Application of Natural, Non-Nutritive, High-Potency Sweeteners and Sugar

Total Page:16

File Type:pdf, Size:1020Kb

Application of Natural, Non-Nutritive, High-Potency Sweeteners and Sugar APPLICATION OF NATURAL, NON-NUTRITIVE, HIGH-POTENCY SWEETENERS AND SUGAR ALCOHOLS INDIVIDUALLY AND IN COMBINATION IN AN ACIDIFIED PROTEIN BEVERAGE MODEL A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science by WEN ZHANG Dr. Ingolf Gruen, Thesis Supervisor MAY 2014 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled APPLICATION OF NATURAL, NON-NUTRITIVE, HIGH-POTENCY SWEETENERS AND SUGAR ALCOHOLS INDIVIDUALLY AND IN COMBINATION IN AN ACIDIFIED PROTEIN BEVERAGE MODEL presented by Wen Zhang, a candidate for the degree of Master of Science, and hereby certify that, in their opinion, it is worthy of acceptance. Dr. Ingolf Gruen, Food Science Dr. Andrew Clarke, Food Science Dr. Heather Leidy, Nutrition & Exercise Physiology Dr. Koushik Adhikari, Department of Human Nutrition, Kansas State University ACKNOWLEDGEMENTS I would like to thank Dr. Ingolf Gruen for all his support and guidance throughout all of my academic endeavors. I could not ask for a better mentor. I accredit you for my interest in the field of sensory science and ingredients application. You are always open- minded to any conversation related to my research and career development. Your faith in me strengthens my desire and confidence not only on the project, but also on career matters. Although my time at the University of Missouri is finished, I will keep in touch with you, my best advisor, to have a long-term relationship in the future. To my committee members, Dr. Andrew Clarke, Dr. Heather Leidy, and Dr. Koushik Adhikari, thank you for all of your suggestions and feedback regarding my project. I also appreciate Dr. Clarke for allowing me using the food safety lab, and Dr. Adhikari for his great assistance on Principal Component Analysis with SAS codes. To all my panelists in the acceptance test, equivalent sweetness test with magnitude estimation scale, and quantitative descriptive analysis, thank you so much for your support and participant. I could not make my project keep moving forward without the help from you. I would like to give special thanks to my twelve panelists in magnitude estimation test and eleven panelists in quantitative descriptive analysis. Due to my large number of treatments and triplicates, all of you spent a long time on sensory trainings and tests. Thank you for your great cooperation and efforts which helped me make the progress on my project. ii I want to say thank you to all students and Lakdas Fernando in Dr. Gruen’s lab. You always encouraged me and cheered me up when I got pressures from the heavy lab work. Also, I would like to express my thanks to Dr. Mark Ellersieck and JoAnn Lewis. Thanks for your patience related to my statistical questions, and your assistance on recruiting panel and ordering ingredients. To all my friends in Columbia, I am always grateful to have you in my life. The memory and time we shared are enjoyable and happy. I will cherish our friendship forever. Last but not least, please let me express my sincere appreciation to my parents. Thanks for all of your support and encouragement throughout my life. Without you, I cannot make it here. I love you! iii TABLE OF CONTENTS ACKNOLODGEMENTS ........................................................................................................... ii LIST OF FIGURES ................................................................................................................. vii LIST OF TABLES .................................................................................................................. viii ABSTRACT ............................................................................................................................ ix CHAPTER 1. INTRODUCTION ....................................................................................................... 1 References .............................................................................................................. 5 2. LITERATURE REVIEW ............................................................................................... 6 2.1 Sweeteners ....................................................................................................... 6 2.1.1 Nutritive Sweeteners ......................................................................... 6 2.1.1.1 Sucrose ................................................................................ 7 2.1.1.2 High Fructose Corn Syrup ................................................... 8 2.1.1.3 Sugar Alcohols ..................................................................... 9 2.1.2 Non-nutritive Sweeteners ................................................................ 