Constant Mean Curvature Spheres in Homogeneous Three-Manifolds

Total Page:16

File Type:pdf, Size:1020Kb

Constant Mean Curvature Spheres in Homogeneous Three-Manifolds Constant mean curvature spheres in homogeneous three-manifolds William H. Meeks III∗ Pablo Miray Joaqu´ın Perez´ Antonio Rosz June 29, 2017 Abstract We prove that two spheres of the same constant mean curvature in an arbitrary homoge- neous three-manifold only differ by an ambient isometry, and we determine the values of the mean curvature for which such spheres exist. This gives a complete classification of immersed constant mean curvature spheres in three-dimensional homogeneous manifolds. Mathematics Subject Classification: Primary 53A10, Secondary 49Q05, 53C42 Key words and phrases: Constant mean curvature, Hopf uniqueness, homogeneous three- manifold, Cheeger constant. 1 Introduction In this manuscript we solve the fundamental problem of classifying constant mean curvature spheres in an arbitrary homogeneous three-manifold, where by a sphere, we mean a closed im- mersed surface of genus zero: Theorem 1.1. Let M be a Riemannian homogeneous three-manifold, X denote its Riemannian universal cover, and let Ch(X) denote the Cheeger constant of X. Then, any two spheres in M of the same constant mean curvature differ by an isometry of M. Moreover: (1) If X is not diffeomorphic to R3, then, for every H R, there exists a sphere of constant mean curvature H in M. 2 arXiv:1706.09394v1 [math.DG] 28 Jun 2017 (2) If X is diffeomorphic to R3, then the values H R for which there exists a sphere of constant mean curvature H in M are exactly those with2H > Ch(X)=2. j j ∗This material is based upon work for the NSF under Award No. DMS - 1309236. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the NSF. yThe second author was partially supported by MINECO/FEDER, Grant no. MTM2016-80313-P, and Programa de Apoyo a la Investigacion, Fundacion Seneca-Agencia de Ciencia y Tecnologia Region de Murcia, 19461/PI/14. zResearch of the third and fourth authors partially supported by a MINECO/FEDER grant no. MTM2014-52368-P. 1 Our study of constant mean curvature spheres in homogeneous three-manifolds provides a natural parameterization of their moduli space and fundamental information about their geometry and symmetry, as explained in the next theorem: Theorem 1.2. Let M be a Riemannian homogeneous three-manifold, X denote its Riemannian universal cover and let SH be a sphere of constant mean curvature H R in M. Then: 2 (1) SH is maximally symmetric; that is, there exists a point p M, which we call the center 2 of symmetry of SH , with the property that any isometry Φ of M that fixes p also satisfies Φ(SH ) = SH . In particular, constant mean curvature spheres are totally umbilical if M has constant sectional curvature, and are spheres of revolution if M is rotationally symmetric. (2) If H = 0 and X is a Riemannian product S2(κ) R, where S2(κ) is a sphere of constant × curvature κ > 0, then it is well known that SH is totally geodesic, stable and has nullity 1 for its stability operator. Otherwise, SH has index 1 and nullity 3 for its stability operator and the immersion of SH into M extends as the boundary of an isometric immersion F : B M of a Riemannian 3-ball B which is mean convex1. ! Moreover, if M (p) denotes the space of spheres of nonnegative constant mean curvature in M M that have a base point p M as a center of symmetry, then the map SH M (p) H R 2 2 M 7! 2 that assigns to each sphere SH its mean curvature is a homeomorphism between: (i) M (p) and 3 M [0; ) if X is not diffeomorphic to R , or (ii) M (p) and (Ch(X)=2; ) if X is diffeomorphic to 1 M 1 R3. This homeomorphism is real analytic except at H = 0 when X = S2(κ) R. × The classification of constant mean curvature spheres is an old problem. In the 19th century, Jellet [16] proved that any constant mean curvature sphere in R3 that is star-shaped with respect to some point is a round sphere. In 1951, Hopf [14] introduced a holomorphic quadratic differ- ential for any constant mean curvature surface in R3 and then used it to prove that constant mean curvature spheres in R3 are round. His proof also worked in the other simply-connected three- dimensional spaces of constant sectional curvature, which shows that these spheres are, again, to- tally umbilical (hence, they are the boundary spheres of geodesic balls of the space); see e.g. [6,7]. In 2004, Abresch and Rosenberg [1,2] proved that any constant mean curvature sphere in the product spaces H2(κ) R and S2(κ) R, where S2(κ) (resp. H2(κ)) denotes the two-dimensional sphere (resp. the hyperbolic× plane)× of constant Gaussian curvature κ = 0, and more generally, in any