The Granite System Near Betliar Village (Gemeric Superunit, Western Carpathians): Evolution of a Composite Silicic Reservoir
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paleoproterozoic Mafic and Ultramafic Volcanic Rocks in the South Savo Region, Eastern Finland
Development of the Paleoproterozoic Svecofennian orogeny: new constraints from the southeastern boundary of the Central Finland Granitoid Complex Edited by Perttu Mikkola, Pentti Hölttä and Asko Käpyaho Geological Survey of Finland, Bulletin 407, 63-84, 2018 PALEOPROTEROZOIC MAFIC AND ULTRAMAFIC VOLCANIC ROCKS IN THE SOUTH SAVO REGION, EASTERN FINLAND by Jukka Kousa, Perttu Mikkola and Hannu Makkonen Kousa, J., Mikkola, P. & Makkonen, H. 2018. Paleoproterozoic mafic and ultramafic volcanic rocks in the South Savo region, eastern Finland. Geological Survey of Finland, Bulletin 407, 63–84, 11 figures and 1 table. Ultramafic and mafic volcanic rocks are present as sporadic interlayers in the Paleo- proterozoic Svecofennian paragneiss units in the South Savo region of eastern Finland. These elongated volcanic bodies display locally well-preserved primary structures, have a maximum thickness of ca. 500 m and a maximum length of several kilometres. Geo- chemically, the ultramafic variants are picrites, whereas the mafic members display EMORB-like chemical compositions. The picrites, in particular, display significant com- positional variation in both major and trace elements (light rare earth and large-ion lithophile elements). These differences may have been caused by differences in their magma source, variable degrees of crustal contamination and post-magmatic altera- tion, as well as crystal accumulation and fractionation processes. The volcanic units are interpreted to represent extensional phase(s) in the development of the sedimentary basin(s) where the protoliths of the paragneisses were deposited. The eruption age of the volcanic units is interpreted to be 1.91–1.90 Ga. Appendix 1 is available at: http://tupa.gtk.fi/julkaisu/liiteaineisto/bt_407_appendix_1. -
University of Nevada Reno Metamorphic Geology of a Portion
University of Nevada Reno Metamorphic Geology of a Portion of the Bagdad Mining District Yavapai County, Arizona A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science by Daniel E. Collins III May 1977 WiNEs U3RARY m © 1 9 7 8 DANIEL EDWARD COLLINS ALL RIGHTS RESERVED The thesis of Daniel E. Collins is approved: Thesis advisor University of Nevada Reno May .1977 PLEASE NOTE: This dissertation contains color photographs which will not reproduce well. UNIVERSITY MICROFILMS INTERNATIONAL. 1 ACKNOWLEDGEMENT The author is sincerely indebted to the Cyprus Mines Corporation for its interest and generous financial support without which this thesis would not have been possible. I wish to thank in particular Bob Clayton and Joe Sierakowsky for their advice and help while in the field. The guidance of Malcolm Hibbard and Don Noble at the University of Nevada was very much appreciated. I also wish to thank Arthur Baker III who first suggested the thesis area and provided many useful suggestions during the writing. The Nevada Bureau of Mines and Jack Quade of NASA are thanked for access and instruction in the use of the x- ray analysis equipment. I am deeply grateful to John and Constantine Zanarras and to my wife, Merilyn, for their constant companionship. I ABSTRACT An estimated 2,150 meters of eugeosynclinal porphyritic andesites, basalts and volcanic sediments belonging to the Bridle formation were metamorphosed during the Mazatzal Revolution (?) to produce greenschist facies minerology, regional folding, and penetrative fabric elements. Prior to regional metamorphism, the Bridle formation was shallowly intruded by concordant masses of porphyritic trondjhemite and a differentiated Dick Rhyolite. -
Effect of Porphyritic Andesite Int Metamorphism Aureole in Sel