19 2.1.2.1 Natural Non-nutritive Sweeteners.................................... 20 2.1.2.2 Artificial Non-nutritive Sweeteners .................................. 23 2.2 Sweet-sensing Receptors ................................................................................ 28 2.3 Sensory Profiles in Beverages ......................................................................... 30 2.3.1 Whey Protein Beverages .................................................................. 30 2.3.2 Other Beverages .............................................................................. 31 2.3.2.1 Sweetness Intensity of Sweeteners .................................. 31 iv 2.3.2.2 Other Sensory Attributes .................................................. 32 References ............................................................................................................ 35 3. DETERMINATION OF THE IDEAL SUCROSE CONCENTRATION .............................. 46 3.1 Introduction .................................................................................................... 46 3.2 Materials & Methods ...................................................................................... 47 3.2.1 Preparation of Protein Beverages .................................................... 47 3.2.2 Sensory Test ..................................................................................... 48 3.2.3 Data Analysis .................................................................................... 49 3.3 Results & Discussion ....................................................................................... 50 References ............................................................................................................ 57 4. DETERMINATION OF SWEETNESS EQUIVALENCE OF INDIVIDUAL SWEETENERS RELATIVE TO 10.1% W/V SUCROSE ...................................................................... 58 4.1 Introduction .................................................................................................... 58 4.2 Materials & Methods ...................................................................................... 59 4.2.1 Preparation of Protein Beverages .................................................... 59 4.2.2 Sensory Evaluation ........................................................................... 61 4.2.2.1 Prescreening ..................................................................... 61 4.2.2.2 Training ............................................................................. 63 4.2.2.3 Sensory Test ...................................................................... 64 4.2.3 Data Analysis ................................................................................... 65 4.3 Results & Discussions ..................................................................................... 66 4.3.1 Power Function of Each Individual Sweetener ................................ 66 4.3.2 Sweetness Equivalence of Each Individual Sweetener .................... 69 References ............................................................................................................ 75 v 5. THE SENSORY PROFILE OF ACIDIFIED PROTEIN BEVERAGES SWEETENED BY SUGAR ALCOHOLS AND NATURAL, HIGH-INTENSITY SWEETENERS INDIVIDUALLY AND IN COMBINATION ........................................................................................ 77 5.1 Introduction .................................................................................................... 77 5.2 Materials & Methods ...................................................................................... 79 5.2.1 Preliminary Test ............................................................................... 79 5.2.2 Preparation of Protein Beverages .................................................... 80 5.2.3 Sensory Evaluation ........................................................................... 82 5.2.3.1 Training ............................................................................. 82 5.2.3.2 Sensory Test ...................................................................... 86 5.2.4 Data Analysis .................................................................................... 87 5.3 Results & Discussion ....................................................................................... 89 5.3.1 Sensory Profile of Protein Beverages Sweetened by Individual Sweeteners ............................................................................................... 89 5.3.2 Sensory Profile of Protein Beverages Sweetened by Sweetener Combinations ............................................................................................ 96 5.3.3 Principal Component Analysis ......................................................