simply connected Riemannian homogeneous three-manifold with6 an isometry group of dimension four, is a rotational sphere. Their theorem settled an old problem posed by Hsiang- Hsiang [15], and reduced the classification of constant mean curvature spheres in these homoge- neous spaces to an ODE analysis. For their proof, Abresch and Rosenberg introduced a perturbed Hopf differential, which turned out to be holomorphic for constant mean curvature surfaces in these spaces. The Abresch-Rosenberg theorem was the starting point for the development of the theory of constant mean curvature surfaces in rotationally symmetric homogeneous three-manifolds; see e.g., [8, 10] for a survey on the beginnings of this theory. 1That the ball B is mean convex means that the mean curvature of the boundary @B with respect to its inward pointing normal vector is nonnegative. 2 It is important to observe here that a generic homogeneous three-manifold M has an isometry group of dimension three, and that the techniques used by Abresch and Rosenberg in the rotation- ally symmetric case do not work to classify constant mean curvature spheres in such an M. In 2013, Daniel and Mira [9] introduced a new method for studying constant mean curvature spheres in the homogeneous manifold Sol3 with its usual Thurston geometry. Using this method, they classified constant mean curvature spheres in Sol3 for values H of the mean curvature greater than p1 , and reduced the general classification problem to the obtention of area estimates for the 3 family of spheres of constant mean curvature greater than any given positive number. These crucial area estimates were subsequently proved by Meeks [22], which completed the classification of constant mean curvature spheres in Sol3: For any H > 0 there is a unique constant mean curvature sphere SH in Sol3 with mean curvature H; moreover, SH is maximally symmetric, embedded, and has index one [9, 22]. In [25] we extended the Daniel-Mira theory in [9] to arbitrary simply connected homogeneous three-manifolds X that cannot be expressed as a Riemannian product of a two-sphere of constant curvature with a line. However, the area estimates problem in this general setting cannot be solved following Meeks’ approach in Sol3, since the proof by Meeks uses in an essential way special properties of Sol3 that are not shared by a general X. In order to solve the area estimates problem in any homogeneous three-manifold, the authors have developed in previous works an extensive theoretical background for the study of constant mean curvature surfaces in homogeneous three-manifolds, see [27, 25, 26, 24, 23]. Specifically, in [27] there is a detailed presentation of the geometry of metric Lie groups, i.e., simply con- nected homogeneous three-manifolds given by a Lie group endowed with a left invariant metric. In [25, 27] we described the basic theory of constant mean curvature surfaces in metric Lie groups. Of special importance for our study here is [25], where we extended the Daniel-Mira theory [9] to arbitrary metric Lie groups X, and we proved Theorems 1.1 and 1.2 in the case that M is a ho- mogeneous three-sphere. In [23] we studied the geometry of spheres in metric Lie groups whose left invariant Gauss maps are diffeomorphisms. In [26] we proved that any metric Lie group X diffeomorphic to R3 admits a foliation by leaves of constant mean curvature of value Ch(X)=2. In [24] we established uniform radius estimates for certain stable minimal surfaces in metric Lie groups. All these works are used in the present manuscript to solve the area estimates problem. We note that the uniqueness statement in Theorem 1.1 does not follow from the recent Galvez-´ Mira uniqueness theory for immersed spheres in three-manifolds in [11]. Indeed, their results imply in our context (see Step 2 in the proof of Theorem 4.1 in [25]) that two spheres Σ1; Σ2 of the same constant mean curvature in a metric Lie group X are congruent provided that the left invariant Gauss map of one of them is a diffeomorphism (see Definition 3.3 for the notion of left invariant Gauss map); Theorem 1.1 does not assume this additional hypothesis. The main results of this paper, Theorems 1.1 and 1.2, can be reduced to demonstrating Theo- rem 1.4 below; this reduction is explained in Section3. To state Theorem 1.4, we need the notion of entire Killing graph given in the next definition, where X is a simply connected homogeneous three-manifold. Definition 1.3. Given a nowhere zero Killing field K on X, we say that an immersed surface Σ X is a Killing graph with respect to K if whenever Σ intersects an integral curve of K, this ⊂ 3 intersection is transversal and consists of a single point.