E-ISSN : 2541-5794 P-ISSN :2503-216X Journal of Geoscience, Engineering, Environment, and Technology Vol 5 No 2 2020 RESEARCH ARTICLE Effect of Porphyritic Andesite Intrusion on The Formation of Contact Metamorphism Aureole in Selo Gajah Hill Clastic Limestone, Bojonegoro Regency, East Java, Indonesia Tri Winarno1,*, Jenian Marin1, Wisnu Wijaya Jati1 1Department of Geological Engineering, Diponegoro University, Indonesia Corresponding author : [email protected] Telp :+62 857-4006-6835 Received: Nov 18, 2019, Accepted: Jun 25, 2020. DOI 10.25299/jgeet.2020.5.2.4098 Abstract At Selo Gajah Hill, Jari Village, Gondang Sub-district, Bojonegoro Regency, East Java there are limestone intruded by porphyritic andesite. The intrusion produces contact metamorphisms in the wall rocks. It is very interesting to study the protolith rock, facies of metamorphism and the zonation of contact metamorphism aureole. This research uses field observation method and laboratory analysis i.e. petrographic analysis. Field observation is conducted by doing geological mapping in the Bukit Selo Gajah area and rock sampling for petrographic analysis. Petrographic analysis aims to describe the texture of the rocks and the percentage of minerals, which will be used to determine the protolith rock, metamorphism facies and the determination of contact metamorphism zone. The lithology found in Mount Selo Gajah from oldest to youngest are clastic limestone with intercalation of marl, marl with intercalation of sandstone, porphyritic andesite intrusions, hornfels, and pyroclastic breccia. Metamorphic rocks on Selo Gajah Hill is the product of contact metamorphism of carbonate rock which was intruded by porphyritic andesite intrusion. The metamorphism facies found in the research area are hornblende hornfels and pyroxene hornfels with the protolith rock is carbonate rocks. -
NI 43-101 Independent Technical Report Mount Pleasant North Zone Preliminary Assessment Mount Pleasant Property Southwestern
330 Alison Blvd. Fredericton, New Brunswick Canada, E3C 0A9 Telephone: (506) 454-2359 Facsimile: (506) 454-2355 NI 43-101 Independent Technical Report Mount Pleasant North Zone Preliminary Assessment Mount Pleasant Property Southwestern New Brunswick, Canada Effective Date: January 22nd, 2010 FINAL REPORT PROJECT NUMBER 6526-03 REVISION: 02 Prepared By: J. Dean Thibault, P. Eng. Thibault & Associates Inc. Tim R. McKeen, P. Eng. Thibault & Associates Inc. Stephanie M. Scott, P. Eng. Thibault & Associates Inc. Trevor Boyd, P. Geo. Consultant for Adex Mining Inc. Andrew Hara, P. Eng. Hara Mining Enterprises Inc. Prepared For: Adex Mining Inc. Toronto, Ontario, Canada NI 43-101 Independent Technical Report Mount Pleasant North Zone Preliminary Assessment TABLE OF CONTENTS SECTION 1.0 SUMMARY ............................................................................................................ 1-1 1.1 Background ....................................................................................................................... 1-1 1.2 Geology and Exploration................................................................................................... 1-2 1.3 Resource Estimate............................................................................................................ 1-2 1.4 Mining................................................................................................................................ 1-3 1.5 Processing........................................................................................................................ -
Pleistocene Volcanism in the Anahim Volcanic Belt, West-Central British Columbia
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2014-10-24 A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia Kuehn, Christian Kuehn, C. (2014). A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25002 http://hdl.handle.net/11023/1936 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia by Christian Kuehn A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA OCTOBER, 2014 © Christian Kuehn 2014 Abstract Alkaline and peralkaline magmatism occurred along the Anahim Volcanic Belt (AVB), a 330 km long linear feature in west-central British Columbia. The belt includes three felsic shield volcanoes, the Rainbow, Ilgachuz and Itcha ranges as its most notable features, as well as regionally extensive cone fields, lava flows, dyke swarms and a pluton. Volcanic activity took place periodically from the Late Miocene to the Holocene. -
Ecological Zones in the Southern Appalachians: First Approximation
