Application of Natural, Non-Nutritive, High-Potency Sweeteners and Sugar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GRAS Notice 789 for Erythritol
GRAS Notice (GRN) No. 789 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory. Toi• Strategies ~~~~G~~[)) JUN 7 20'8 Innovative solutions Sound science OFFICE OF FOOD ADDITIVE SAFE1Y June 5, 2018 Dr. Dennis Keefe Director, Division of Biotechnology and GRAS Notice Review Office of Food Additive Safety (HFS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 5100 Paint Branch Parkway College Park, MD 20740-3835 Subject: GRAS Notification - Erythritol Dear Dr. Keefe: On behalf of Cargill, Incorporated, ToxStrategies, Inc. (its agent) is submitting, for FDA review, a copy of the GRAS notification as required. The enclosed document provides notice of a claim that the food ingredient, erythritol, described in the enclosed notification is exempt from the premarket approval requirement of the Federal Food, Drug, and Cosmetic Act because it has been determined to be generally recognized as safe (GRAS), based on scientific procedures, for addition to food. If you have any questions or require additional information, please do not hesitate to contact me at 630-352-0303, or [email protected]. Sincerely, (b) (6) Donald F. Schmitt, M.P.H. Senior Managing Scientist ToxStrategies, Inc., 931 W. 75th St. , Suite 137, PMB 263, Naperville, IL 60565 1 Office (630) 352-0303 • www.toxstrategies.com GRAS Determination of Erythritol for Use in Human Food JUNES,2018 Innovative solutions s ,..,.,',--.r-.r--.r--. OFFICE OF FOOD ADDITIVE SAFE1Y GRAS Determination of Erythritol for Use in Human Food SUBMITTED BY: Cargill, Incorporated 15407 McGinty Road West Wayzata, MN 55391 SUBMITTED TO: U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Food Additive Safety HFS-200 5100 Paint Branch Parkway College Park MD 20740-3835 CONTACT FOR TECHNICAL OR OTIIER INFORMATION Donald F. -
“Polyols: a Primer for Dietetic Professionals” Is a Self-Study
1 “Polyols: A primer for dietetic professionals” is a self-study module produced by the Calorie Control Council, an accredited provider of continuing professional education (CPE) for dietetic professionals by the Commission on Dietetic Registration. It provides one hour of level 1 CPE credit for dietetic professionals. The full text of the module is in the notes section of each page, and is accompanied by summary points and/or visuals in the box at the top of the page. Directions for obtaining CPE are provided at the end of the module. 2 After completing this module, dietetic professionals will be able to: • Define polyols. • Identify the various types of polyols found in foods. • Understand the uses and health effects of polyols in foods. • Counsel clients on how to incorporate polyols into an overall healthful eating pattern. 3 4 Polyols are carbohydrates that are hydrogenated, meaning that a hydroxyl group replaces the aldehyde or ketone group found on sugars. Hydrogenated monosaccharides include erythritol, xylitol, sorbitol, and mannitol. Hydrogenated disaccharides include lactitol, isomalt, and maltitol. And hydrogenated starch hydrolysates (HSH), or polyglycitols (a wide range of corn syrups and maltodextrins), are formed from polysaccharides (Grabitske and Slavin 2008). 5 Nearly 54 percent of Americans are trying to lose weight, more than ever before. Increasingly, they are turning toward no- and low-sugar, and reduced calorie, foods and beverages to help them achieve their weight loss goals (78% of Americans who are trying to lose weight) (CCC 2010). Polyols, found in many of these foods, are becoming a subject of more interest. 6 They are incompletely digested , therefore are sometimes referred to as “low- digestible carbohydrates.” Polyols are not calorie free, as there is some degree of digestion and absorption of the carbohydrate. -
Xylose Fermentation to Ethanol by Schizosaccharomyces Pombe Clones with Xylose Isomerase Gene." Biotechnology Letters (8:4); Pp
