Dimensions of Biodiversity: 2010-2014 Projects (Nsf15030

Total Page:16

File Type:pdf, Size:1020Kb

Dimensions of Biodiversity: 2010-2014 Projects (Nsf15030 Dimensions of Biodiversity 2010–2014 NATIONAL SCIENCE FOUNDATION PROJECTS CO-FUNDED BY Introduction 4 Project Abstracts 2014 6 Project Updates 2013 32 Project Updates 2012 46 Project Updates 2011 60 Project Updates 2010 76 a FRONT COVER IMAGES f g h b c i k l j m n o p q r d e IMAGE CREDIT THIS PAGE FRONT COVER a Jon G. Sanders d Karen E. Sears f Anothny R. Ives k Karen E. Sears o Michael N. Dawson b E.M. Rivkina e Jenny Xiang g Piotr Łukasik l Ivan Prates p Jon G. Sanders c Klaus Nüsslein h Walter S. Judd m John Wertz & q Ryan McMinds & i Robert Brucker & Alicia Withrow Jerome Payet Seth Bordenstein n Fabian A. r Richard Lankau j Olle Pellmyr Michelangeli FIELD SITES Argentina France Singapore Australia French Guiana South Africa Bahamas French Polynesia Spain Belize Germany Sweden Bermuda Iceland Switzerland Bolivia Japan Tahiti Brazil Madagascar Taiwan Canada Malaysia Thailand China Mexico Trinidad Colombia Norway United States Costa Rica Palau United Kingdom Czech Republic Panama Venezuela Dominican Peru Labrador Sea Republic Philippines North Atlantic Ecuador Poland Ocean Finland Puerto Rico North Pacific Ocean Russia Saudi Arabia COLLABORATORS Argentina Finland Palau Australia France Panama Brazil Germany Peru Canada Guam Russia INTERNATIONAL PARTNERS Chile India South Africa China Brazil China Indonesia Sri Lanka (NSFC) (FAPESP) Colombia Japan Sweden Costa Rica Kenya United Ecuador Malaysia Kingdom Mexico ACKNOWLEDGMENTS Many NSF staff members, too numerous to We thank Mina Ta, Design Specialist, for her mention individually, assisted in the development important contributions to the abstract booklet. and implementation of the Dimensions of Finally we are grateful to AAAS Science and Biodiversity competitions that resulted in Technology Policy Fellows Drs. Sara Chun, Sean the projects described herein. We thank and M. Watts, and Karen Alroy who were most helpful congratulate the Dimensions of Biodiversity in the strategic planning for the Dimensions of investigators for their creativity and achievements Biodiversity program and the production of this in the research and coordination activities that abstract booklet. these projects represent. Dimensions of Biodiversity both abundance and diversity. Beyond taxonomy, the genetic The Dimensions of Biodiversity program is diversity within even a single species can be vast. The tremendous variation among domestic dog breeds illustrates now in its fifth year of research support to this. In addition, the genetic diversity within crop plants and characterize the least-well-known aspects of the their immediate relatives continues to play a critical role in diversity of life on Earth. The National Science their resilience and durability. Finally, species and genetic Foundation (NSF) funded 12 new projects in diversity are best understood in a phylogenetic context and fiscal year 2014 bringing the total number of reflect how biodiversity is shaped over time. Utilizing this funded projects to 67. same historic lens of phylogenetics to investigate ecological, physiological, behavioral, cellular and even molecular patterns and processes both strengthens and advances how Identifying species is just a first step in the journey of we understand biodiversity. Despite centuries of study, we assessing the planet’s biological diversity, but for many still have much to learn about the origin, maintenance, and organisms even this step is far from complete. Recent function of diversity. estimates predict that there may be as many as ~8.7 million eukaryotic species globally, of which ~2.2 million are marine1. Addressing the substantial knowledge gaps in our This suggests that approximately 86% of existing species understanding of biodiversity requires new thinking and a on Earth and 91% of species in the ocean have yet to be coordinated effort among several sub-disciplines of biology. described, and these estimates do not even account for the An important distinction the Dimensions initiative provides diversity of prokaryotic organisms. is the simultaneous investigation of the links and feedbacks between genetic, taxonomic/phylogenetic, and functional All species rely on a vast network of mostly invisible and dimensions of biodiversity. The Dimensions of Biodiversity largely unknown life forms, such as bacteria, that far program is actively developing the workforce and partnerships outnumber the more obvious organisms on the planet in necessary for the unique human- and cyber-infrastructure challenges of an interdisciplinary network of researchers. Dimensions has previously partnered with NASA to fund 1 Mora, C., et al. “How many species are there on Earth and in projects that use remote sensing technologies to expand the ocean?” PLoS Biology 9.8 (2011): e1001127. biodiversity investigations