Formatworks – Solidworks Certified Gold Product

Total Page:16

File Type:pdf, Size:1020Kb

Formatworks – Solidworks Certified Gold Product FormatWorks – SolidWorks Certified Gold product - extends the SolidWorks data translation capability to support CATIA V5 and V4 data and many other native and neutral CAD formats. The technology used in FormatWorks is based on propriety algorithms developed by Capvidia highly automates the whole process and provide accurate and reliable CAD data translation to and from SolidWorks. FormatWorks simplifies the import to SolidWorks adding the automatic repair and healing what ensures that imported models meet SolidWorks’ criteria and form valid solids. This repair is always performed within the model tolerance while maintaining original model integrity and preventing model deformation. Some FormatWorks features: • Support of latest CAD formats revisions FormatWorks 2009 supports the latest revisions of native formats (CATIA V5 up to R19, Pro/E Wildfire 4, UG 18 NX6, Inventor 12, Parasolid 20, CATIA 4.2.4 and many others) and widens range of supported entities for neutral formats like STEP, IGES and VDA-FS. (please see the list of all supported formats below) • Automatic and Manual repair FormatWorks offers automatic repair & healing eliminating possible incompatibilities preventing SolidWorks to form valid solids. Combined with the manual repair tools, it provides the best solution for SolidWorks users to quickly and easily get valid models. It resolves frustrating problems such as: surfaces that won’t knit together, model errors, deformation, and unusable models when using standard SolidWorks import tools. • Model Simplification and Feature Translation FormatWorks includes model simplification functions and supports automatic feature recognition. SolidWorks features such as holes, cuts, chamfers, fillets, extrusions, ribs can be identified within the translation process. The imported models are easily editable in SolidWorks. • PMI support for native CATIA V5, Pro/E and UGX Extended support of PMI (Product Manufacturing Information) from native CATIA V5, Pro/E and UGX provide direct access to manufacturing information stored together with the 3D data. • Model Preview and Selective Translation The improved Preview-Select-Translate mode is an ideal solution for working with large native parts and complex assemblies. • Batch translation with 3D Model Diagnosis The batch mode is controlled from a single window allowing to set-up the batch translation options, define files and folders to be processed, monitor the translation process, diagnose quality of translated CAD models and analyzes translation results with possible graphical visualization of reported 3D model inconsistencies. It gives user unprecedented automation and control over the whole process, drastically simplifying translation of large and complex CAD data sets. • Multi-core processing The entire FormatWorks 2009 product suite now supports parallel processing giving SolidWorks users a significant performance boost (50% for Core Duo). • 64-bit version FormatWorks 2009 products are available in 32- or 64-bit versions. Import formats • CATIA V4 (.model, .exp / up to 4.2.4) • CATIA V5 (.CATPart, CATProduct / up to R19) • Unigraphics (.prt / up to 18, NX6) • Pro/E (up to Wildfire 4) • Parasolid (up to 20) • ACIS • Inventor (up to 12) • STEP • IGES (5.x - 6.x) • VDA-FS • AutoForm (.af, .afm) • STL • VRML Export formats • CATIA V4 (.model, .exp / 4.2.4) • CATIA V5 (.CATPart, CATProduct / up to R19) • Parasolid (up to 20) • ACIS • STEP • IGES (5.x - 6.x) • VDA-FS • AutoForm (.af, .afm) • STL • VRML FormatWorks 2009 Ultimate is a web-based CAD data translation solution supporting all CAD data formats over Capvidia data translation server. You don’t need to buy expensive data translators for each specific CAD data format. You have simply access to all of them. Your SolidWorks seat will not be tied up during data translation; you just start the translation process while continuing to do your normal SolidWorks activities. FormatWorks 2009 Standard is a classic solution which you can configure with data translators of your choice. It provides automatic repair & healing tools operating in express or advanced repair mode. Error classification and simple easy to use manual repair tools help you to convert your models into solids with just a few mouse clicks. FormatWorks 2009 Professional adds powerful features such as Model Preview with Selective Translation suitable for importing large CATIA assembles into SolidWorks. It includes the Batch Mode that automates translation of large and complex CAD data sets. FormatWorks 2009 Server is a client-server solution. It includes a powerful data translation server that can be connected to number of lightweight clients installed on SolidWorks seats. It contains all features available in FormatWorks Standard and Professional. About Capvidia Capvidia, a Belgium company, offers specialized data translation products and services for the automotive and aerospace industry. Both FormatWorks (SolidWorks Gold Product) 3DTransVidia (standalone product) provide advanced automatic repair and healing to resolve incompatibilities between different CAD systems. FormatWorks is tuned to satisfy SolidWorks internal requirements for forming topological solids with correct model tolerance, without gaps and missing surfaces and no deformation. For more information contact: [email protected] or consult our web-site http://www.capvidia.com .