NREL!TP-421-4944 • UC Category: 246 • DE93000067 l I Xylose Fermenta to Ethanol: A R ew '.) i I, -- , ) )I' J. D. McMillan I ' J.( .!i �/ .6' ....� .T u�.•ls:l ., �-- • National Renewable Energy Laboratory II 'J 1617 Cole Boulevard Golden, Colorado 80401-3393 A Division of Midwest Research Institute Operated for the U.S. Department of Energy under Contract No. DE-AC02-83CH10093 Prepared under task no. BF223732 January 1993 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily con stitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA22161 Price: Microfiche A01 Printed Copy A03 Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: Energy Research Abstracts (ERA); Govern ment Reports Announcements and Index ( GRA and I); Scientific and Technical Abstract Reports(STAR); and publication NTIS-PR-360 available from NTIS at the above address. -
Polyols Have a Variety of Functional Properties That Make Them Useful Alternatives to Sugars in Applications Including Baked Goods
Polyols have a variety of functional properties that make them useful alternatives to sugars in applications including baked goods. Photo © iStockphoto.com/Synergee pg 22 09.12 • www.ift.org BY LYN NABORS and THERESA HEDRICK SUGAR REDUCTION WITH Polyols Polyols are in a unique position to assist with reduced-sugar or sugar-free reformulations since they can reduce calories and complement sugar’s functionality. ugar reduction will be an important goal over the of the product’s original characteristics may still be main- next few years as consumers, government, and in- tained with the replacement of those sugars by polyols. Sdustry alike have expressed interest in lower-calorie In addition, excellent, good-tasting sugar-free products and lower-sugar foods. The 2010 Dietary Guidelines for can be developed by using polyols. Polyols are in a unique Americans put a strong emphasis on consuming fewer position to assist with reduced-sugar or sugar-free refor- calories and reducing intake of added sugars. The In- mulations; since they are only partially digested and ab- stitute of Medicine (IOM) held a public workshop in sorbed, they can reduce calories and complement sugar’s November 2010 to discuss ways the food industry can functionality. Polyols provide the same bulk as sugars and use contemporary and innovative food processing tech- other carbohydrates. Additionally, polyols have a clean, nologies to reduce calorie intake in an effort to reduce sweet taste, which is important since consumers are not and prevent obesity, and in October 2011 recommended likely to sacrifice taste for perceived health benefits. Poly- front-of-package labeling that includes rating the product ols have a host of other functional properties that make based on added sugars content. -
PENTOSE PHOSPHATE PATHWAY — Restricted for Students Enrolled in MCB102, UC Berkeley, Spring 2008 ONLY
Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Bryan Krantz: University of California, Berkeley MCB 102, Spring 2008, Metabolism Lecture 5 Reading: Ch. 14 of Principles of Biochemistry, “Glycolysis, Gluconeogenesis, & Pentose Phosphate Pathway.” PENTOSE PHOSPHATE PATHWAY This pathway produces ribose from glucose, and it also generates 2 NADPH. Two Phases: [1] Oxidative Phase & [2] Non-oxidative Phase + + Glucose 6-Phosphate + 2 NADP + H2O Ribose 5-Phosphate + 2 NADPH + CO2 + 2H ● What are pentoses? Why do we need them? ◦ DNA & RNA ◦ Cofactors in enzymes ● Where do we get them? Diet and from glucose (and other sugars) via the Pentose Phosphate Pathway. ● Is the Pentose Phosphate Pathway just about making ribose sugars from glucose? (1) Important for biosynthetic pathways using NADPH, and (2) a high cytosolic reducing potential from NADPH is sometimes required to advert oxidative damage by radicals, e.g., ● - ● O2 and H—O Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Two Phases of the Pentose Pathway Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY NADPH vs. NADH Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Oxidative Phase: Glucose-6-P Ribose-5-P Glucose 6-phosphate dehydrogenase. First enzymatic step in oxidative phase, converting NADP+ to NADPH. Glucose 6-phosphate + NADP+ 6-Phosphoglucono-δ-lactone + NADPH + H+ Mechanism. Oxidation reaction of C1 position. Hydride transfer to the NADP+, forming a lactone, which is an intra-molecular ester. -