United States Department of Ecological Zones in the Southern Agriculture Forest Service Appalachians: First Approximation Steve A. Simon, Thomas K. Collins, Southern Gary L. Kauffman, W. Henry McNab, and Research Station Christopher J. Ulrey Research Paper SRS–41 The Authors Steven A. Simon, Ecologist, USDA Forest Service, National Forests in North Carolina, Asheville, NC 28802; Thomas K. Collins, Geologist, USDA Forest Service, George Washington and Jefferson National Forests, Roanoke, VA 24019; Gary L. Kauffman, Botanist, USDA Forest Service, National Forests in North Carolina, Asheville, NC 28802; W. Henry McNab, Research Forester, USDA Forest Service, Southern Research Station, Asheville, NC 28806; and Christopher J. Ulrey, Vegetation Specialist, U.S. Department of the Interior, National Park Service, Blue Ridge Parkway, Asheville, NC 28805. Cover Photos Ecological zones, regions of similar physical conditions and biological potential, are numerous and varied in the Southern Appalachian Mountains and are often typified by plant associations like the red spruce, Fraser fir, and northern hardwoods association found on the slopes of Mt. Mitchell (upper photo) and characteristic of high-elevation ecosystems in the region. Sites within ecological zones may be characterized by geologic formation, landform, aspect, and other physical variables that combine to form environments of varying temperature, moisture, and fertility, which are suitable to support characteristic species and forests, such as this Blue Ridge Parkway forest dominated by chestnut oak and pitch pine with an evergreen understory of mountain laurel (lower photo). DISCLAIMER The use of trade or firm names in this publication is for reader information and does not imply endorsement of any product or service by the U.S. -
Description of Map Units
GEOLOGIC MAP OF THE LATIR VOLCANIC FIELD AND ADJACENT AREAS, NORTHERN NEW MEXICO By Peter W. Lipman and John C. Reed, Jr. 1989 DESCRIPTION OF MAP UNITS [Ages for Tertiary igneous rocks are based on potassium-argon (K-Ar) and fission-track (F-T) determinations by H. H. Mehnert and C. W. Naeser (Lipman and others, 1986), except where otherwise noted. Dates on Proterozoic igneous rocks are uranium-lead (U-Pb) determinations on zircon by S. A. Bowring (Bowring and others, 1984, and oral commun., 1985). Volcanic and plutonic rock names are in accord with the IUGS classification system, except that a few volcanic names (such as quartz latite) are used as defined by Lipman (1975) following historic regional usage. The Tertiary igneous rocks, other than the peralkaline rhyolites associated with the Questa caldera, constitute a high-K subalkaline suite similar to those of other Tertiary volcanic fields in the southern Rocky Mountains, but the modifiers called for by some classification schemes have been dropped for brevity: thus, a unit is called andesite, rather than alkali andesite or high-K andesite. Because many units were mapped on the basis of compositional affinities, map symbols were selected to emphasize composition more than geographic identifier: thus, all andesite symbols start with Ta; all quartz latites with Tq, and so forth.] SURFICIAL DEPOSITS ds Mine dumps (Holocene)—In and adjacent to the inactive open pit operation of Union Molycorp. Consist of angular blocks and finer debris, mainly from the Sulphur Gulch pluton Qal Alluvium (Holocene)—Silt, sand, gravel, and peaty material in valley bottoms. -
Preliminary Bedrock Geologic Map of the Wightman 7.5' Quadrangle, Virginia
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Preliminary Bedrock Geologic Map of the Wightman 7.5' Quadrangle, Virginia by William C. Burtoni Open-File Report 93-614 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 U.S. Geological Survey, Reston, VA 22092 TABLE OF CONTENTS Introduction................................................................................. 1 Lithology.......................................................................................2 Structure and Metamorphism............................................... 2 References Cited....................................................................... 2 Description of Map Units........................................................ 