Recommended publications
  • DISCRETE DIFFERENTIAL GEOMETRY: an APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 LECTURE 15: CURVATURE
    DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 LECTURE 15: CURVATURE DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 Curvature—Overview • Intuitively, describes “how much a shape bends” – Extrinsic: how quickly does the tangent plane/normal change? – Intrinsic: how much do quantities differ from flat case? N T B Curvature—Overview • Driving force behind wide variety of physical phenomena – Objects want to reduce—or restore—their curvature – Even space and time are driven by curvature… Curvature—Overview • Gives a coordinate-invariant description of shape – fundamental theorems of plane curves, space curves, surfaces, … • Amazing fact: curvature gives you information about global topology! – “local-global theorems”: turning number, Gauss-Bonnet, … Curvature—Overview • Geometric algorithms: shape analysis, local descriptors, smoothing, … • Numerical simulation: elastic rods/shells, surface tension, … • Image processing algorithms: denoising, feature/contour detection, … Thürey et al 2010 Gaser et al Kass et al 1987 Grinspun et al 2003 Curvature of Curves Review: Curvature of a Plane Curve • Informally, curvature describes “how much a curve bends” • More formally, the curvature of an arc-length parameterized plane curve can be expressed as the rate of change in the tangent Equivalently: Here the angle brackets denote the usual dot product, i.e., . Review: Curvature and Torsion of a Space Curve •For a plane curve, curvature captured the notion of “bending” •For a space curve we also have torsion, which captures “twisting” Intuition: torsion is “out of plane bending” increasing torsion Review: Fundamental Theorem of Space Curves •The fundamental theorem of space curves tells that given the curvature κ and torsion τ of an arc-length parameterized space curve, we can recover the curve (up to rigid motion) •Formally: integrate the Frenet-Serret equations; intuitively: start drawing a curve, bend & twist at prescribed rate.
    [Show full text]
  • Curvatures of Smooth and Discrete Surfaces
    Curvatures of Smooth and Discrete Surfaces John M. Sullivan The curvatures of a smooth curve or surface are local measures of its shape. Here we consider analogous quantities for discrete curves and surfaces, meaning polygonal curves and triangulated polyhedral surfaces. We find that the most useful analogs are those which preserve integral relations for curvature, like the Gauß/Bonnet theorem. For simplicity, we usually restrict our attention to curves and surfaces in euclidean three space E3, although many of the results would easily generalize to other ambient manifolds of arbitrary dimension. Most of the material here is not new; some is even quite old. Although some refer- ences are given, no attempt has been made to give a comprehensive bibliography or an accurate picture of the history of the ideas. 1. Smooth curves, Framings and Integral Curvature Relations A companion article [Sul06] investigated the class of FTC (finite total curvature) curves, which includes both smooth and polygonal curves, as a way of unifying the treatment of curvature. Here we briefly review the theory of smooth curves from the point of view we will later adopt for surfaces. The curvatures of a smooth curve γ (which we usually assume is parametrized by its arclength s) are the local properties of its shape invariant under Euclidean motions. The only first-order information is the tangent line; since all lines in space are equivalent, there are no first-order invariants. Second-order information is given by the osculating circle, and the invariant is its curvature κ = 1/r. For a plane curve given as a graph y = f(x) let us contrast the notions of curvature and second derivative.