across broad spatial and temporal STREAMS OF ACTIVITY 2020 GOALS An integrated understanding of the key but unknown dimensions of Research biodiversity on Earth Informatics and infrastructure that support accessible, interoperable Cyberinfrastructure information capability for Dimensions of Biodiversity Digitization of collections and enhanced physical infrastructure to link to Collections cyberinfrastructure and leverage the enormous investments of the past A diverse, interdisciplinary, globally-engaged, scientific workforce capable of Workforce transforming and communicating our understanding of biodiversity on Earth Scientific analyses and syntheses that generate and disseminate useful Synthesis information for scientists, educators and decision makers Planning & Base lining & Assessing Aligning investments APPROACH partnering synchronizing progress with emerging priorities 4 This year’s portfolio of projects will accelerate our understanding of biodiversity across disciplines and across scales of time and space. Through this program, we’re witnessing a transformation in our ability to bridge scientific approaches and perspectives. a Penny Firth Division Director NSF Division of Environmental Biology b c scales. Current international partnerships with the National understanding, and assessing progress periodically during Natural Science Foundation of China (NSFC) and the the decade in order to align investments with newly- Brazilian funding agency [The São Paulo Research Foundation appreciated priorities. (FAPESP)] support the exchange of students and scientists, joint research projects, university partnerships and the By 2020, Dimensions of Biodiversity is expected to have digitization of biological collections. transformed our understanding of the scope and role of life on Earth and how biodiversity science is conducted. The Improving how we describe the scope and role of life on initial focus of Dimensions has been on the integration of Earth will require novel, interdisciplinary and coordinated genetic, taxonomic/phylogenetic, and functional aspects approaches. In rising to this challenge, Dimensions of of biodiversity (below). The goal of this activity, which Biodiversity is redefining the way we understand the complements core programs at NSF, is to rapidly advance evolutionary and ecological significance of biodiversity in understanding by integrating the dimensions of biodiversity today’s changing environment, and in the geologic past. about which we know the least. Dimensions of Biodiversity involves five streams of activity. The approach for supporting these activities involves IMAGE CREDIT a Jeffry B. Mitton c Jon Flanders planning and partnering, developing baselines of our current b Walter S. Judd d Susan H. Brawley FY 2010 FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 16 projects 12 projects 14 projects 13 projects 12 projects Partners US Total US Total US Total US Total US Total Taxonomic/ ~$25.7M ~$28.0M ~$26.4M ~$25.1M ~$23M Phylogenetic BIO BIO BIO BIO BIO $18.9M $17.5M $21M $21.7M $22M Other NSF Other NSF Other NSF GEO GEO $6.8M $10.5M $4.7M $1.0M $1.0M TARGET NASA NASA $0.72M $2.5M Genetic Functional NSFC NSFC NSFC NSFC NSFC NSFC ¥0.8M ¥0.6M ¥6M ¥3M ¥3M Up to ¥6M FAPESP- FAPESP- FAPESP- FAPESP- São Paulo São Paulo São Paulo São Paulo $2.2M $1.8M $2.0M Up to $4M d 5 The macroalgal p. 8 Discovering genomic p. 10 US-BIOTA-São Paulo: p. 12 microbiome in space and developmental Chemically mediated and time: Maintaining mechanisms that multi-trophic interaction primary producers underlie sensory diversity across in the Atlantic rocky innovations critical to tropical gradients intertidal zone adaptive diversification a b c Taxonomic, genetic and p. 14 The making of p. 16 Molecular, ecological p. 18 functional biodiversity biodiversity across the and evolutionary of above-ground yeast subphylum dynamics of carbon bacterial endophytes in fixation and diversification subalpine conifers in Agavoideae (Asparagaceae) and Oncidiinae (Orchidaceae) d e f Microbial seed banks: p. 20 Identifying how p. 22 US-BIOTA-São Paulo: p. 24 Processes and patterns the ecological and Integrating dimensions of dormancy-driven evolutionary interactions of microbial biodiversity biodiversity between host and across land use change symbiont shape in tropical forests holobiont biodiversity g h i US-China: p. 26 Coevolution of p. 28 Genetic, phylogenetic, p. 30 How historical scleractinian corals and functional constraints, local and their associated microbial diversity in adaptation, and species microorganisms permanently frozen interactions shape aquatic sediments over biodiversity across geologic time an ancient floristic disjunction j k l 2014 abstracts IMAGE CREDIT a Susan H. Brawley e C. P. Kurtzman h John Wertz
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • Territory Size and Stability in a Sedentary Neotropical Passerine: Is Resource Partitioning a Necessary Condition?