Recommended publications
  • GRAS Notice 789 for Erythritol
    GRAS Notice (GRN) No. 789 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory. Toi• Strategies ~~~~G~~[)) JUN 7 20'8 Innovative solutions Sound science OFFICE OF FOOD ADDITIVE SAFE1Y June 5, 2018 Dr. Dennis Keefe Director, Division of Biotechnology and GRAS Notice Review Office of Food Additive Safety (HFS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 5100 Paint Branch Parkway College Park, MD 20740-3835 Subject: GRAS Notification - Erythritol Dear Dr. Keefe: On behalf of Cargill, Incorporated, ToxStrategies, Inc. (its agent) is submitting, for FDA review, a copy of the GRAS notification as required. The enclosed document provides notice of a claim that the food ingredient, erythritol, described in the enclosed notification is exempt from the premarket approval requirement of the Federal Food, Drug, and Cosmetic Act because it has been determined to be generally recognized as safe (GRAS), based on scientific procedures, for addition to food. If you have any questions or require additional information, please do not hesitate to contact me at 630-352-0303, or [email protected]. Sincerely, (b) (6) Donald F. Schmitt, M.P.H. Senior Managing Scientist ToxStrategies, Inc., 931 W. 75th St. , Suite 137, PMB 263, Naperville, IL 60565 1 Office (630) 352-0303 • www.toxstrategies.com GRAS Determination of Erythritol for Use in Human Food JUNES,2018 Innovative solutions s ,..,.,',--.r-.r--.r--. OFFICE OF FOOD ADDITIVE SAFE1Y GRAS Determination of Erythritol for Use in Human Food SUBMITTED BY: Cargill, Incorporated 15407 McGinty Road West Wayzata, MN 55391 SUBMITTED TO: U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Food Additive Safety HFS-200 5100 Paint Branch Parkway College Park MD 20740-3835 CONTACT FOR TECHNICAL OR OTIIER INFORMATION Donald F.
    [Show full text]
  • “Polyols: a Primer for Dietetic Professionals” Is a Self-Study
    1 “Polyols: A primer for dietetic professionals” is a self-study module produced by the Calorie Control Council, an accredited provider of continuing professional education (CPE) for dietetic professionals by the Commission on Dietetic Registration. It provides one hour of level 1 CPE credit for dietetic professionals. The full text of the module is in the notes section of each page, and is accompanied by summary points and/or visuals in the box at the top of the page. Directions for obtaining CPE are provided at the end of the module. 2 After completing this module, dietetic professionals will be able to: • Define polyols. • Identify the various types of polyols found in foods. • Understand the uses and health effects of polyols in foods. • Counsel clients on how to incorporate polyols into an overall healthful eating pattern. 3 4 Polyols are carbohydrates that are hydrogenated, meaning that a hydroxyl group replaces the aldehyde or ketone group found on sugars. Hydrogenated monosaccharides include erythritol, xylitol, sorbitol, and mannitol. Hydrogenated disaccharides include lactitol, isomalt, and maltitol. And hydrogenated starch hydrolysates (HSH), or polyglycitols (a wide range of corn syrups and maltodextrins), are formed from polysaccharides (Grabitske and Slavin 2008). 5 Nearly 54 percent of Americans are trying to lose weight, more than ever before. Increasingly, they are turning toward no- and low-sugar, and reduced calorie, foods and beverages to help them achieve their weight loss goals (78% of Americans who are trying to lose weight) (CCC 2010). Polyols, found in many of these foods, are becoming a subject of more interest. 6 They are incompletely digested , therefore are sometimes referred to as “low- digestible carbohydrates.” Polyols are not calorie free, as there is some degree of digestion and absorption of the carbohydrate.
    [Show full text]
  • Xylose Fermentation to Ethanol by Schizosaccharomyces Pombe Clones with Xylose Isomerase Gene." Biotechnology Letters (8:4); Pp
    NREL!TP-421-4944 • UC Category: 246 • DE93000067 l I Xylose Fermenta to Ethanol: A R ew '.) i I, -- , ) )I' J. D. McMillan I ' J.( .!i �/ .6' ....� .T u�.•ls:l ., �-- • National Renewable Energy Laboratory II 'J 1617 Cole Boulevard Golden, Colorado 80401-3393 A Division of Midwest Research Institute Operated for the U.S. Department of Energy under Contract No. DE-AC02-83CH10093 Prepared under task no. BF223732 January 1993 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com­ pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily con­ stitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA22161 Price: Microfiche A01 Printed Copy A03 Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: Energy Research Abstracts (ERA); Govern­ ment Reports Announcements and Index ( GRA and I); Scientific and Technical Abstract Reports(STAR); and publication NTIS-PR-360 available from NTIS at the above address.