    [Show full text]
  • Differential Geometry: Curvature and Holonomy Austin Christian
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-5-2015 Differential Geometry: Curvature and Holonomy Austin Christian Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Mathematics Commons Recommended Citation Christian, Austin, "Differential Geometry: Curvature and Holonomy" (2015). Math Theses. Paper 5. http://hdl.handle.net/10950/266 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. DIFFERENTIAL GEOMETRY: CURVATURE AND HOLONOMY by AUSTIN CHRISTIAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics David Milan, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2015 c Copyright by Austin Christian 2015 All rights reserved Acknowledgments There are a number of people that have contributed to this project, whether or not they were aware of their contribution. For taking me on as a student and learning differential geometry with me, I am deeply indebted to my advisor, David Milan. Without himself being a geometer, he has helped me to develop an invaluable intuition for the field, and the freedom he has afforded me to study things that I find interesting has given me ample room to grow. For introducing me to differential geometry in the first place, I owe a great deal of thanks to my undergraduate advisor, Robert Huff; our many fruitful conversations, mathematical and otherwise, con- tinue to affect my approach to mathematics.
    [Show full text]
  • Chapter 13 Curvature in Riemannian Manifolds
    Chapter 13 Curvature in Riemannian Manifolds 13.1 The Curvature Tensor If (M, , )isaRiemannianmanifoldand is a connection on M (that is, a connection on TM−), we− saw in Section 11.2 (Proposition 11.8)∇ that the curvature induced by is given by ∇ R(X, Y )= , ∇X ◦∇Y −∇Y ◦∇X −∇[X,Y ] for all X, Y X(M), with R(X, Y ) Γ( om(TM,TM)) = Hom (Γ(TM), Γ(TM)). ∈ ∈ H ∼ C∞(M) Since sections of the tangent bundle are vector fields (Γ(TM)=X(M)), R defines a map R: X(M) X(M) X(M) X(M), × × −→ and, as we observed just after stating Proposition 11.8, R(X, Y )Z is C∞(M)-linear in X, Y, Z and skew-symmetric in X and Y .ItfollowsthatR defines a (1, 3)-tensor, also denoted R, with R : T M T M T M T M. p p × p × p −→ p Experience shows that it is useful to consider the (0, 4)-tensor, also denoted R,givenby R (x, y, z, w)= R (x, y)z,w p p p as well as the expression R(x, y, y, x), which, for an orthonormal pair, of vectors (x, y), is known as the sectional curvature, K(x, y). This last expression brings up a dilemma regarding the choice for the sign of R. With our present choice, the sectional curvature, K(x, y), is given by K(x, y)=R(x, y, y, x)but many authors define K as K(x, y)=R(x, y, x, y). Since R(x, y)isskew-symmetricinx, y, the latter choice corresponds to using R(x, y)insteadofR(x, y), that is, to define R(X, Y ) by − R(X, Y )= + .
    [Show full text]
  • 3. Sectional Curvature of Lorentzian Manifolds. 1
    3. SECTIONAL CURVATURE OF LORENTZIAN MANIFOLDS. 1. Sectional curvature, the Jacobi equation and \tidal stresses". The (3,1) Riemann curvature tensor has the same definition in the rie- mannian and Lorentzian cases: R(X; Y )Z = rX rY Z − rY rX Z − r[X;Y ]Z: If f(t; s) is a parametrized 2-surface in M (immersion) and W (t; s) is a vector field on M along f, we have the Ricci formula: D DW D DW − = R(@ f; @ f)W: @t @s @s @t t s For a variation f(t; s) = γs(t) of a geodesic γ(t) (with variational vector field J(t) = @sfjs=0 along γ(t)) this leads to the Jacobi equation for J: D2J + R(J; γ_ )_γ = 0: dt2 ? The Jacobi operator is the self-adjoint operator on (γ _ ) : Rp[v] = Rp(v; γ_ )_γ. When γ is a timelike geodesic (the worldline of a free-falling massive particle) the physical interpretation of J is the relative displacement (space- like) vector of a neighboring free-falling particle, while the second covariant 00 derivative J represents its relative acceleration. The Jacobi operator Rp gives the \tidal stresses" in terms of the position vector J. In the Lorentzian case, the sectional curvature is defined only for non- degenerate two-planes Π ⊂ TpM. Definition. Let Π = spanfX; Y g be a non-degenerate two-dimensional subspace of TpM. The sectional curvature σXY = σΠ is the real number σ defined by: hR(X; Y )Y; Xi = σhX ^ Y; X ^ Y i: Remark: by a result of J.
