenosine monophosphate response element provides optimal performance for use in G protein coupled receptor drug discovery efforts. Journal of biomolecular screening 12(5): 740-746. Wilde C, Fischer L, Lede V, Kirchberger J, Rothemund S, Schoneberg T and Liebscher I (2016) The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 30(2): 666-673. 3 Supplemental Figure 1 A Quinacrine-Mediated Luciferase ) Activity in HTS 1.5x106 1.0x106 alues (RLUs V 0.5x105 Raw FLuc 0 Counter-screen Screen B GPR56 M389 7TM SRE +/- Quinacrine SRE M389 7TM 15 c 10 FLuc/ RLu 5 0 1 5 20 0 1 2 5 10 20 [Quinacrine] (µM) Supplemental Figure 2 Gq 1.0 q G l S/ mo 0.5 P mol GT Urea GPR110 0.0 0 10 20 30 Mock GPR110 + EtOH Time (min) Mock GPR110 + Sigma Synaptamide Mock GPR110 + 1.0 Gs s Cayman Chemical Synaptamide G l S/ mo 0.5 P mol GT 0.0 0 10 20 30 Time (min) Supplemental Figure 3 Tethered A Agonist GPR56: MTYFAVLMVSSVEVDAVHKHYLSLLS-TM1 GPR114: MTYFAVLMQLSPALVPAELLAPLT-TM1 P7: TYFAVLM GPR114 P18: TYFAVLMQLSPALVPAEL GPR114 P19: TYFAVLMQLSPALVPAELL GPR114 P20: TYFAVLMQLSPALVPAELLA B GPR114 A230M 7TM +GPR114 P18-P20 30 P18 P19 P20 20 10 Fold Increase over CRE-Luc 0 0 1 5 1020 0 1 5 1020 0 1 5 1020 [GPR114 Peptides] (µM) C GPR56 A386M 7TM +GPR114 Activating Peptides GPR56 40 No Receptor A386M 7TM E 30 20 10 Fold Increase Over SR 0 P7P18P19P20 P7P18P19P20 DMSO DMSO 20µM Peptide D GPR56 A386M 7TM : G protein 13 1.0 A386M 7TM + 20µM P18 13 A386M 7TM + DMSO α 0.8 0.6 S / mol G γ 0.4 0.2 mol GTP 0.0 0 10 20 30 Time (min).
Recommended publications
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Synaptamide Activates the Adhesion GPCR GPR110 (ADGRF1) Through GAIN Domain Binding
    ARTICLE https://doi.org/10.1038/s42003-020-0831-6 OPEN Synaptamide activates the adhesion GPCR GPR110 (ADGRF1) through GAIN domain binding Bill X. Huang1, Xin Hu2, Heung-Sun Kwon1, Cheng Fu1, Ji-Won Lee1, Noel Southall2, Juan Marugan2 & ✉ Hee-Yong Kim1 1234567890():,; Adhesion G protein-coupled receptors (aGPCR) are characterized by a large extracellular region containing a conserved GPCR-autoproteolysis-inducing (GAIN) domain. Despite their relevance to several disease conditions, we do not understand the molecular mechanism by which aGPCRs are physiologically activated. GPR110 (ADGRF1) was recently deorphanized as the functional receptor of N-docosahexaenoylethanolamine (synaptamide), a potent synap- togenic metabolite of docosahexaenoic acid. Thus far, synaptamide is the first and only small- molecule endogenous ligand of an aGPCR. Here, we demonstrate the molecular basis of synaptamide-induced activation of GPR110 in living cells. Using in-cell chemical cross-linking/ mass spectrometry, computational modeling and mutagenesis-assisted functional assays, we discover that synaptamide specifically binds to the interface of GPR110 GAIN subdomains through interactions with residues Q511, N512 and Y513, causing an intracellular conforma- tional change near TM6 that triggers downstream signaling. This ligand-induced GAIN-tar- geted activation mechanism provides a framework for understanding the physiological function of aGPCRs and therapeutic targeting in the GAIN domain. 1 Laboratory of Molecular Signaling, National Institute on Alcohol Abuse
    [Show full text]
  • GPCR Expression Profiles Were Determined Using