Recommended publications
  • CAD for VEX Robotics
    CAD for VEX Robotics (updated 7/23/20) The question of CAD comes up from time to time, so here is some information and sources you can use to help you and your students get started with CAD. “COMPUTER AIDED DESIGN” OR “COMPUTER AIDED DOCUMENTATION”? First off, the nature of VEX in general, is a highly versatile prototyping system, and this leads to “tinkerbots” (for good or bad, how many robots are truly planned out down to the specific parts prior to building?). The team that actually uses CAD for design (that is, CAD is done before building), will usually be an advanced high school team, juniors or seniors (and VEX-U teams, of course), and they will still likely use CAD only for preliminary design, then future mods and improvements will be tinkered onto the original design. The exception is 3d printed parts (U-teams only, for now) which obviously have to be designed in CAD. I will say that I’m seeing an encouraging trend that more students are looking to CAD design than in the past. One thing that has helped is that computers don’t need to be so powerful and expensive to run some of the newer CAD software…especially OnShape. Here’s some reality: most VEX people look at CAD to document their design and create neat looking renderings of their robots. If you don't have the time to learn CAD, I suggest taking pictures. Seriously though, CAD stands for Computer Aided Design, not Computer Aided Documentation. It takes time to learn, which is why community colleges have 2-year degrees in CAD, or you can take weeks of training (paid for by your employer, of course).
    [Show full text]
  • Development of a Coupling Approach for Multi-Physics Analyses of Fusion Reactors
    Development of a coupling approach for multi-physics analyses of fusion reactors Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) bei der Fakultat¨ fur¨ Maschinenbau des Karlsruher Instituts fur¨ Technologie (KIT) genehmigte DISSERTATION von Yuefeng Qiu Datum der mundlichen¨ Prufung:¨ 12. 05. 2016 Referent: Prof. Dr. Stieglitz Korreferent: Prof. Dr. Moslang¨ This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ Abstract Fusion reactors are complex systems which are built of many complex components and sub-systems with irregular geometries. Their design involves many interdependent multi- physics problems which require coupled neutronic, thermal hydraulic (TH) and structural mechanical (SM) analyses. In this work, an integrated system has been developed to achieve coupled multi-physics analyses of complex fusion reactor systems. An advanced Monte Carlo (MC) modeling approach has been first developed for converting complex models to MC models with hybrid constructive solid and unstructured mesh geometries. A Tessellation-Tetrahedralization approach has been proposed for generating accurate and efficient unstructured meshes for describing MC models. For coupled multi-physics analyses, a high-fidelity coupling approach has been developed for the physical conservative data mapping from MC meshes to TH and SM meshes. Interfaces have been implemented for the MC codes MCNP5/6, TRIPOLI-4 and Geant4, the CFD codes CFX and Fluent, and the FE analysis platform ANSYS Workbench. Furthermore, these approaches have been implemented and integrated into the SALOME simulation platform. Therefore, a coupling system has been developed, which covers the entire analysis cycle of CAD design, neutronic, TH and SM analyses.