    [Show full text]
  • Hyperbolic Geometry
    Flavors of Geometry MSRI Publications Volume 31,1997 Hyperbolic Geometry JAMES W. CANNON, WILLIAM J. FLOYD, RICHARD KENYON, AND WALTER R. PARRY Contents 1. Introduction 59 2. The Origins of Hyperbolic Geometry 60 3. Why Call it Hyperbolic Geometry? 63 4. Understanding the One-Dimensional Case 65 5. Generalizing to Higher Dimensions 67 6. Rudiments of Riemannian Geometry 68 7. Five Models of Hyperbolic Space 69 8. Stereographic Projection 72 9. Geodesics 77 10. Isometries and Distances in the Hyperboloid Model 80 11. The Space at Infinity 84 12. The Geometric Classification of Isometries 84 13. Curious Facts about Hyperbolic Space 86 14. The Sixth Model 95 15. Why Study Hyperbolic Geometry? 98 16. When Does a Manifold Have a Hyperbolic Structure? 103 17. How to Get Analytic Coordinates at Infinity? 106 References 108 Index 110 1. Introduction Hyperbolic geometry was created in the first half of the nineteenth century in the midst of attempts to understand Euclid’s axiomatic basis for geometry. It is one type of non-Euclidean geometry, that is, a geometry that discards one of Euclid’s axioms. Einstein and Minkowski found in non-Euclidean geometry a This work was supported in part by The Geometry Center, University of Minnesota, an STC funded by NSF, DOE, and Minnesota Technology, Inc., by the Mathematical Sciences Research Institute, and by NSF research grants. 59 60 J. W. CANNON, W. J. FLOYD, R. KENYON, AND W. R. PARRY geometric basis for the understanding of physical time and space. In the early part of the twentieth century every serious student of mathematics and physics studied non-Euclidean geometry.
    [Show full text]
  • Simulation of a Soap Film Catenoid
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kanazawa University Repository for Academic Resources Simulation of A Soap Film Catenoid ! ! Pornchanit! Subvilaia,b aGraduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 Japan bDepartment of Mathematics, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330 Thailand E-mail: [email protected] ! ! ! Abstract. There are many interesting phenomena concerning soap film. One of them is the soap film catenoid. The catenoid is the equilibrium shape of the soap film that is stretched between two circular rings. When the two rings move farther apart, the radius of the neck of the soap film will decrease until it reaches zero and the soap film is split. In our simulation, we show the evolution of the soap film when the rings move apart before the !film splits. We use the BMO algorithm for the evolution of a surface accelerated by the mean curvature. !Keywords: soap film catenoid, minimal surface, hyperbolic mean curvature flow, BMO algorithm !1. Introduction The phenomena that concern soap bubble and soap films are very interesting. For example when soap bubbles are blown with any shape of bubble blowers, the soap bubbles will be round to be a minimal surface that is the minimized surface area. One of them that we are interested in is a soap film catenoid. The catenoid is the minimal surface and the equilibrium shape of the soap film stretched between two circular rings. In the observation of the behaviour of the soap bubble catenoid [3], if two rings move farther apart, the radius of the neck of the soap film will decrease until it reaches zero.