    Supplemental Figures and Tables for Tischner et al., 2017 Supplemental Figure 1: GPCR expression profiles were determined using the NanoString nCounter System in 250 ng of pooled cell RNA obtained from freshly isolated CD4 T cells from naïve lymph nodes (CD4ln), spinal cord infiltrating CD4 T cells at peak EAE disease (CD4sc), and primary lung endothelial cells (luEC). Supplemental Figure 2: Array design and quality controls. A, Sorted leukocytes or endothelial cells were subjected to single‐cell expression analysis and re‐evaluated based on the expression of various identity‐defining genes. B, Expression of identity‐defining and quality control genes after deletion of contaminating or reference gene‐negative cells. Expression data are calculated as 2(Limit of detection(LoD) Ct – sample Ct) ; LoD Ct was set to 24. Supplemental Figure 3: Overview over GPCR expression frequencies in different freshly isolated immune cell populations and spinal cord endothelial cells as determined by single cell RT‐PCR. Abbreviations: CD4ln‐Tcon/CD4ln‐Treg, conventional (con) and regulatory (reg) CD4 T cells from lymph nodes (CD4ln) of naïve mice; CD4dr/CD4sc, CD4 T cells from draining lymph nodes (dr) or spinal cord (sc) at peak EAE disease; CD4spn2D/ CD4spn2DTh1/ CD4spn2DTh17, splenic CD4 T cells from 2D2 T cell receptor transgenic mice before (2D) and after in vitro differentiation towards Th1 (2DTh1) or Th17 (2DTh17); MonoSpn, splenic monocytes; CD11b_sc, spinal cord infiltrating CD11b‐ positive cells; sc_microglia, Ccr2neg,Cx3cr1pos microglia from spinal cord at peak disease; sc_macrophages, CCr2pos;Cx3cr1lo/neg macrophages from spinal cord at peak disease; BMDM_M1/BMDM_M2, bone marrow‐derived macrophages differentiated towards M1 or M2; ECscN and ECscEAE, spinal cord endothelial cells from naïve mice (N) and at peak EAE disease (EAE); SMC, smooth muscle cells from various vessel types (included as positive control to ascertain primer functionality).
    [Show full text]
  • Normalized Expression Values *
    Normalized expression values 0.0 0.2 0.4 0.6 0.8 1.0 1.2 PLCG1 * T CD5 MP T B TCF7 cDC UBASH3A BCL11B C5AR1 * MP TLR4 CXCR5 B CD79B VPREB3 XCR1 CADM1 BEND5 * ARGHAP22 * cDC CIITA ZBTB46 FLT3 PLEKHA5 Figure S1. qPCR analysis of the core gene expression signature of cDC, MP, B and T cells in the chicken cell suBsets. RNA from cDC, MP, T and B cells of 2 disUnct pools of 4 chicken spleen was subjected to qPCR detecUon of the core gene expression signatures of immune cell subsets established in Fig. 3 and of transcripts from the mouse and human gene subset selected compendia that could not be detected on the array due to defecUve probes, i.e. ARGHAP22, BEND5, C5AR1, and PLCG1 (labeled by a star on the figure). Data are represented as the mean and SD of relave gene expression levels normalized to GAPDH expression and the maximal expression across the cell types was set to 1 (independent experimental duplicates). B cell T cell cDC Monocyte/MP Chicken Human Mouse Figure S2. Unsupervised hierarchical clustering of orthologous immune response genes across chicken, human and mouse reveals globally conserved clusters of lymphoïd- specific and myeloïd- specific genes. Heatmap of cross-normalized expression profiles for immune response genes present on all three species arrays and regulated at least 2 folds across all cell suBsets, including chicken B cells (c_B), T cells (c_CD3), MP (c_MP) and cDC (c_cDC), human B cells (h_B), T cells (h_CD4_T and h_CD8_T), monocyte-derived MP (h_MoMP), peripheral blood mononucleated cell-derived MP (h_PBMC_MP), non-classical monocytes (h_non- classical_MO), classical monocytes (h_classical_MO), BDCA3+ cDC (h_BDCA3), BDCA1+ cDC (h_BDCA1), murine B cells (m_B), T cells (m_CD4_T and m_CD8_T), peritoneal cavity MP (m_PC_MPII-480HI), lung MP (m_LU_MP), non-classical monocytes (m_non-classical_MO), classical monocytes (m_classical_MO), splenic CD8α+ cDC (m_SP_DC1), suBcutaneous lymph node CD8α+ cDC (m_LN_DC1), splenic CD11B+ cDC (m_SP_DC2), suBcutaneous lymph node CD11B+ cDC (m_LN_DC2).