    [Show full text]
  • Studentveiledning for Undervisning I Solidworks®- Programvare
    Konstruksjonsdesign og teknologi-serien Studentveiledning for undervisning i SolidWorks®- programvare Dassault Systèmes - SolidWorks Corporation Utenfor USA: +1-978-371-5011 300 Baker Avenue Faks: +1-978-371-7303 Concord, Massachusetts 01742 USA E-post: [email protected] Tlf.: +1-800-693-9000 Internett: http://www.solidworks.com/education © 1995-2010, Dassault Systèmes SolidWorks Corporation, et KOMMERSIELT DATAPROGRAMVARE - Dassault Systèmes SA-selskap, 300 Baker Avenue, Concord, PROPRIETÆRT Mass. 01742 USA. Med enerett. Begrensede rettigheter iht. amerikanske myndigheter. Bruk, duplisering eller offentliggjøring ved myndighetene er Informasjonen og programvaren som omtales i dette underlagt begrensninger som er angitt i FAR 52.227-19 dokumentet, kan endres uten varsel og er ikke forpliktelser gitt (Commercial Computer Software - Begrensede rettigheter), av Dassault Systèmes SolidWorks Corporation (DS DFARS 227.7202 (Commercial Computer Software og SolidWorks). Commercial Computer Software Documentation) og i lisensavtalen der det er aktuelt. Intet materiale kan reproduseres eller overføres i noen form eller med noen midler, elektronisk eller manuelt, for noe Entreprenør/produsent: formål uten uttrykkelig skriftlig tillatelse fra DS SolidWorks. Dassault Systèmes SolidWorks Corporation, 300 Baker Programvaren som omtales i dette dokumentet, er underlagt en Avenue, Concord, Massachusetts 01742 USA lisens og kan bare brukes eller kopieres i henhold til vilkårene Copyright-merknader for SolidWorks Standard, i denne lisensen. Alle garantier gitt av DS SolidWorks Premium, Professional og Education Products vedrørende programvaren og dokumentasjonen er fremsatt i lisensavtalen, og ingenting som er oppgitt i eller implisert av Deler av denne programvaren © 1986-2010 Siemens Product dette dokumentet eller dets innhold, er å anse som en endring Lifecycle Management Software Inc. Med enerett.
    [Show full text]
  • Evaluation of Shipbuilding Cadicam Systems (Phase I)
    Final Report EVALUATION OF SHIPBUILDING CADICAM SYSTEMS (PHASE I) Submitted to: U.S. Navy by: National Steel & Shipbuilding Co. San Diego, CA 92186 Project Director: John Horvath Principal Investigator: Richard C. Moore October 1996 Technical Report Documentaition Page- 1. Report No. 2. Government Accession No. 3. Recipient's Waiog No. I I 4. Title and Subtitle I 5. Repon Date October 14. 1996 Evaluation of Shipbuilding CADICAM Systems 6. Performing Organization C e (Phase I) '32%'2.7 8. Performing Organization Report Ilo. 7. Author(s) Richard C. Moore UMTRI-96-35 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) The University of Michigan Transportation Research Institute 11. Contracl or Grant No. 290 1 Baxter Road, Ann Arbor, .Michigan 48 109-2150 PQ# MU7.56606-D - 13. Typ of Report and Period Coverud 12. Sponsoring Agency Name and Address Technical National Steel & Shipbuilding Co. 28th St. & Harbor ~r. 14. Sponsoring Agency Code San Diego, CA 92 1 13 US. Navy 15. Supplementary Notes 16. Abstract This report is the Phase I final report of the National Shipbuilding Research F'rogram (NSRP) project (Project Number 4-94-1) to evaluate world-class shipbuilders' existing CADICAMICIM system implementations. Five U.S. shipyards participated in this study along with personnel from University of Michigan, Proteus Engineering, and Cybo Robots. Project participants have backgrounds in design, computer-aided design (CAD), n~anufacturingprocesses, computer-aided manufacturing (CAM), production planning, and computer-integrated manufacturing/management (CIM). The results of this evaluation provided the basis for the CADICAMICIM Workshop presented in conjunction with the 1996 Ship Production Symposium, and will be used as background in Phase I1 of the project to develop requirements for future shipbuilding CADICAMICIM systems.