    [Show full text]
  • Mean Curvature in Manifolds with Ricci Curvature Bounded from Below
    Comment. Math. Helv. 93 (2018), 55–69 Commentarii Mathematici Helvetici DOI 10.4171/CMH/429 © Swiss Mathematical Society Mean curvature in manifolds with Ricci curvature bounded from below Jaigyoung Choe and Ailana Fraser Abstract. Let M be a compact Riemannian manifold of nonnegative Ricci curvature and † a compact embedded 2-sided minimal hypersurface in M . It is proved that there is a dichotomy: If † does not separate M then † is totally geodesic and M † is isometric to the Riemannian n product † .a; b/, and if † separates M then the map i 1.†/ 1.M / induced by W ! inclusion is surjective. This surjectivity is also proved for a compact 2-sided hypersurface with mean curvature H .n 1/pk in a manifold of Ricci curvature RicM .n 1/k, k > 0, and for a free boundary minimal hypersurface in an n-dimensional manifold of nonnegative Ricci curvature with nonempty strictly convex boundary. As an application it is shown that a compact .n 1/-dimensional manifold N with the number of generators of 1.N / < n 1 n cannot be minimally embedded in the flat torus T . Mathematics Subject Classification (2010). 53C20, 53C42. Keywords. Ricci curvature, minimal surface, fundamental group. 1. Introduction Euclid’s fifth postulate implies that there exist two nonintersecting lines on a plane. But the same is not true on a sphere, a non-Euclidean plane. Hadamard [11] generalized this to prove that every geodesic must meet every closed geodesic on a surface of positive curvature. Note that a k-dimensional minimal submanifold of a Riemannian manifold M is a critical point of the k-dimensional area functional.
    [Show full text]
  • Examples of Constant Mean Curvature Immersions of the 3-Sphere Into
    Proc. NatL Acad. Sci. USA Vol. 79, pp. 3931-3932, June 1982 Mathematics Examples of constant mean curvature immersions of the 3-sphere into euclidean 4-space (global differential geometry of submanifolds) Wu-yi HSIANG*, ZHEN-HUAN TENG*t, AND WEN-CI YU*t *Department of Mathematics, University of California, Berkeley, California 94720; tPeking University, Peking, China; and tFudan University, China Communicated by S. S. Chern, December 14, 1981 ABSTRACT Mean curvature is one of the simplest and most is probably the only possible shape of closed constant-mean- basic of local differential geometric invariants. Therefore, closed curvature hypersurface in euclidean spaces ofarbitrary dimen- hypersurfaces of constant mean curvature in euclidean spaces of sion or, at least, that Hopf's theorem should be generalizable high dimension are basic objects of fundamental importance in to higher dimensions. global differential geometry. Before the examples of this paper, We announce here the construction of the following family the only known example was the obvious one ofthe round sphere. of examples of constant mean curvature immersions of the 3- Indeed, the theorems ofH. Hopf(for immersion ofS2 into E3) and sphere into euclidean 4-space. A. D. Alexandrov (for imbedded hypersurfaces of E") have gone MAIN THEOREM: There exist infinitely many distinct differ- a long way toward characterizing the round sphere as the only entiable immersions ofthe 3-sphere into euclidean 4-space hav- example ofa closed hypersurface ofconstant mean curvature with ing a given positive constant mean curvature. The total surface some added assumptions. Examples ofthis paper seem surprising area ofsuch examples can be as large as one wants.
    [Show full text]
  • Global Properties of Asymptotically De Sitter and Anti De Sitter Spacetimes
    Global properties of asymptotically de Sitter and Anti de Sitter spacetimes Didier A. Solis May, 17, 2006 arXiv:1803.01171v1 [gr-qc] 3 Mar 2018 Ad Majorem Dei Gloriam. To all those who seek to fulfill God's will in their lives. iii ACKNOWLEDGEMENTS I would like to express my deepest gratitude to: • My advisor Dr. Gregory Galloway, for his constant support and help. This dissertation would not had seen the light of day without his continued encour- agement and guidance. • Dr. N. Saveliev, Dr. M. Cai and Dr. O. Alvarez for their valuable comments and thorough revision of this work. • The Faculty and staff at the Math Department for all the knowledge and affec- tion they shared with me. • CONACYT (Consejo Nacional de Ciencia y Tecnolog´ıa)for the financial support granted to the author. • My family: Douglas, Rosalinda, Douglas Jr, Rosil´uand Josu´efor all their prayers and unconditional love. They are indeed the greatest blessing in my life. • All my friends, especially Guille, for always being there for me to share the struggles and joys of life. • To the CSA gang, for being a living example of faith lived in love and hope. • Last but by no means least, to God, without whom there is no math, laughter or music. iv Contents 1 Introduction 1 1.1 Lorentz vector spaces . 1 1.2 Spacetimes . 6 1.2.1 The Levi-Civita connection . 7 1.2.2 Covariant derivative . 11 1.2.3 Geodesics . 12 1.3 Causal theory . 15 1.3.1 Definitions . 15 1.3.2 Global causality conditions .