    [Show full text]
  • Signaling Property Study of Adhesion G-Protein-Coupled Receptors ⇑ Jamila Gupte, Gayathri Swaminath, Jay Danao, Hui Tian, Yang Li, Xinle Wu
    FEBS Letters 586 (2012) 1214–1219 journal homepage: www.FEBSLetters.org Signaling property study of adhesion G-protein-coupled receptors ⇑ Jamila Gupte, Gayathri Swaminath, Jay Danao, Hui Tian, Yang Li, Xinle Wu Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA article info abstract Article history: Adhesion G-protein-coupled receptors (GPCR) are special members of GPCRs with long N-termini Received 9 January 2012 containing multiple domains. We overexpressed our collection of receptors together with G-pro- Revised 9 March 2012 teins in mammalian cell lines and measured the concentrations of intracellular signaling molecules, Accepted 9 March 2012 such as inositol phosphate and cAMP. Our results show that a subset of tested adhesion GPCRs has Available online 21 March 2012 constitutive activities and is capable of coupling to a variety of G-proteins. In addition, we have iden- Edited by Lukas Huber tified a small molecule compound that specifically activates one of the subfamily members, GPR97, and the activation was confirmed by an independent GTPcS assay. These findings suggest classical GPCR screening assays could be applied to de-orphanize these receptors, and provide pharmacolog- Keywords: Adhesion ical tools to improve understanding of the physiological functions of these receptors. G-protein-coupled receptor Ó 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. GPR97 1. Introduction phospholipase C (PLC) [5]. However, the majority of adhesion GPCRs are orphans, and their coupling mechanisms are unknown. The superfamily of G-protein-coupled receptors (GPCRs) is one Although, CD97, one of the most studied receptors in this family, of the largest and most studied families of proteins in the mamma- has been shown to interact with CD55 [6,7], and a glycosaminogly- lian genome.
    [Show full text]
  • Granzyme a in Human Platelets Regulates the Synthesis of Proinflammatory Cytokines by Monocytes in Aging
    Granzyme A in Human Platelets Regulates the Synthesis of Proinflammatory Cytokines by Monocytes in Aging This information is current as Robert A. Campbell, Zechariah Franks, Anish Bhatnagar, of September 25, 2021. Jesse W. Rowley, Bhanu K. Manne, Mark A. Supiano, Hansjorg Schwertz, Andrew S. Weyrich and Matthew T. Rondina J Immunol 2018; 200:295-304; Prepublished online 22 November 2017; Downloaded from doi: 10.4049/jimmunol.1700885 http://www.jimmunol.org/content/200/1/295 Supplementary http://www.jimmunol.org/content/suppl/2017/11/22/jimmunol.170088 http://www.jimmunol.org/ Material 5.DCSupplemental References This article cites 47 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/200/1/295.full#ref-list-1 Why The JI? Submit online. by guest on September 25, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Granzyme A in Human Platelets Regulates the Synthesis of Proinflammatory Cytokines by Monocytes in Aging Robert A.