    [Show full text]
  • Chapter 18 Solidworks
    Chapter 18 SolidWorks As much as any company in the CAD industry, SolidWorks was inspired by the vision of a single individual, Jon Hirschtick. He received both a BS and an MS degree in mechanical engineering from MIT in 1983 and subsequently worked at the MIT CAD Laboratory under Dr. David Gossard. Hirschtick had a strong entrepreneurial streak in him from an early age including a period as a self-employed magician during high school. While working at the CAD Laboratory, he enrolled in an entrepreneurship class in 1987 where he teamed up with Axel Bichara to write a business plan for a new CAD software company they called Premise. Bichara was a graduate student from Germany who was also working at the CAD Laboratory at the time.1 The class business plan for Premise was submitted in mid-May, 1987 and in a little over a month the two founders had $1.5 million in venture funding from Harvard Management Company. It was no surprise that the company set up shop in Cambridge. Figure 18.1 Jon Hirschtick2 Premise’s initial software product, DesignView, was a two-dimension conceptual design tool that ran on IBM-compatible PCs and interfaced with Microsoft software packages such as Word and Excel. Users could sketch geometry, assign constraints and define dimensional relationships. If a dimension changed, the design would adapt to this new information. Since it could be interfaced to Excel, spreadsheets could be used to 1 Bygrave, William D. and D’Heilly, Dan – editors, The Portable MBA in Entrepreneurship Case Studies, Pg.
    [Show full text]
  • Spaceclaim® Engineer and Spaceclaim Style Product Fact Sheet
    SPACECLAIM® ENGINEER AND SPACECLAIM STYLE PRODUCT FACT SHEET About SpaceClaim represents the most significant technology advancement in 3D engineering in more than 10 years, having been created from the ground up specifically to give engineers and industrial designers the freedom and flexibility to capture ideas easily, edit solid models regardless of origin, and prepare designs for analysis, prototyping, and manufacturing. SpaceClaim enables an extended design team to work concurrently, finish projects at a fraction of the cost, and accelerate time-to-market. SpaceClaim Engineer is the world’s fastest and most innovative 3D direct modeler, enabling engineers to easily create concepts and prepare 3D designs for prototyping, top-down design, analysis, and manufacturing. The product interoperates with major CAD systems and many analysis tools, providing a solution to bridge the gap in typical design and engineering workflows. SpaceClaim Engineer broadens access to 3D models and data across the engineering team and helps build consensus by sharing concept models. This capability enables CAD teams to build detailed models right the first time, reducing costly iterations. SpaceClaim Style brings the freedom of direct solid modeling to industrial design, accelerating product ideation by providing flexible tools to create, edit, and validate design concepts. The product is tailored to the needs of designers working in industrial design, product styling, furniture design, jewelry design, and architectural detailing. SpaceClaim Style provides designers in these and other segments with a rapid creation environment for visualizing new ideas and converting hand-drawn, 2D and surface data to accurate solid models, enabling designers to experience the benefits of 3D Direct Modeling with solids.
    [Show full text]
  • Simulation Modelling for Computer Aided Design of Secondary Aerodynamic Wing Surfaces Aleksandr A
    Advances in Systems Science and Application (2015) Vol.15 No.4 338-350 Simulation Modelling for Computer Aided Design of Secondary Aerodynamic Wing Surfaces Aleksandr A. Gorbunov, Aleksej D. Pripadchev, Irina S. Bykova and Valerij V. Elagin Federal State Educational Government-financed Institution of Higher Professional Education, Orenburg State University, Orenburg region, Russia Abstract The simulation modelling technique of secondary aerodynamic wing surface of the long-haul aircraft using a high-precision mathematical simulation in the aerody- namics and hydrodynamics computer programme has been formulated in the present article. The method proposed is based on the modern methods in the field of computer-aided design of aircraft using CATIA three-dimensional sim- ulation and simulation modelling in SALOME environment. The use of high- precision mathematical simulation in computer-aided design of secondary aero- dynamic wing surfaces allows us to determine the aerodynamic characteristics of the secondary aerodynamic surface of the model developed and to verify the previous results of the project definition. Keywords Secondary aerodynamic surfaces; High-precision computer mathemat- ical simulation; Simulation model; A long-haul aircraft; Synthesis; Design au- tomation; Project procedures; Three-dimensional modelling 1 Introduction Building the new long-haul aircraft (A/C) with improved performance character- istics and enhancing the currently used aircraft is effected in various ways. One of them is improving its aerodynamics depending largely on the A/C look. In our view, the most rational way to improve the aerodynamic characteristics of the A/C is to install the secondary aerodynamic surfaces (SAS) at the wingtip. The use of SAS reduces the induced drag of the aircraft, enhances the effective wing aspect-ratio and ascensional power at the wingtip, improves A/C longitu- dinal/transverse stability, reduces specific fuel consumption, cuts takeoff run and landing roll of the aircraft.