    [Show full text]
  • Polyols Have a Variety of Functional Properties That Make Them Useful Alternatives to Sugars in Applications Including Baked Goods
    Polyols have a variety of functional properties that make them useful alternatives to sugars in applications including baked goods. Photo © iStockphoto.com/Synergee pg 22 09.12 • www.ift.org BY LYN NABORS and THERESA HEDRICK SUGAR REDUCTION WITH Polyols Polyols are in a unique position to assist with reduced-sugar or sugar-free reformulations since they can reduce calories and complement sugar’s functionality. ugar reduction will be an important goal over the of the product’s original characteristics may still be main- next few years as consumers, government, and in- tained with the replacement of those sugars by polyols. Sdustry alike have expressed interest in lower-calorie In addition, excellent, good-tasting sugar-free products and lower-sugar foods. The 2010 Dietary Guidelines for can be developed by using polyols. Polyols are in a unique Americans put a strong emphasis on consuming fewer position to assist with reduced-sugar or sugar-free refor- calories and reducing intake of added sugars. The In- mulations; since they are only partially digested and ab- stitute of Medicine (IOM) held a public workshop in sorbed, they can reduce calories and complement sugar’s November 2010 to discuss ways the food industry can functionality. Polyols provide the same bulk as sugars and use contemporary and innovative food processing tech- other carbohydrates. Additionally, polyols have a clean, nologies to reduce calorie intake in an effort to reduce sweet taste, which is important since consumers are not and prevent obesity, and in October 2011 recommended likely to sacrifice taste for perceived health benefits. Poly- front-of-package labeling that includes rating the product ols have a host of other functional properties that make based on added sugars content.
    [Show full text]
  • PENTOSE PHOSPHATE PATHWAY — Restricted for Students Enrolled in MCB102, UC Berkeley, Spring 2008 ONLY
    Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Bryan Krantz: University of California, Berkeley MCB 102, Spring 2008, Metabolism Lecture 5 Reading: Ch. 14 of Principles of Biochemistry, “Glycolysis, Gluconeogenesis, & Pentose Phosphate Pathway.” PENTOSE PHOSPHATE PATHWAY This pathway produces ribose from glucose, and it also generates 2 NADPH. Two Phases: [1] Oxidative Phase & [2] Non-oxidative Phase + + Glucose 6-Phosphate + 2 NADP + H2O Ribose 5-Phosphate + 2 NADPH + CO2 + 2H ● What are pentoses? Why do we need them? ◦ DNA & RNA ◦ Cofactors in enzymes ● Where do we get them? Diet and from glucose (and other sugars) via the Pentose Phosphate Pathway. ● Is the Pentose Phosphate Pathway just about making ribose sugars from glucose? (1) Important for biosynthetic pathways using NADPH, and (2) a high cytosolic reducing potential from NADPH is sometimes required to advert oxidative damage by radicals, e.g., ● - ● O2 and H—O Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Two Phases of the Pentose Pathway Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY NADPH vs. NADH Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Oxidative Phase: Glucose-6-P Ribose-5-P Glucose 6-phosphate dehydrogenase. First enzymatic step in oxidative phase, converting NADP+ to NADPH. Glucose 6-phosphate + NADP+ 6-Phosphoglucono-δ-lactone + NADPH + H+ Mechanism. Oxidation reaction of C1 position. Hydride transfer to the NADP+, forming a lactone, which is an intra-molecular ester.