    J. Field Ornithol. 76(4):395±401, 2005 Territory size and stability in a sedentary neotropical passerine: is resource partitioning a necessary condition? Janet V. Gorrell,1 Gary Ritchison,1,3 and Eugene S. Morton2 1 Department of Biological Sciences, Eastern Kentucky University, Richmond, Kentucky 40475 USA 2 Hemlock Hill Field Station, 22318 Teepleville Flats Road, Cambridge Springs, Pennsylvania 16403 USA Received 9 April 2004; accepted 11 April 2005 ABSTRACT. Long-term pair bonds and defense of territories year-round are common among tropical passer- ines. The boundaries of these territories tend to be stable, perhaps re¯ecting the need to defend an area that, regardless of conditions, provides suf®cient food resources. If, however, these stable territories are not, even tem- porarily, suf®ciently large, then intra-pair competition for available food may result, particularly in species with no sexual size dimorphism. With such competition, sex-speci®c differences in foraging behavior may result. Male and female Dusky Antbirds (Cercomacra tyrannina) are not size dimorphic, and pairs jointly defend territories throughout the year. Our objective was to determine if paired Dusky Antbirds exhibited sex-speci®c differences in foraging behavior. Foraging antbirds were observed in central Panama from February±July 2002 to determine if pairs par- titioned food resources. Males and females exhibited no differences in foraging behavior, with individuals of both sexes foraging at similar heights and using the same foraging maneuvers (glean, probe, and sally) and substrates (leaves, rolled leaves, and woody surfaces). These results suggest that Dusky Antbirds do not partition resources and that territory switching, rather than resource partitioning, may be the means by which they gain access to additional food resources.
    [Show full text]
  • Taxonomic Revision of the Tribe Danaini (Lepidoptera: Nymphalidae: Danainae) from Myanmar
    JAPB191_proof ■ 5 February 2017 ■ 1/5 Journal of Asia-Pacific Biodiversity xxx (2017) 1e5 55 HOSTED BY Contents lists available at ScienceDirect 56 57 Journal of Asia-Pacific Biodiversity 58 59 60 journal homepage: http://www.elsevier.com/locate/japb 61 62 63 Original article 64 65 1 Taxonomic revision of the tribe Danaini (Lepidoptera: Nymphalidae: 66 2 67 3 Danainae) from Myanmar 68 4 69 a a a b a,* 5 Q4 Nan Zarchi Win , Eun Young Choi , Jong Bong Choi , Jinyoung Park , Jong Kyun Park 70 6 a 71 7 College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea b Department of Nature Survey, National Institute of Ecology, Seocheon, Republic of Korea 72 8 73 9 74 10 article info abstract 75 11 76 12 Article history: The tribe Danaini is reviewed for the first time from Myanmar. Ten species of four genera belonging to 77 13 Received 29 September 2016 two subtribes are taxonomically described. Identification keys for the subtribes, the genera, and all 78 14 Received in revised form species are provided. The adult illustrations for all examined species are also presented. 79 8 November 2016 15 Copyright Ó 2017, National Science Museum of Korea (NSMK) and Korea National Arboretum (KNA). 80 Accepted 11 November 2016 16 Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license (http:// Available online xxx 81 17 creativecommons.org/licenses/by-nc-nd/4.0/). 82 18 Keywords: 83 19 butterfly 84 20 Danaini 85 Danainae 21 86 Myanmar 22 87 23 88 24 89 25 Introduction Myanmar is one of the biologically diverse countries in main- 90 26 land Southeast Asia and rich in biodiversity.