    [Show full text]
  • New Math the Hidden Cost of Swapping CAD Kernels
    New Math The Hidden Cost of Swapping CAD Kernels Schnitger Corporation Schnitger Corporation Page 2 of 11 When we first wrote about the costs of switching CAD kernels a decade ago, we profiled a company that had twenty years’ worth of legacy designs to refresh. They could either find copies of the old software (and the hardware to run it on) or convert the parts to a new format and use a modern CAD system to move the designs forward. Old CAD on old hardware was a non-starter, leaving migrating everything to a new CAD system. But what to convert to? They already used SolidWorks in part of their business and considered moving the legacy parts to that platform. One big problem: Many of SolidWorks’ newest features rely on Dassault Systèmes’ 3DEXPERIENCE platform. The traditional desktop SolidWorks is built on the Parasolid kernel, while the 3DEXPERIENCE platform uses the CGM kernel. This reliance on two kernels leads many users to worry that building parts in SolidWorks will eventually mean a wholesale conversion from Parasolid to CGM. If you migrate everything today, will you have to do it again in a few years? As you’ll see later, converting from one kernel to another can be tricky so, if there is an opportunity to avoid a kernel change, you should investigate this possibility. The company we wrote about decided that it couldn’t afford the risk, disruption, and uncertainty an unclear future might cause. They chose Siemens Solid Edge, which also uses the Parasolid kernel. Sticking with the same kernel simplified moving their Parasolid-based models from one CAD tool to another.
    [Show full text]
  • Automatic 3D Design Tool for Fitted Spools in Shipbuilding Industry
    Conference Proceedings of INEC 2 – 4 October 2018 Automatic 3D design tool for fitted spools in shipbuilding industry F Uzcategui, MSca, Dr. A Paz-Lopez, MScb, J Vilar, MScc, A Mallo, MScd, A Brage, MScc, Dr. H Moro, MScc, Dr. F Bellas, MCsd aUMI UDC-Navantia, Ferrol, A Coruña, Spain; bMytech IA, A Coruña, Spain; cNavantia, Ferrol, A Coruña, Spain; dUniversity of A Coruña, A Coruña Spain * Corresponding author. Email: [email protected] Synopsis The objective of this paper is to show the initial research results obtained with an automatic 3D design software tool we have developed for spool fitting in the pipe workshop of the Navantia Ferrol shipyard. This software tool requires, as input, a CAD file containing the scene with the two pipes to connect, and provides, as output, a CAD file with the fitted spool design. The software detects the features of the spool, and a heuristic pipe routing algorithm generates the output by computing several routes and providing one solution that is near to the optimal one. This output design considers the characteristics and capacities of the manufacturing process, as well as the library of materials used in the shipyard, so it is possible to use it for direct manufacturing. The preliminary results presented here were obtained using real data captured with different commercial 3D scanners over a test setup. Keywords: Automatic design; Pipe routing; 3D scanning; Spool fitting; Marine systems 1. Introduction Pipe assembly is a process that is carried out in different stages throughout the construction of a ship. This task is part of the outfitting of products such as the module, sub-block or block.