Production of Natural and Rare Pentoses Using Microorganisms and Their Enzymes
EJB Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.4 No.2, Issue of August 15, 2001 © 2001 by Universidad Católica de Valparaíso -- Chile Received April 24, 2001 / Accepted July 17, 2001 REVIEW ARTICLE Production of natural and rare pentoses using microorganisms and their enzymes Zakaria Ahmed Food Science and Biochemistry Division Faculty of Agriculture, Kagawa University Kagawa 761-0795, Kagawa-Ken, Japan E-mail: [email protected] Financial support: Ministry of Education, Science, Sports and Culture of Japan under scholarship program for foreign students. Keywords: enzyme, microorganism, monosaccharides, pentose, rare sugar. Present address: Scientific Officer, Microbiology and Biochemistry Division, Bangladesh Jute Research Institute, Shere-Bangla Nagar, Dhaka- 1207, Bangladesh. Tel: 880-2-8124920. Biochemical methods, usually microbial or enzymatic, murine tumors and making them useful for cancer treatment are suitable for the production of unnatural or rare (Morita et al. 1996; Takagi et al. 1996). Recently, monosaccharides. D-Arabitol was produced from D- researchers have found many important applications of L- glucose by fermentation with Candida famata R28. D- arabinose in medicine as well as in biological sciences. In a xylulose can also be produced from D-arabitol using recent investigation, Seri et al. (1996) reported that L- Acetobacter aceti IFO 3281 and D-lyxose was produced arabinose selectively inhibits intestinal sucrase activity in enzymatically from D-xylulose using L-ribose isomerase an uncompetitive manner and suppresses the glycemic (L-RI). Ribitol was oxidized to L-ribulose by microbial response after sucrose ingestion by such inhibition. bioconversion with Acetobacter aceti IFO 3281; L- Furthermore, Sanai et al. (1997) reported that L-arabinose ribulose was epimerized to L-xylulose by the enzyme D- is useful in preventing postprandial hyperglycemia in tagatose 3-epimerase and L-lyxose was produced by diabetic patients. -
Biomaterials Formed by Nucleophilic Addition
(19) & (11) EP 1 181 323 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08G 63/48 (2006.01) C08G 63/91 (2006.01) 29.06.2011 Bulletin 2011/26 C12N 11/02 (2006.01) C12N 11/04 (2006.01) C12N 11/06 (2006.01) C12N 11/08 (2006.01) (2006.01) (2006.01) (21) Application number: 00910049.6 G01N 33/544 G01N 33/545 G01N 33/546 (2006.01) G01N 33/549 (2006.01) A61K 9/00 (2006.01) A61K 9/06 (2006.01) (22) Date of filing: 01.02.2000 A61K 47/48 (2006.01) A61L 24/00 (2006.01) A61L 24/04 (2006.01) A61L 26/00 (2006.01) A61L 27/26 (2006.01) A61L 27/52 (2006.01) A61L 31/04 (2006.01) A61L 31/14 (2006.01) C08G 81/00 (2006.01) (86) International application number: PCT/US2000/002608 (87) International publication number: WO 2000/044808 (03.08.2000 Gazette 2000/31) (54) BIOMATERIALS FORMED BY NUCLEOPHILIC ADDITION REACTION TO CONJUGATED UNSATURATED GROUPS BIOMATERIALIEN DIE DURCH NUKLEOPHILE REAKTION AUF KONJUGIERTEN UNGESÄTTIGTEN GRUPPEN ADDIERT SIND BIOMATERIAUX FORMES PAR REACTION D’ADDITION NUCLEOPHILE A DES GROUPES NON SATURES CONJUGUES (84) Designated Contracting States: • LUTOLF, Matthias AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU CH-8005 Zurich (CH) MC NL PT SE • PRATT, Alison CH-8044 Zurich (CH) (30) Priority: 01.02.1999 US 118093 P • SCHOENMAKERS, Ronald CH-8044 Zurich (CH) (43) Date of publication of application: • TIRELLI, Nicola 27.02.2002 Bulletin 2002/09 CH-8006 Zurich (CH) • VERNON, Brent (60) Divisional application: CH-8157 Dielsdorf (CH) 10181654.4 / 2 311 895 (74) Representative: Klunker . -
Erythritol As Sweetener—Wherefrom and Whereto?