    [Show full text]
  • Orphan G Protein Coupled Receptors in Affective Disorders
    G C A T T A C G G C A T genes Review Orphan G Protein Coupled Receptors in Affective Disorders Lyndsay R. Watkins and Cesare Orlandi * Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; [email protected] * Correspondence: [email protected] Received: 3 June 2020; Accepted: 21 June 2020; Published: 24 June 2020 Abstract: G protein coupled receptors (GPCRs) are the main mediators of signal transduction in the central nervous system. Therefore, it is not surprising that many GPCRs have long been investigated for their role in the development of anxiety and mood disorders, as well as in the mechanism of action of antidepressant therapies. Importantly, the endogenous ligands for a large group of GPCRs have not yet been identified and are therefore known as orphan GPCRs (oGPCRs). Nonetheless, growing evidence from animal studies, together with genome wide association studies (GWAS) and post-mortem transcriptomic analysis in patients, pointed at many oGPCRs as potential pharmacological targets. Among these discoveries, we summarize in this review how emotional behaviors are modulated by the following oGPCRs: ADGRB2 (BAI2), ADGRG1 (GPR56), GPR3, GPR26, GPR37, GPR50, GPR52, GPR61, GPR62, GPR88, GPR135, GPR158, and GPRC5B. Keywords: G protein coupled receptor (GPCR); G proteins; orphan GPCR (oGPCR); mood disorders; major depressive disorder (MDD); bipolar disorder (BPD); anxiety disorders; antidepressant; animal models 1. Introduction Mood alterations due to pharmacological treatments that modulate serotonergic and noradrenergic systems laid the foundations for the monoamine hypothesis that has led research on mood disorders since the late 1950s [1–3]. Dopaminergic alterations have also been associated with major depressive disorder (MDD) symptoms, such as anhedonia [4].
    [Show full text]
  • Stachel-Independent Modulation of GPR56/ADGRG1 Signaling by Synthetic Ligands Directed to Its Extracellular Region
    Stachel-independent modulation of GPR56/ADGRG1 signaling by synthetic ligands directed to its extracellular region Gabriel S. Salzmana,b,c, Shu Zhangc, Ankit Guptad, Akiko Koided,e, Shohei Koided,f,1, and Demet Araçc,g,1 aBiophysical Sciences Program, The University of Chicago, Chicago, IL 60637; bMedical Scientist Training Program, The University of Chicago, Chicago, IL 60637; cDepartment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637; dPerlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016; eDepartment of Medicine, New York University School of Medicine, New York, NY 10016; fDepartment of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016; and gGrossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637 Edited by Robert J. Lefkowitz, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, and approved August 10, 2017 (received for review May 30, 2017) Adhesion G protein-coupled receptors (aGPCRs) play critical roles A mechanistic understanding of the biology mediated by aGPCRs, in diverse biological processes, including neurodevelopment and and their ECRs in particular, will be a critical milestone on the path cancer progression. aGPCRs are characterized by large and diverse to treating aGPCR-mediated pathologies. extracellular regions (ECRs) that are autoproteolytically cleaved The aGPCR ECRs are characterized by the presence of a from their membrane-embedded signaling domains. Although ECRs conserved juxtamembrane G protein-coupled receptor autopro- regulate receptor function, it is not clear whether ECRs play a direct teolysis-inducing (GAIN) domain (20) and various adhesion-type regulatory role in G-protein signaling or simply serve as a protective domains (located N-terminal to the GAIN domain), which allow cap for the activating “Stachel” sequence.