    [Show full text]
  • Capnia Lineata (Hanson 1943) Straight Stonefly Plecoptera: Capniidae
    Capnia lineata (Hanson 1943) Straight stonefly Plecoptera: Capniidae Profile prepared by Celeste Mazzacano, The Xerces Society for Invertebrate Conservation SUMMARY Capnia lineata is small winter stone fly endemic to northwestern Idaho. It is known primarily from a few streams near Troy, Idaho in Latah County, including Little Boulder Creek. This species’ limited habitat may be threatened with degradation from extensive recreational use in the region from which it is known. Global climate change could also threaten this species’ habitat in the long-term. Research should focus on determining the true distribution of this species, the status and size of existing populations, and the potential presence of additional populations at suitable habitat in the region. Assessment and strengthening of current management practices for known habitat would also be beneficial. CONSERVATION STATUS Rankings: Canada – Species at Risk Act: N/A Canada – provincial status: N/A Mexico: N/A USA – Endangered Species Act: N/A USA – state status: Idaho S1 Critically imperiled; California SNR Not ranked NatureServe: G3 Vulnerable IUCN Red List: N/A SPECIES PROFILE DESCRIPTION Adult females are larger than males; their bodies are 7-8 mm (0.28-0.31 in.) in length, as are their forewings. Females have a small, reduced medial bridge between the 7th and 8th abdominal segments that appears embedded in the intersegmental membrane, a diagnostic characteristic that helps separate them from other closely related species. Males are brachypterous, i.e. they have extremely reduced wings. The forewings are so small that they have no apparent veins, and the hindwings are reduced even further (Hanson 1943).
    [Show full text]
  • Monarch Butterfly, Danaus Plexippus Linnaeus (Lepidoptera: Nymphalidae: Danainae)1 Andrei Sourakov2
    EENY-442 Monarch Butterfly, Danaus plexippus Linnaeus (Lepidoptera: Nymphalidae: Danainae)1 Andrei Sourakov2 Introduction The monarchs, Danaus plexippus Linnaeus, are among the best known of the world’s butterflies due to their remark- able ability to migrate, wide distribution, and charismatic appearance. The last Pleistocene glaciations in North America instigated migration to Mexico in the east and to the Californian coast and deserts in the west. In the western U.S., the overwintering colonies are smaller and more numerous, while in Mexico, they are few but more spectacular, with billions of butterflies concentrating in one spot. Distribution Danaus plexippus is found throughout the Americas and Australia, with individuals reported in New Guinea and Western Europe. Sedentary populations that are found in Mexico, and Central and South America (including the Caribbean islands) are somewhat different from migratory Figure 1. Adult monarchs, Danaus plexippus Linnaeus, from Gainesville, populations of D. p. plexippus found in North America. Florida. Several subspecies, such as M. p. megalippe (Mexico, Credits: Andrei Sourakov, Florida Museum of Natural History southern U.S.) and M. p. menippe (South America) have Description been described. Monarchs fly from sea level up to 2,500 meters. Orange-and-black warning coloration of monarchs is noticeable, and its memorable pattern is directed at Some of the D. p. plexippus reach Cuba instead of Mexico, repelling insectivorous birds. Experiments conducted with where they mix with the resident population of D. p. captive blue jays showed that monarchs indeed are toxic megalippe, from which they noticeably differ in behavior (Brower et al. 1968). Being distasteful due to ingestion by and wing length and shape (Dockx 2007).