    [Show full text]
  • Production of Natural and Rare Pentoses Using Microorganisms and Their Enzymes
    EJB Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.4 No.2, Issue of August 15, 2001 © 2001 by Universidad Católica de Valparaíso -- Chile Received April 24, 2001 / Accepted July 17, 2001 REVIEW ARTICLE Production of natural and rare pentoses using microorganisms and their enzymes Zakaria Ahmed Food Science and Biochemistry Division Faculty of Agriculture, Kagawa University Kagawa 761-0795, Kagawa-Ken, Japan E-mail: [email protected] Financial support: Ministry of Education, Science, Sports and Culture of Japan under scholarship program for foreign students. Keywords: enzyme, microorganism, monosaccharides, pentose, rare sugar. Present address: Scientific Officer, Microbiology and Biochemistry Division, Bangladesh Jute Research Institute, Shere-Bangla Nagar, Dhaka- 1207, Bangladesh. Tel: 880-2-8124920. Biochemical methods, usually microbial or enzymatic, murine tumors and making them useful for cancer treatment are suitable for the production of unnatural or rare (Morita et al. 1996; Takagi et al. 1996). Recently, monosaccharides. D-Arabitol was produced from D- researchers have found many important applications of L- glucose by fermentation with Candida famata R28. D- arabinose in medicine as well as in biological sciences. In a xylulose can also be produced from D-arabitol using recent investigation, Seri et al. (1996) reported that L- Acetobacter aceti IFO 3281 and D-lyxose was produced arabinose selectively inhibits intestinal sucrase activity in enzymatically from D-xylulose using L-ribose isomerase an uncompetitive manner and suppresses the glycemic (L-RI). Ribitol was oxidized to L-ribulose by microbial response after sucrose ingestion by such inhibition. bioconversion with Acetobacter aceti IFO 3281; L- Furthermore, Sanai et al. (1997) reported that L-arabinose ribulose was epimerized to L-xylulose by the enzyme D- is useful in preventing postprandial hyperglycemia in tagatose 3-epimerase and L-lyxose was produced by diabetic patients.
    [Show full text]
  • Biomaterials Formed by Nucleophilic Addition
    (19) & (11) EP 1 181 323 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08G 63/48 (2006.01) C08G 63/91 (2006.01) 29.06.2011 Bulletin 2011/26 C12N 11/02 (2006.01) C12N 11/04 (2006.01) C12N 11/06 (2006.01) C12N 11/08 (2006.01) (2006.01) (2006.01) (21) Application number: 00910049.6 G01N 33/544 G01N 33/545 G01N 33/546 (2006.01) G01N 33/549 (2006.01) A61K 9/00 (2006.01) A61K 9/06 (2006.01) (22) Date of filing: 01.02.2000 A61K 47/48 (2006.01) A61L 24/00 (2006.01) A61L 24/04 (2006.01) A61L 26/00 (2006.01) A61L 27/26 (2006.01) A61L 27/52 (2006.01) A61L 31/04 (2006.01) A61L 31/14 (2006.01) C08G 81/00 (2006.01) (86) International application number: PCT/US2000/002608 (87) International publication number: WO 2000/044808 (03.08.2000 Gazette 2000/31) (54) BIOMATERIALS FORMED BY NUCLEOPHILIC ADDITION REACTION TO CONJUGATED UNSATURATED GROUPS BIOMATERIALIEN DIE DURCH NUKLEOPHILE REAKTION AUF KONJUGIERTEN UNGESÄTTIGTEN GRUPPEN ADDIERT SIND BIOMATERIAUX FORMES PAR REACTION D’ADDITION NUCLEOPHILE A DES GROUPES NON SATURES CONJUGUES (84) Designated Contracting States: • LUTOLF, Matthias AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU CH-8005 Zurich (CH) MC NL PT SE • PRATT, Alison CH-8044 Zurich (CH) (30) Priority: 01.02.1999 US 118093 P • SCHOENMAKERS, Ronald CH-8044 Zurich (CH) (43) Date of publication of application: • TIRELLI, Nicola 27.02.2002 Bulletin 2002/09 CH-8006 Zurich (CH) • VERNON, Brent (60) Divisional application: CH-8157 Dielsdorf (CH) 10181654.4 / 2 311 895 (74) Representative: Klunker .
    [Show full text]
  • Erythritol As Sweetener—Wherefrom and Whereto?