5 Explanation of Map Symbols.................................................. 7 LIST OF FIGURES Figure 1. Location of map.......................................................4 Figure 2. Evidence for compression...................................4 INTRODUCTION The Wightman 7.5* quadrangle has been mapped as part of the Geology of the South-Central Virginia Piedmont Project, where geologic mapping of adjacent areas is in progress (Norton and others, 1993). It is located in the east-central part of the South Boston 30'x60' quadrangle. The Wightman quadrangle is within the Carolina slate belt (Figure 1) and has not been previously mapped in detail. The Carolina slate belt in this area consists of volcanic and sedimentary rocks and associated intrusive igneous rocks that have been subjected to lower greenschist-facies metamorphism. The rocks are poorly dated but of probable Late Proterozoic and Early Cambrian age (Butler and Secor, 1991). The Carolina slate belt may represent a subduction-related volcanic arc (Butler and Secor, 1991), or rifted-arc complex (Feiss and others, 1993). -
Geologic Map of the Wickenburg, Southern Buckhorn, and Northwestern Hieroglyphic Mountains, Central Arizona
Geologic Map of the Wickenburg, southern Buckhorn, and northwestern Hieroglyphic Mountains, central Arizona _ by James A. Stimac, Joan E. Fryxell. Stephen J. Reynolds, Stephen M. Richard, Michael J. GrubenskY, and Elizabeth A. Scott Arizona Geological Survey Open-File Report 87-9 October, 1987 Arizona Geological Survey 416 W. Congress, Suite #100, Tucson, Arizona 85701 This report is preliminalY and has not been edited or reviewed for conformity with Arizona Geological Survey standards INTRODUCTION This report describes the geology of the Red Picacho quadrangle and parts of the Wickenburg, Garfias Mountain, and Wittmann quadrangles (Fig. 1). Geologic mapping was completed between January and April of 1987, and was jointly funded by the U.S. Geological Survey and the Arizona Bureau of Geology and Mineral Technology as part of the cost-sharing COGEOMAP program. Mapping was done on 1:24,000-scale topographic maps and on 1:24,000-scale color aerial photographs provided by Raymond A. Brady of the U.S. Bureau of Land Management. GEOLOGIC OVERVIEW The map area includes the Wickenburg Mountains and contiguous parts of the Buckhorn and Hieroglyphic Mountains (Fig. 1). Adjacent parts of the Vulture Mountains were mapped by Grubensky and oth_ers (1987) and adjacent parts of the Hieroglyphic Mountains were mapped by Capps and others (1986). The overall geologic history of the area is complex, but the regional stratigraphy developed in these reports carries well from range to range. The map area is composed of a metamorphic-plutonic basement unconformably overlain by Tertiary volcanic and sedimentary rocks. The oldest rocks, assigned to the Proterozoic (1.8-1.7 b.y.) Yavapai Supergroup, consist of amphibolite, schist, and gneiss, intruded by granite, leucogranite, and pegmatite. -
Geologic Map of Washington - Northwest Quadrant
GEOLOGIC MAP OF WASHINGTON - NORTHWEST QUADRANT by JOE D. DRAGOVICH, ROBERT L. LOGAN, HENRY W. SCHASSE, TIMOTHY J. WALSH, WILLIAM S. LINGLEY, JR., DAVID K . NORMAN, WENDY J. GERSTEL, THOMAS J. LAPEN, J. ERIC SCHUSTER, AND KAREN D. MEYERS WASHINGTON DIVISION Of GEOLOGY AND EARTH RESOURCES GEOLOGIC MAP GM-50 2002 •• WASHINGTON STATE DEPARTMENTOF 4 r Natural Resources Doug Sutherland· Commissioner of Pubhc Lands Division ol Geology and Earth Resources Ron Telssera, Slate Geologist WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Ron Teissere, State Geologist David K. Norman, Assistant State Geologist GEOLOGIC MAP OF WASHINGTON NORTHWEST QUADRANT by Joe D. Dragovich, Robert L. Logan, Henry W. Schasse, Timothy J. Walsh, William S. Lingley, Jr., David K. Norman, Wendy J. Gerstel, Thomas J. Lapen, J. Eric Schuster, and Karen D. Meyers This publication is dedicated to Rowland W. Tabor, U.S. Geological Survey, retired, in recognition and appreciation of his fundamental contributions to geologic mapping and geologic understanding in the Cascade Range and Olympic Mountains. WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES GEOLOGIC MAP GM-50 2002 Envelope photo: View to the northeast from Hurricane Ridge in the Olympic Mountains across the eastern Strait of Juan de Fuca to the northern Cascade Range. The Dungeness River lowland, capped by late Pleistocene glacial sedi ments, is in the center foreground. Holocene Dungeness Spit is in the lower left foreground. Fidalgo Island and Mount Erie, composed of Jurassic intrusive and Jurassic to Cretaceous sedimentary rocks of the Fidalgo Complex, are visible as the first high point of land directly across the strait from Dungeness Spit. -