    [Show full text]
  • Generic and Subtribal Relationships in Neotropical Cymbidieae (Orchidaceae) Based on Matk/Ycf1 Plastid Data
    LANKESTERIANA 13(3): 375—392. 2014. I N V I T E D P A P E R* GENERIC AND SUBTRIBAL RELATIONSHIPS IN NEOTROPICAL CYMBIDIEAE (ORCHIDACEAE) BASED ON MATK/YCF1 PLASTID DATA W. MARK WHITTEN1,2, KURT M. NEUBIG1 & N. H. WILLIAMS1 1Florida Museum of Natural History, University of Florida Gainesville, FL 32611-7800 USA 2Corresponding author: [email protected] ABSTRACT. Relationships among all subtribes of Neotropical Cymbidieae (Orchidaceae) were estimated using combined matK/ycf1 plastid sequence data for 289 taxa. The matrix was analyzed using RAxML. Bootstrap (BS) analyses yield 100% BS support for all subtribes except Stanhopeinae (87%). Generic relationships within subtribes are highly resolved and are generally congruent with those presented in previous studies and as summarized in Genera Orchidacearum. Relationships among subtribes are largely unresolved. The Szlachetko generic classification of Maxillariinae is not supported. A new combination is made for Maxillaria cacaoensis J.T.Atwood in Camaridium. KEY WORDS: Orchidaceae, Cymbidieae, Maxillariinae, matK, ycf1, phylogenetics, Camaridium, Maxillaria cacaoensis, Vargasiella Cymbidieae include many of the showiest align nrITS sequences across the entire tribe was Neotropical epiphytic orchids and an unparalleled unrealistic due to high levels of sequence divergence, diversity in floral rewards and pollination systems. and instead to concentrate our efforts on assembling Many researchers have posed questions such as a larger plastid data set based on two regions (matK “How many times and when has male euglossine and ycf1) that are among the most variable plastid bee pollination evolved?”(Ramírez et al. 2011), or exon regions and can be aligned with minimal “How many times have oil-reward flowers evolved?” ambiguity across broad taxonomic spans.
    [Show full text]
  • Check List 8(4): 722–730, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
    Check List 8(4): 722–730, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check list of ground-dwelling ants (Hymenoptera: PECIES S Formicidae) of the eastern Acre, Amazon, Brazil OF Patrícia Nakayama Miranda 1,2*, Marco Antônio Oliveira 3, Fabricio Beggiato Baccaro 4, Elder Ferreira ISTS 1 5,6 L Morato and Jacques Hubert Charles Delabie 1 Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza. BR 364 – Km 4 – Distrito Industrial. CEP 69915-900. Rio Branco, AC, Brazil. 2 Instituo Federal do Acre, Campus Rio Branco. Avenida Brasil 920, Bairro Xavier Maia. CEP 69903-062. Rio Branco, AC, Brazil. 3 Universidade Federal de Viçosa, Campus Florestal. Rodovia LMG 818, Km 6. CEP 35690-000. Florestal, MG, Brazil. 4 Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-graduação em Ecologia. CP 478. CEP 69083-670. Manaus, AM, Brazil. 5 Comissão Executiva do Plano da Lavoura Cacaueira, Centro de Pesquisas do Cacau, Laboratório de Mirmecologia – CEPEC/CEPLAC. Caixa Postal 07. CEP 45600-970. Itabuna, BA, Brazil. 6 Universidade Estadual de Santa Cruz. CEP 45650-000. Ilhéus, BA, Brazil. * Corresponding author. E-mail: [email protected] Abstract: The ant fauna of state of Acre, Brazilian Amazon, is poorly known. The aim of this study was to compile the species sampled in different areas in the State of Acre. An inventory was carried out in pristine forest in the municipality of Xapuri. This list was complemented with the information of a previous inventory carried out in a forest fragment in the municipality of Senador Guiomard and with a list of species deposited at the Entomological Collection of National Institute of Amazonian Research– INPA.
