<<

Distribution Summary Dr. Mohammed Hawa October 2007 Therearemanyprobabilitydistributionsthathavebeenstudiedovertheyears.Each ofwhichwasdevelopedbasedonobservationsofaparticularphysicalphenomenon.The tablebelowshowssomeofthesedistributions: Probability distributions

Univariate Multivariate Benford • Bernoulli • binomial • Boltzmann • categorical • compound Poisson • discrete phase-type • degenerate • Gauss-Kuzmin • geometric • Ewens • multinomial • Discrete: hypergeometric • logarithmic • negative binomial • parabolic fractal • multivariate Poisson • Rademacher • Skellam • uniform • Yule-Simon • zeta • Zipf • Polya Zipf-Mandelbrot Beta • Beta prime • Cauchy • chi-square • • Coxian • Dirichlet • Erlang • exponential • exponential power • F • fading • Fer mi-Dirac • Generalized Fisher's z • Fisher-Tippett • Gamma • generalized extreme value • Dirichlet generalized hyperbolic • generalized inverse Gaussian • Half-Logistic • distribution . Hotelling's T-square • hyperbolic secant • hyper-exponential • inverse-Wishart hypoexponential • inverse chi-square (scaled inverse chi-square) • inverse • Kent • matrix Gaussian • inverse gamma (scaled inverse gamma ) • Kumaraswamy • normal • Continuous: Landau • Laplace • Lévy • Lévy skew alpha-stable • logistic • lo g-norma l • multivariate Maxwell-Boltzmann • Maxwell speed • Nakagami • normal (Gaussian) • normal • normal-gamma • normal inverse Gaussian • Pareto • Pearson • phase-type • multivariate polar • raised cosine • Rayleigh • relativistic Breit-Wigner • Rice • shifted Student • von Gompertz • Student's t • triangular • truncated normal • type-1 Gumbel • Mises-Fisher • type-2 Gumbel • uniform • -Gamma • Voigt • von Mises • Wigner quasi • Wishart Weibull • Wigner semicircle • Wilks' lambda In this article we will summarize the characteristics of some popular probability distributions, which you are likely to encounter later in your study of communication engineering. We will begin with discrete distributions then move to continuous distributions. A - Discrete Random Variables:

••• The Bernoulli takesvalue1withsuccessprobability pandvalue0with failureprobability q=1p. Applications: • Cointoss. • Success/Failure.

Page1of18 Probability mass function Cumulative distribution function

Parameters success probability (p is real)

Support

Probabilitymassfunction (pmf)

Cumulativedistributionfunction (CDF)

Mean N/A

Mode

Variance

Skewness

Excess

Probabilitygeneratingfunction (PGF) 1 − +

Momentgeneratingfunction (MGF) 1 − +

Characteristicfunction 1 − +

••• The binomial random variable is the sum of n independent, identically distributed Bernoullirandomvariables,eachofwhichyieldssuccesswithprobability p.Infact,when n=1,thebinomialrandomvariable is aBernoullirandomvariable. Applications: • Obtaining kheadsin ntossingsofacoin. • Receiving kbitscorrectlyin ntransmittedbits. • Batcharrivalsof kpacketsfrom ninputsatanATMswitch.

Page2of18

Probability mass function Cumulative distribution function

0.3 1 p = 0.5 and n = 20 p = 0.7 and n = 20 0.9 0.25 p = 0.5 and n = 40 0.8

0.7 0.2 0.6

0.15 0.5

0.4 0.1 0.3

0.2 p = 0.5 and n = 20 0.05 p = 0.7 and n = 20 0.1 p = 0.5 and n = 40

0 0 0 5 10 15 20 25 30 0 5 10 15 20 25 30

Parameters number of trials (integer) success probability (real)

Support

Probabilitymassfunction (pmf)

Cumulativedistributionfunction (CDF) 1 − Median one of

Mode Variance

Skewness

Excess kurtosis

Probabilitygeneratingfunction (PGF) 1 − + generatingfunction (MGF) Characteristicfunction

••• This is the distribution of time slots between the successes of consecutive independent Bernoullitrails.Likeitscontinuousanalogue(theexponentialdistribution),thegeometric distributionis memoryless ,whichisanimportantpropertyincertainapplications.

Applications: • Torepresentthenumberofdicerollsneededuntilyourollasix. • QueueingtheoryanddiscreteMarkovchains.

Page3of18

Probability mass function Cumulative distribution function

1 1 p = 0.2 0.9 p = 0.5 0.9 p = 0.8 0.8 0.8

0.7 0.7

0.6 0.6 p = 0.2 p = 0.5 0.5 0.5 p = 0.8

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1

0 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Parameters success probability ( real)

Support Probabilitymassfunction (pmf)

Cumulativedistributionfunction (CDF) 1 − 1 − Mean

Median − ln 2 ln 1 − Mode 1

Variance

Skewness

Excess kurtosis

Probability generatingfunction (PGF) 1 − 1 − Moment generatingfunction (MGF )

Characteristicfunction 1 − 1 −

••• The Poisson distribution describestheprobability thatanumber kofeventsoccur ina fixedperiodoftime assuming theseeventsoccurat random witharate . Applications: • Thenumberofphonecallsata callcenter perminute. • Thenumberoftimesa web serverisaccessedperminute.