    [Show full text]
  • Elevated Expression of the Adhesion GPCR ADGRL4/ELTD1 Promotes
    www.nature.com/scientificreports OPEN Elevated expression of the adhesion GPCR ADGRL4/ ELTD1 promotes endothelial sprouting angiogenesis without activating canonical GPCR signalling David M. Favara1,2,6*, Ines Liebscher3, Ali Jazayeri4,7, Madhulika Nambiar4,8, Helen Sheldon2, Alison H. Banham5 & Adrian L. Harris2* ADGRL4/ELTD1 is an orphan adhesion GPCR (aGPCR) expressed in endothelial cells that regulates tumour angiogenesis. The majority of aGPCRs are orphan receptors. The Stachel Hypothesis proposes a mechanism for aGPCR activation, in which aGPCRs contain a tethered agonist (termed Stachel) C-terminal to the GPCR-proteolytic site (GPS) cleavage point which, when exposed, initiates canonical GPCR signalling. This has been shown in a growing number of aGPCRs. We tested this hypothesis on ADGRL4/ELTD1 by designing full length (FL) and C-terminal fragment (CTF) ADGRL4/ELTD1 constructs, and a range of potential Stachel peptides. Constructs were transfected into HEK293T cells and HTRF FRET, luciferase-reporter and Alphascreen GPCR signalling assays were performed. A stable ADGRL4/ELTD1 overexpressing HUVEC line was additionally generated and angiogenesis assays, signalling assays and transcriptional profling were performed. ADGRL4/ELTD1 has the lowest GC content in the aGPCR family and codon optimisation signifcantly increased its expression. FL and CTF ADGRL4/ELTD1 constructs, as well as Stachel peptides, did not activate canonical GPCR signalling. Furthermore, stable overexpression of ADGRL4/ELTD1 in HUVECs induced sprouting angiogenesis, lowered in vitro anastomoses, and decreased proliferation, without activating canonical GPCR signalling or MAPK/ERK, PI3K/AKT, JNK, JAK/HIF-1α, beta catenin or STAT3 pathways. Overexpression upregulated ANTXR1, SLC39A6, HBB, CHRNA, ELMOD1, JAG1 and downregulated DLL4, KIT, CCL15, CYP26B1.
    [Show full text]
  • Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared Amongst Δγ T, Innate Lymphoid, and Th Cells
    Downloaded from http://www.jimmunol.org/ by guest on September 26, 2021 δγ is online at: average * The Journal of Immunology , 10 of which you can access for free at: 2016; 197:1460-1470; Prepublished online 6 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600643 http://www.jimmunol.org/content/197/4/1460 Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared amongst T, Innate Lymphoid, and Th Cells You Jeong Lee, Gabriel J. Starrett, Seungeun Thera Lee, Rendong Yang, Christine M. Henzler, Stephen C. Jameson and Kristin A. Hogquist J Immunol cites 41 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2016/07/06/jimmunol.160064 3.DCSupplemental This article http://www.jimmunol.org/content/197/4/1460.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 26, 2021. The Journal of Immunology Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared amongst gd T, Innate Lymphoid, and Th Cells You Jeong Lee,* Gabriel J.
    [Show full text]
  • GPR56/ADGRG1 Is a Platelet Collagen-Responsive GPCR and Hemostatic Sensor of Shear Force
    GPR56/ADGRG1 is a platelet collagen-responsive GPCR and hemostatic sensor of shear force Jennifer Yeunga, Reheman Adilia, Emily N. Stringhama, Rong Luob, Alexander Vizurragaa, Luciana K. Rosselli-Muraia, Hannah M. Stovekena, Maiya Yua, Xianhua Piaob,c, Michael Holinstata,d, and Gregory G. Talla,1 aDepartment of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109; bDepartment of Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115; cNewborn Brain Research Institute, Department of Pediatrics, Weill Institute for Neuroscience, University of California, San Francisco, CA 94158; and dDepartment of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109 Edited by Robert J. Lefkowitz, Howard Hughes Medical Institute, Durham, NC, and approved September 14, 2020 (received for review May 6, 2020) Circulating platelets roll along exposed collagen at vessel injury The differences in the experimental approaches used to inves- sites and respond with filipodia protrusion, shape change, and tigate platelet responses to collagen have offered varied inter- surface area expansion to facilitate platelet adhesion and plug pretations of whether GPVI is the key signaling receptor that acts formation. Various glycoproteins were considered to be both to initiate platelet activation (2, 7, 8, 13). For example, exogenous collagen responders and mediators of platelet adhesion, yet the collagen promotes sustained GPVI/Fc Receptor gamma (FcRγ) signaling kinetics emanating from these receptors do not fully signaling through phospholipase Cγ2(PLCγ2), but the Ca+2 mo- account for the rapid platelet cytoskeletal changes that occur in bilization output and kinetics of this multistep signaling pathway blood flow.
    [Show full text]