    [Show full text]
  • Breeding Biology of Yellow-Browed Antbird Hypocnemis Hypoxantha
    Daniel M. Brooks et al. 156 Bull. B.O.C. 2016 136(3) Breeding biology of Yellow-browed Antbird Hypocnemis hypoxantha by Daniel M. Brooks, Pablo Aibar, Pam Bucur, Ron Rossi & Harold F. Greeney Received 17 February 2016 Summary.—We provide novel data concerning the nests, eggs and parental care of Yellow-browed Antbird Hypocnemis hypoxantha based on two nests in eastern Ecuador and Peruvian Amazonia, one of which was video-taped. Both adults participated in incubation, with earliest and latest feeding events at 06.11 h and 17.22 h, respectively. Feeding behaviour is described, with intervals of 1–114 minutes (mean = 38.3 minutes) and tettigoniid cicadas the primary prey. Nestlings frequently produced faecal sacs (interval range = 4–132 minutes, mean = 37.8 minutes) immediately following food delivery, and the sac was always carried from the nest by an adult. Two events involving a parent bird being chased from the nest are described, the first involving a male Fulvous Antshrike Frederickena fulva. Systematics are discussed in light of nest morphology and architecture. Yellow-browed Antbird Hypocnemis hypoxantha is a distinctive Amazonian thamnophilid that comprises two currently recognised subspecies: nominate hypoxantha in western Amazonian lowland and foothill forests from southern Colombia south to central Peru, and H. h. ochraceiventris in south-east Amazonian Brazil (Zimmer & Isler 2003). Generally found below 400 m, the nominate subspecies occasionally ranges as high as 900 m (Zimmer & Isler 2003, Ridgely & Tudor 2009). The species’ reproductive biology is almost completely unknown (Zimmer & Isler 2003). Willis (1988) provided a cursory description of a nest with nestlings from Colombia, but included few details of the nest and no description of the eggs or behaviour.
    [Show full text]
  • Evolution of Insect Color Vision: from Spectral Sensitivity to Visual Ecology
    EN66CH23_vanderKooi ARjats.cls September 16, 2020 15:11 Annual Review of Entomology Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology Casper J. van der Kooi,1 Doekele G. Stavenga,1 Kentaro Arikawa,2 Gregor Belušic,ˇ 3 and Almut Kelber4 1Faculty of Science and Engineering, University of Groningen, 9700 Groningen, The Netherlands; email: [email protected] 2Department of Evolutionary Studies of Biosystems, SOKENDAI Graduate University for Advanced Studies, Kanagawa 240-0193, Japan 3Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; email: [email protected] 4Lund Vision Group, Department of Biology, University of Lund, 22362 Lund, Sweden; email: [email protected] Annu. Rev. Entomol. 2021. 66:23.1–23.28 Keywords The Annual Review of Entomology is online at photoreceptor, compound eye, pigment, visual pigment, behavior, opsin, ento.annualreviews.org anatomy https://doi.org/10.1146/annurev-ento-061720- 071644 Abstract Annu. Rev. Entomol. 2021.66. Downloaded from www.annualreviews.org Copyright © 2021 by Annual Reviews. Color vision is widespread among insects but varies among species, depend- All rights reserved ing on the spectral sensitivities and interplay of the participating photore- Access provided by University of New South Wales on 09/26/20. For personal use only. ceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal.
    [Show full text]
  • Governance of Genetic Biocontrol Technologies for Invasive Fish Ben
    Governance of genetic biocontrol technologies for invasive fish Ben Gilna, Jennifer Kuzma & Stephanie Showalter Otts Biological Invasions ISSN 1387-3547 Biol Invasions DOI 10.1007/s10530-012-0367-x 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Biol Invasions DOI 10.1007/s10530-012-0367-x ORIGINAL PAPER Governance of genetic biocontrol technologies for invasive fish Ben Gilna • Jennifer Kuzma • Stephanie Showalter Otts Received: 26 November 2011 / Accepted: 20 November 2012 Ó Springer Science+Business Media Dordrecht 2013 Abstract The modification of living agents for pose real threats to biodiversity, and the long term biological control can be collectively regarded as sustainability of oversight arrangements as they cur- genetic biocontrol (GBC). Applications to invasive rently stand is questionable. Researchers and would- fish are an area of significant work in GBC, employing be users of GBC for invasive fish must proactively a diversity of techniques. Some of these techniques are engage with a variety of stakeholders to improve governed by particular legislation, policy or treaty, governance (in fish and other taxa), which we contend (e.g., transgenesis), while others deliver agents with may include reconfiguration of relevant national similar properties with minimal regulation.