Applied Microbiology and Biotechnology (2018) 102:587–595 https://doi.org/10.1007/s00253-017-8654-1 MINI-REVIEW Erythritol as sweetener—wherefrom and whereto? K. Regnat1 & R. L. Mach1 & A. R. Mach-Aigner1 Received: 1 September 2017 /Revised: 12 November 2017 /Accepted: 13 November 2017 /Published online: 1 December 2017 # The Author(s) 2017. This article is an open access publication Abstract Erythritol is a naturally abundant sweetener gaining more and more importance especially within the food industry. It is widely used as sweetener in calorie-reduced food, candies, or bakery products. In research focusing on sugar alternatives, erythritol is a key issue due to its, compared to other polyols, challenging production. It cannot be chemically synthesized in a commercially worthwhile way resulting in a switch to biotechnological production. In this area, research efforts have been made to improve concentration, productivity, and yield. This mini review will give an overview on the attempts to improve erythritol production as well as their development over time. Keywords Erythritol . Sugar alcohols . Polyols . Sweetener . Sugar . Sugar alternatives Introduction the range of optimization parameters. The other research di- rection focused on metabolic pathway engineering or genetic Because of today’s lifestyle, the number of people suffering engineering to improve yield and productivity as well as to from diabetes mellitus and obesity is increasing. The desire of allow the use of inexpensive and abundant substrates. This the customers to regain their health created a whole market of review will present the history of erythritol production- non-sugar and non-caloric or non-nutrient foods. An impor- related research from a more commercial viewpoint moving tant part of this market is the production of sugar alcohols, the towards sustainability and fundamental research. -
HOG-Independent Osmoprotection by Erythritol in Yeast Yarrowia Lipolytica
G C A T T A C G G C A T genes Article HOG-Independent Osmoprotection by Erythritol in Yeast Yarrowia lipolytica Dorota A. Rzechonek 1, Mateusz Szczepa ´nczyk 1, Guokun Wang 2, Irina Borodina 2 and Aleksandra M. Miro ´nczuk 1,* 1 Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; [email protected] (D.A.R.); [email protected] (M.S.) 2 The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; [email protected] (G.W); [email protected] (I.B.) * Correspondence: [email protected]; Tel.: +48-71-320-7736 Received: 12 October 2020; Accepted: 19 November 2020; Published: 27 November 2020 Abstract: Erythritol is a polyol produced by Yarrowia lipolytica under hyperosmotic stress. In this study, the osmo-sensitive strain Y. lipolytica yl-hog1D was subjected to stress, triggered by a high concentration of carbon sources. The strain thrived on 0.75 M erythritol medium, while the same concentrations of glucose and glycerol proved to be lethal. The addition of 0.1 M erythritol to the medium containing 0.75 M glucose or glycerol allowed the growth of yl-hog1D. Supplementation with other potential osmolytes such as mannitol or L-proline did not have a similar effect. To examine whether the osmoprotective effect might be related to erythritol accumulation, we deleted two genes involved in erythritol utilization, the transcription factor Euf1 and the enzyme erythritol dehydrogenase Eyd1. The strain eyd1D yl hog1D, which lacked the erythritol utilization enzyme, reacted to the erythritol supplementation significantly better than yl-hog1D. -
(SIRE) Followed by Back-Extraction (BE) Process for Efficient Fermentation of Ketose Sugars to Products
A Dissertation entitled Optimizing Simultaneous-Isomerization-and-Reactive-Extraction (SIRE) Followed by Back-Extraction (BE) Process for Efficient Fermentation of Ketose Sugars to Products by Peng Zhang Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Engineering ________________________________________ Dr. Patricia Relue, Co-Committee Chair ________________________________________ Dr. Sasidhar Varanasi, Co-Committee Chair ________________________________________ Dr. Sridhar Viamajala, Committee Member ________________________________________ Dr. Stephen Callaway, Committee Member ________________________________________ Dr. Randall Ruch, Committee Member ________________________________________ Dr. Amanda Bryant-Friedrich, Dean College of Graduate Studies The University of Toledo May 2018 Copyright 2018, Peng Zhang This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Optimizing Simultaneous-Isomerization-and-Reactive-Extraction (SIRE) Followed by Back-Extraction (BE) Process for Efficient Fermentation of Ketose Sugars to Products by Peng Zhang Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Engineering The University of Toledo May 2018 Lignocellulosic biomass is an abundant, inexpensive feedstock. It is mostly composed of cellulose (38-50% of the dry mass) and hemicellulose -