    [Show full text]
  • Basics of the Differential Geometry of Surfaces
    Chapter 20 Basics of the Differential Geometry of Surfaces 20.1 Introduction The purpose of this chapter is to introduce the reader to some elementary concepts of the differential geometry of surfaces. Our goal is rather modest: We simply want to introduce the concepts needed to understand the notion of Gaussian curvature, mean curvature, principal curvatures, and geodesic lines. Almost all of the material presented in this chapter is based on lectures given by Eugenio Calabi in an upper undergraduate differential geometry course offered in the fall of 1994. Most of the topics covered in this course have been included, except a presentation of the global Gauss–Bonnet–Hopf theorem, some material on special coordinate systems, and Hilbert’s theorem on surfaces of constant negative curvature. What is a surface? A precise answer cannot really be given without introducing the concept of a manifold. An informal answer is to say that a surface is a set of points in R3 such that for every point p on the surface there is a small (perhaps very small) neighborhood U of p that is continuously deformable into a little flat open disk. Thus, a surface should really have some topology. Also,locally,unlessthe point p is “singular,” the surface looks like a plane. Properties of surfaces can be classified into local properties and global prop- erties.Intheolderliterature,thestudyoflocalpropertieswascalled geometry in the small,andthestudyofglobalpropertieswascalledgeometry in the large.Lo- cal properties are the properties that hold in a small neighborhood of a point on a surface. Curvature is a local property. Local properties canbestudiedmoreconve- niently by assuming that the surface is parametrized locally.
    [Show full text]
  • Lecture 8: the Sectional and Ricci Curvatures
    LECTURE 8: THE SECTIONAL AND RICCI CURVATURES 1. The Sectional Curvature We start with some simple linear algebra. As usual we denote by ⊗2(^2V ∗) the set of 4-tensors that is anti-symmetric with respect to the first two entries and with respect to the last two entries. Lemma 1.1. Suppose T 2 ⊗2(^2V ∗), X; Y 2 V . Let X0 = aX +bY; Y 0 = cX +dY , then T (X0;Y 0;X0;Y 0) = (ad − bc)2T (X; Y; X; Y ): Proof. This follows from a very simple computation: T (X0;Y 0;X0;Y 0) = T (aX + bY; cX + dY; aX + bY; cX + dY ) = (ad − bc)T (X; Y; aX + bY; cX + dY ) = (ad − bc)2T (X; Y; X; Y ): 1 Now suppose (M; g) is a Riemannian manifold. Recall that 2 g ^ g is a curvature- like tensor, such that 1 g ^ g(X ;Y ;X ;Y ) = hX ;X ihY ;Y i − hX ;Y i2: 2 p p p p p p p p p p 1 Applying the previous lemma to Rm and 2 g ^ g, we immediately get Proposition 1.2. The quantity Rm(Xp;Yp;Xp;Yp) K(Xp;Yp) := 2 hXp;XpihYp;Ypi − hXp;Ypi depends only on the two dimensional plane Πp = span(Xp;Yp) ⊂ TpM, i.e. it is independent of the choices of basis fXp;Ypg of Πp. Definition 1.3. We will call K(Πp) = K(Xp;Yp) the sectional curvature of (M; g) at p with respect to the plane Πp. Remark. The sectional curvature K is NOT a function on M (for dim M > 2), but a function on the Grassmann bundle Gm;2(M) of M.
    [Show full text]