    Applied Microbiology and Biotechnology (2018) 102:587–595 https://doi.org/10.1007/s00253-017-8654-1 MINI-REVIEW Erythritol as sweetener—wherefrom and whereto? K. Regnat1 & R. L. Mach1 & A. R. Mach-Aigner1 Received: 1 September 2017 /Revised: 12 November 2017 /Accepted: 13 November 2017 /Published online: 1 December 2017 # The Author(s) 2017. This article is an open access publication Abstract Erythritol is a naturally abundant sweetener gaining more and more importance especially within the food industry. It is widely used as sweetener in calorie-reduced food, candies, or bakery products. In research focusing on sugar alternatives, erythritol is a key issue due to its, compared to other polyols, challenging production. It cannot be chemically synthesized in a commercially worthwhile way resulting in a switch to biotechnological production. In this area, research efforts have been made to improve concentration, productivity, and yield. This mini review will give an overview on the attempts to improve erythritol production as well as their development over time. Keywords Erythritol . Sugar alcohols . Polyols . Sweetener . Sugar . Sugar alternatives Introduction the range of optimization parameters. The other research di- rection focused on metabolic pathway engineering or genetic Because of today’s lifestyle, the number of people suffering engineering to improve yield and productivity as well as to from diabetes mellitus and obesity is increasing. The desire of allow the use of inexpensive and abundant substrates. This the customers to regain their health created a whole market of review will present the history of erythritol production- non-sugar and non-caloric or non-nutrient foods. An impor- related research from a more commercial viewpoint moving tant part of this market is the production of sugar alcohols, the towards sustainability and fundamental research.
    [Show full text]
  • HOG-Independent Osmoprotection by Erythritol in Yeast Yarrowia Lipolytica
    G C A T T A C G G C A T genes Article HOG-Independent Osmoprotection by Erythritol in Yeast Yarrowia lipolytica Dorota A. Rzechonek 1, Mateusz Szczepa ´nczyk 1, Guokun Wang 2, Irina Borodina 2 and Aleksandra M. Miro ´nczuk 1,* 1 Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; [email protected] (D.A.R.); [email protected] (M.S.) 2 The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; [email protected] (G.W); [email protected] (I.B.) * Correspondence: [email protected]; Tel.: +48-71-320-7736 Received: 12 October 2020; Accepted: 19 November 2020; Published: 27 November 2020 Abstract: Erythritol is a polyol produced by Yarrowia lipolytica under hyperosmotic stress. In this study, the osmo-sensitive strain Y. lipolytica yl-hog1D was subjected to stress, triggered by a high concentration of carbon sources. The strain thrived on 0.75 M erythritol medium, while the same concentrations of glucose and glycerol proved to be lethal. The addition of 0.1 M erythritol to the medium containing 0.75 M glucose or glycerol allowed the growth of yl-hog1D. Supplementation with other potential osmolytes such as mannitol or L-proline did not have a similar effect. To examine whether the osmoprotective effect might be related to erythritol accumulation, we deleted two genes involved in erythritol utilization, the transcription factor Euf1 and the enzyme erythritol dehydrogenase Eyd1. The strain eyd1D yl hog1D, which lacked the erythritol utilization enzyme, reacted to the erythritol supplementation significantly better than yl-hog1D.