A Dynamic Flux Balance Model and Bottleneck Identification of Glucose, Xylose, Xylulose Co-Fermentation in Saccharomyces Cerevis
10849 Bioresource Technology 188 (2015) 153–160 Contents lists available at ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech A dynamic flux balance model and bottleneck identification of glucose, xylose, xylulose co-fermentation in Saccharomyces cerevisiae ⇑ William Hohenschuh a, Ronald Hector b, Ganti S. Murthy a, a Oregon State University, United States b USDA, ARS, NCAUR, United States highlights graphical abstract Xylulose utilization limited by Boleneck Idenficaon for Xylulose Ulizaon in S. cerevisiae phosphorylation by xylulokinase in Hemicellulose wt S. cerevisiae. XI Transport limits xylulose utilization Cellobiose Glucose in xylulokinase enhanced strains. NADP(H) Xylose XR HXT family of transporters NADP+ Xylitol XDH NAD+ responsible for xylulose transport in Xylulose NADH XK S. cerevisiae. Cellulose Pentose Phosphate Pathway Accounting for cell death produces improved modeling fit of batch Glycolysis fermentation. S. cerevisiae Ethanol article info abstract Article history: A combination of batch fermentations and genome scale flux balance analysis were used to identify and Received 25 November 2014 quantify the rate limiting reactions in the xylulose transport and utilization pathway. Xylulose phospho- Received in revised form 4 February 2015 rylation by xylulokinase was identified as limiting in wild type Saccharomyces cerevisiae, but transport Accepted 5 February 2015 became limiting when xylulokinase was upregulated. Further experiments showed xylulose transport Available online 20 February 2015 through the HXT family of non-specific glucose transporters. A genome scale flux balance model was developed which included an improved variable sugar uptake constraint controlled by HXT expression. Keywords: Model predictions closely matched experimental xylulose utilization rates suggesting the combination Xylose of transport and xylulokinase constraints is sufficient to explain xylulose utilization limitation in S. -
Sugar Alcohols Fact Sheet
International Food Information Council Sugar Alcohols Fact Sheet September 2004 BACKGROUND Sugar alcohols or polyols, as they are also called, have a long history of use in a wide variety of foods. Recent technical advances have added to the range of sugar alcohols available for food use and expanded the applications of these sugar replacers in diet and health-oriented foods. They have been found useful in sugar-free and reduced-sugar products, in foods intended for individuals with diabetes, and most recently in new products developed for carbohydrate controlled eating plans. Sugar alcohols are neither sugars nor alcohols. They are carbohydrates with a chemical structure that partially resembles sugar and partially resembles alcohol, but they don’t contain ethanol as alcoholic beverages do. They are incompletely absorbed and metabolized by the body, and consequently contribute fewer calories. The polyols commonly used include sorbitol, mannitol, xylitol, maltitol, maltitol syrup, lactitol, erythritol, isomalt and hydrogenated starch hydrolysates. Their calorie content ranges from 1.5 to 3 calories per gram compared to 4 calories per gram for sucrose or other sugars. Most are approximately half as sweet as sucrose; maltitol and xylitol are about as sweet as sucrose. Sugar alcohols occur naturally in a wide variety of fruits and vegetables, but are commercially produced from other carbohydrates such as sucrose, glucose, and starch. Along with adding a sweet taste, polyols perform a variety of functions such as adding bulk and texture, providing a cooling effect or taste, inhibiting the browning that occurs during heating and retaining moisture in foods. While polyols do not actually prevent browning, they do not cause browning either.