    [Show full text]
  • Ansys 2020 R1
    CAD Support Release 2020 R1 ANSYS Workbench Platform Reader/Plug-Ins (SP2, SP3 & SP4) Operating SystemOperating 10 Windows Enterprise 7 Hat Red SuSE Enterprise Server Linux & 12 Desktop 7CentOS (Community Enterprise OS 7.4, OS 7.5, 7.6 & 7.7) Enterprise (Community (Professional, Enterprise & Education) & Education) Enterprise (Professional, Channel Service Term Long and Channel Semi-Annual supported are releases (7.4,& 7.5, 7.6 7.7) CAD Package Supported Versions Reader / Plug-In VERSION NOTES: ACIS 2019 Reader* P P P P 2020 Reader* P 2020 Plug-In* P3 3 Requires operating system's version 1803 or higher AutoCAD 4 Requires operating system's Anniversary Update version 4 2019 Plug-In* P 1607 or higher CATIA V4 4.2.4 Reader* P CATIA V5 V5-6R2019 Reader* P P P P CATIA V6 R2019x Reader* P CATIA V5 - (CADNexus CAPRI V5-6R2017, V5-6R2018, Reader* P CAE Gateway V3.60.0) V5-6R2019 Creo Elements / 20.2 Plug-In* P Direct Modeling 20.1 Plug-In* P 6.0 Reader* P 6.0 Plug-In* P Creo Parametric 5.0 Plug-In* P 4.0 Plug-In* P IGES 4.0, 5.2, 5.3 Reader* P P P P 2020 Reader* P 2020 Plug-In* P3 3 Requires operating system's version 1803 or higher Inventor 4 Requires operating system's Anniversary Update version Plug-In* 4 2019 P 1607 or higher JT 10.3 Reader* P Monte Carlo N-Particle2 Reader P P P P (SP2, SP3 & SP4) Operating SystemOperating 10 Windows Enterprise 7 Hat Red SuSE Enterprise Server Linux & 12 Desktop 7CentOS (Professional.
    [Show full text]
  • Chapter 2 Principles of Geometric Modeling
    In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3 Chapter 2 Principles of Geometric Modeling Andre´ Borrmann and Volker Berkhan Abstract The three-dimensional geometry of a building is a vital prerequisite for Building Information Modeling. This chapter examines the principles involved in representing geometry with a computer. It details explicit and implicit approaches to describing volumetric models as well as the basic principles of parametric modeling for creating flexible, adaptable models. The chapter concludes with an examination of freeform curves and surfaces and their underlying mathematical description. 2.1 Geometric modeling in the context of BIM A Building Information Model contains all the relevant information needed for the planning, construction and operation of a building. The three-dimensional descrip- tion of the geometry of a building is one of the most important aspects without which many BIM applications would not be possible. The availability of a model in three dimensions offers significant advantages over conventionally drawn plans: • The planning and construction of the building can be undertaken using a 3D model rather than separate plans and sections. Drawings are then generated from the 3D model, ensuring that the separate drawings always correspond and remain consistent with one another. This almost entirely eradicates a common source of errors, especially when alterations are made to the plans. But a three-dimensional geometric model on its own is not sufficient for generating plans that conform Andre´ Borrmann Technical University of Munich, Chair of Computational Modeling and Simulation, Arcisstr.
    [Show full text]
  • NX 10 for Engineering Design
    NX 10 for Engineering Design By Ming C. Leu Amir Ghazanfari Krishna Kolan Department of Mechanical and Aerospace Engineering Contents FOREWORD ............................................................................................................ 1 CHAPTER 1 – INTRODUCTION ......................................................................... 2 1.1 Product Realization Process ..................................................................................................2 1.2 Brief History of CAD/CAM Development ...........................................................................3 1.3 Definition of CAD/CAM/CAE .............................................................................................5 1.3.1 Computer Aided Design – CAD .................................................................................. 5 1.3.2 Computer Aided Manufacturing – CAM ..................................................................... 5 1.3.3 Computer Aided Engineering – CAE ........................................................................... 5 1.4. Scope of This Tutorial ..........................................................................................................6 CHAPTER 2 – GETTING STARTED .................................................................. 8 2.1 Starting an NX 10 Session and Opening Files ......................................................................8 2.1.1 Start an NX 10 Session ................................................................................................. 8
    [Show full text]