    [Show full text]
  • Leucothoe Eltoni Sp. N., a New Species Of
    Nova Southeastern University NSUWorks Marine & Environmental Sciences Faculty Articles Department of Marine and Environmental Sciences 8-25-2015 Leucothoe eltoni sp. n., a New Species of Commensal Leucothoid Amphipod from Coral Reefs in Raja Ampat, Indonesia (Crustacea, Amphipoda) James Darwin Thomas Nova Southeastern University, [email protected] Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography. Follow this and additional works at: https://nsuworks.nova.edu/occ_facarticles Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons NSUWorks Citation James Darwin Thomas. 2015. Leucothoe eltoni sp. n., a New Species of Commensal Leucothoid Amphipod from Coral Reefs in Raja Ampat, Indonesia (Crustacea, Amphipoda) .ZooKeys : 51 -66. https://nsuworks.nova.edu/occ_facarticles/729. This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. A peer-reviewed open-access journal ZooKeys 518:Leucothoe 51–66 (2015) eltoni sp. n., a new species of commensal leucothoid amphipod from coral reefs... 51 doi: 10.3897/zookeys.518.9340 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Leucothoe eltoni sp. n., a new species of commensal leucothoid amphipod from coral reefs in Raja Ampat, Indonesia (Crustacea, Amphipoda) James Darwin Thomas1 1 Reef Foundation Inc., Dania, Florida, USA Corresponding author: James Darwin Thomas ([email protected]) Academic editor: Alan Myers | Received 5 February 2015 | Accepted 12 August 2015 | Published 25 August 2015 http://zoobank.org/ED62E75F-5514-4DA9-A71F-4DB8E8A9DAA1 Citation: Thomas JD (2015) Leucothoe eltoni sp.
    [Show full text]
  • Butterflies (Lepidoptera: Papilionoidea) in a Coastal Plain Area in the State of Paraná, Brazil
    62 TROP. LEPID. RES., 26(2): 62-67, 2016 LEVISKI ET AL.: Butterflies in Paraná Butterflies (Lepidoptera: Papilionoidea) in a coastal plain area in the state of Paraná, Brazil Gabriela Lourenço Leviski¹*, Luziany Queiroz-Santos¹, Ricardo Russo Siewert¹, Lucy Mila Garcia Salik¹, Mirna Martins Casagrande¹ and Olaf Hermann Hendrik Mielke¹ ¹ Laboratório de Estudos de Lepidoptera Neotropical, Departamento de Zoologia, Universidade Federal do Paraná, Caixa Postal 19.020, 81.531-980, Curitiba, Paraná, Brazil Corresponding author: E-mail: [email protected]٭ Abstract: The coastal plain environments of southern Brazil are neglected and poorly represented in Conservation Units. In view of the importance of sampling these areas, the present study conducted the first butterfly inventory of a coastal area in the state of Paraná. Samples were taken in the Floresta Estadual do Palmito, from February 2014 through January 2015, using insect nets and traps for fruit-feeding butterfly species. A total of 200 species were recorded, in the families Hesperiidae (77), Nymphalidae (73), Riodinidae (20), Lycaenidae (19), Pieridae (7) and Papilionidae (4). Particularly notable records included the rare and vulnerable Pseudotinea hemis (Schaus, 1927), representing the lowest elevation record for this species, and Temenis huebneri korallion Fruhstorfer, 1912, a new record for Paraná. These results reinforce the need to direct sampling efforts to poorly inventoried areas, to increase knowledge of the distribution and occurrence patterns of butterflies in Brazil. Key words: Atlantic Forest, Biodiversity, conservation, inventory, species richness. INTRODUCTION the importance of inventories to knowledge of the fauna and its conservation, the present study inventoried the species of Faunal inventories are important for providing knowledge butterflies of the Floresta Estadual do Palmito.
    [Show full text]