    [Show full text]
  • (SIRE) Followed by Back-Extraction (BE) Process for Efficient Fermentation of Ketose Sugars to Products
    A Dissertation entitled Optimizing Simultaneous-Isomerization-and-Reactive-Extraction (SIRE) Followed by Back-Extraction (BE) Process for Efficient Fermentation of Ketose Sugars to Products by Peng Zhang Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Engineering ________________________________________ Dr. Patricia Relue, Co-Committee Chair ________________________________________ Dr. Sasidhar Varanasi, Co-Committee Chair ________________________________________ Dr. Sridhar Viamajala, Committee Member ________________________________________ Dr. Stephen Callaway, Committee Member ________________________________________ Dr. Randall Ruch, Committee Member ________________________________________ Dr. Amanda Bryant-Friedrich, Dean College of Graduate Studies The University of Toledo May 2018 Copyright 2018, Peng Zhang This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Optimizing Simultaneous-Isomerization-and-Reactive-Extraction (SIRE) Followed by Back-Extraction (BE) Process for Efficient Fermentation of Ketose Sugars to Products by Peng Zhang Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Engineering The University of Toledo May 2018 Lignocellulosic biomass is an abundant, inexpensive feedstock. It is mostly composed of cellulose (38-50% of the dry mass) and hemicellulose
    [Show full text]
  • A Dynamic Flux Balance Model and Bottleneck Identification of Glucose, Xylose, Xylulose Co-Fermentation in Saccharomyces Cerevis
    10849 Bioresource Technology 188 (2015) 153–160 Contents lists available at ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech A dynamic flux balance model and bottleneck identification of glucose, xylose, xylulose co-fermentation in Saccharomyces cerevisiae ⇑ William Hohenschuh a, Ronald Hector b, Ganti S. Murthy a, a Oregon State University, United States b USDA, ARS, NCAUR, United States highlights graphical abstract Xylulose utilization limited by Boleneck Idenficaon for Xylulose Ulizaon in S. cerevisiae phosphorylation by xylulokinase in Hemicellulose wt S. cerevisiae. XI Transport limits xylulose utilization Cellobiose Glucose in xylulokinase enhanced strains. NADP(H) Xylose XR HXT family of transporters NADP+ Xylitol XDH NAD+ responsible for xylulose transport in Xylulose NADH XK S. cerevisiae. Cellulose Pentose Phosphate Pathway Accounting for cell death produces improved modeling fit of batch Glycolysis fermentation. S. cerevisiae Ethanol article info abstract Article history: A combination of batch fermentations and genome scale flux balance analysis were used to identify and Received 25 November 2014 quantify the rate limiting reactions in the xylulose transport and utilization pathway. Xylulose phospho- Received in revised form 4 February 2015 rylation by xylulokinase was identified as limiting in wild type Saccharomyces cerevisiae, but transport Accepted 5 February 2015 became limiting when xylulokinase was upregulated. Further experiments showed xylulose transport Available online 20 February 2015 through the HXT family of non-specific glucose transporters. A genome scale flux balance model was developed which included an improved variable sugar uptake constraint controlled by HXT expression. Keywords: Model predictions closely matched experimental xylulose utilization rates suggesting the combination Xylose of transport and xylulokinase constraints is sufficient to explain xylulose utilization limitation in S.
    [Show full text]
  • Sugar Alcohols Fact Sheet
    International Food Information Council Sugar Alcohols Fact Sheet September 2004 BACKGROUND Sugar alcohols or polyols, as they are also called, have a long history of use in a wide variety of foods. Recent technical advances have added to the range of sugar alcohols available for food use and expanded the applications of these sugar replacers in diet and health-oriented foods. They have been found useful in sugar-free and reduced-sugar products, in foods intended for individuals with diabetes, and most recently in new products developed for carbohydrate controlled eating plans. Sugar alcohols are neither sugars nor alcohols. They are carbohydrates with a chemical structure that partially resembles sugar and partially resembles alcohol, but they don’t contain ethanol as alcoholic beverages do. They are incompletely absorbed and metabolized by the body, and consequently contribute fewer calories. The polyols commonly used include sorbitol, mannitol, xylitol, maltitol, maltitol syrup, lactitol, erythritol, isomalt and hydrogenated starch hydrolysates. Their calorie content ranges from 1.5 to 3 calories per gram compared to 4 calories per gram for sucrose or other sugars. Most are approximately half as sweet as sucrose; maltitol and xylitol are about as sweet as sucrose. Sugar alcohols occur naturally in a wide variety of fruits and vegetables, but are commercially produced from other carbohydrates such as sucrose, glucose, and starch. Along with adding a sweet taste, polyols perform a variety of functions such as adding bulk and texture, providing a cooling effect or taste, inhibiting the browning that occurs during heating and retaining moisture in foods. While polyols do not actually prevent browning, they do not cause browning either.
    [Show full text]