Petrography Edward F
Chapter 4 Petrography Edward F. Stoddard A petrographic study was taken in order to help determine the sources of lithic artifacts found at archaeological sites on Fort Bragg. In the first phase of the study, known and suspected archaeological quarry sites in the central Piedmont of North Carolina were visited. From each quarry, hand specimens were collected and petrographic thin sections were examined in an attempt to establish a basis for distinguishing among the quarries. If material from each quarry was sufficiently distinctive, then quarry sources could potentially be matched with Fort Bragg lithic artifacts. Seventy-one samples from 12 quarry zones were examined (Table 4.1). Thirty- one of these samples are from five quarry zones in the Uwharrie Mountains region; 20 of these were collected and described previously by Daniel and Butler (1996). Forty specimens were collected from seven additional quarry zones in Chatham, Durham, Person, Orange, and Cumberland Counties. All quarries are within the Carolina Terrane, except the Cumberland County quarry, which occurs in younger sedimentary material derived primarily from Carolina Terrane outcrops. Rocks include both metavolcanic and metasedimentary types. Compositionally, most metavolcanic rocks are dacitic and include flows, tuffs, breccias, and porphyries. Metasedimentary rocks are metamudstone and fine metasandstone. The Uwharrie quarries are divided into five zones: Eastern, Western, Southern, Asheboro, and Southeastern. The divisions are based primarily on macroscopic petrography and follow the results of Daniel and Butler (1996); the Uwharries Southeastern zone was added in this study. Each of the Uwharrie quarry zones represents three to six individual quarries in relatively close proximity. Rock specimens are all various felsic metavolcanic rocks, but zones may be distinguished based upon mineralogy and texture. -
Dissertation / Doctoral Thesis
DISSERTATION / DOCTORAL THESIS Titel der Dissertation /Title of the Doctoral Thesis „Rare metal granites, Central Eastern Desert, Egypt: geochemistry and economic potentiality“ verfasst von / submitted by Mabrouk Sami Mohamed Hassan, M.Sc. angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Doktorin der Naturwissenschaften (Dr.rer.nat.) Wien, 2017 / Vienna, 2017 Studienkennzahl lt. Studienblatt / A 796 605 426 degree programme code as it appears on the student record sheet: Dissertationsgebiet lt. Studienblatt / Erdwissenschaften/ Earth sciences field of study as it appears on the student record sheet: Betreut von / Supervisor: Ao. Univ. Prof. Dr. Theodoros Ntaflos TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgements I Abstract II Zusammenfassung IV CHAPTER I: INTRODUCTION General introduction 1 Literature reviews 2 Geological background 3 Objectives of this study 10 Methods 10 Isotopic systems 11 Synthesis 14 References 17 CHAPTER II 22 Sami, M., Ntaflos, T, Farahat, E. S., Mohamed, H. A., Ahmed, A. F., Hauzenberger, C., 2017. Mineralogical, geochemical and Sr-Nd isotopes characteristics of fluorite-bearing granites in the Northern Arabian-Nubian Shield, Egypt: Constraints on petrogenesis and evolution of their associated rare metal mineralization. Ore Geology Reviews 88, 1–22. CHAPTER III 51 Sami, M., Ntaflos, T, Farahat, E. S., Mohamed, H. A., Hauzenberger, C., Ahmed, A. F., 2017. Petrogenesis of Neoproterozoic highly fractionated garnet bearing muscovite granites in the Central Eastern Desert, Egypt: Evidence from LA-ICP-MS of garnet, whole-rock geochemistry and Sr-Nd isotopic systematics. (In Revision stage) CHAPTER IV 98 Sami, M., Ntaflos, T, Farahat, E. S., Mohamed, H. A., Ahmed, A. F., Hauzenberger, C., 2017.