Page 4of18

• Thenumberofspellingmistakesonemakeswhiletypingasinglepage. • ThenumberofmutationsinagivenstretchofDNAafterradiation. • Thenumberofunstablenucleithatdecayedwithinagivenperiodoftimeinapieceof radioactivesubstance. • Thenumberofstarsinagivenvolumeofspace. Probability mass function Cumulative distribution function

0.4 1 λ = 1 0.9 0.35 λ = 4 = 10 λ 0.8 = 1 0.3 λ 0.7 λ = 4 λ = 10 0.25 0.6

0.2 0.5

0.4 0.15

0.3 0.1 0.2

0.05 0.1

0 0 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Parameters rate (real)

Support

Probabilitymassfunction (pmf)

where istheIncomplete Cumulativedistributionfunction (CDF) Γ, gammafunction Mean Median Mode Variance Skewness Excess kurtosis Probabilitygeneratingfunction(PGF) Momentgeneratingfunction (MGF)

Characteristicfunction

••• Zipf distribution ThetermZipf'slawrefersto frequency distributions of rank data .Originally,Zipf'slaw statedthat,innaturallanguageutterances,thefrequencyofanywordisroughlyinversely proportionaltoitsrankinthefrequencytable.So,themostfrequentwordwilloccur approximatelytwiceasoftenasthesecondmostfrequentword,whichoccurstwiceas oftenasthefourthmostfrequentword,etc.

Page5of18

Probability mass function Cumulative distribution function

N=10 (log-log scale ). Note that the function is only N=10. Note that the function is only defined at integer defined at integer values of k. The connecting lines do values of k. The connecting lines do not indicate not indicate continuity. continuity.

Parameters exponent (real) number of elements (integer)

Support (rank) where is the th generalized Probabilitymassfunction (pmf) , , ∑ Cumulativedistributionfunction (CDF)

Mean

Moment generatingfunction (MGF)

Characteristicfunction

B - Continuous Random Variables :

••• Theexponentialdistribution representstheprobabilitydistributionofthe timeintervals between successive Poisson arrivals. The exponential distribution is the continuous counterpartofthe geometricdistribution ,andistheonlycontinuousdistributionthatis memoryless. Applications: • SimilartothatofPoissondistribution(e.g., thetimeittakesbeforeyournexttelephone call, thedistancebetweenmutationsonaDNAstrand ,etc).

Page 6of18

Probability density function Cumulative distribution function

Parameters rate or inverse scale (real)

Support

Probabilitydensityfunction (pdf)

Cumulativedistributionfunction (CDF) 1 − Mean Median Mode Variance Skewness Excess kurtosis

Moment generatingfunction (MGF )

Characteristicfunction

••• Uniform distribution The uniform distributionisoftenabbreviated U(a,b).Inthisdistribution, all time intervals ofthesamelengthareequallyprobable . Applications: • To test a statisticfor thesimplenullhypothesis. • Insimulationsoftwarepackages,inwhichuniformlydistributed pseudo random numbers aregenerated first andthenconvertedtoothertypesofdistributions. Probability density function Cumulative distribution function

Page 7of18

Parameters lower/upper limits

Support

Probabilitydensityfunction(pdf)

Cumulativedistributionfunction(CDF)

Mean

Median

Mode any value in

Variance

Skewness

Excesskurtosis

Momentgeneratingfunction (MGF) Therawmomentsare:

Characteristicfunction

••• TheTriangulardistributionisusedasasubjectivedescriptionofapopulationforwhich thereisonlylimitedsampledata. Applications: • Usedinbusinessdecisionmakingandprojectmanagementtodescribethetimeto completionofatask.

Probability density function Cumulative distribution function

Parameters lower limit upper limit mode

Page8of18

Support

Probabilitydensityfunction (pdf)

Cumulativedistributionfunction (CDF)

Mean

Median

Mode

Variance

Skewness

Excess kurtosis

Moment generatingfunction (MGF )

Characteristicfunction

••• The normal distribution is also called the Gaussian distribution , and is denoted by The standard normal distribution isthenormaldistributionwitha mean ofzero anda variance ofone.Itisoftencalledthe bell curve becausethegra phofits probability densityresemblesa bell. Applications: • Manyphysicalphenomena(like noise )canbeapproximatedwellbythenormal distribution. • Manystatisticaltestsarebasedontheassumptionofnormaldistribution . • Normaldistribution arise sasthelimitingdistributionofseveralcontinuousand discretefamiliesofdistributions bythe . • Measurementerrorsareoftenassumedtobenormallydistributed . • Financialvariables suchasstockvaluesorcommodityprices canbemo deledbythe normaldistribution. • Lightintensityfromasinglesourceisusuallyassumedtobenormallydistributed.

Page 9of18

Probability density function Cumulative distribution function

The green line is the standard normal distribution Colors match the i mage to the left

Parameters location / mean (real) squared scale / variance (real) 0 Support

Probabilitydensityfunction (pdf)

Cumulativedistributionfunction (CDF)

Mean Median Mode

Variance Skewness Excess kurtosis

Moment generatingfunction (MGF )

Characteristicfunction

••• Log-normal distribution If Yisarandomvariablewithanormaldistribution,then X=exp(Y)hasalog normal distribution;likewise,if Xislog normallydistributed,then ln (X)isnormallydistributed. Applications: • Thelong termreturnrateonastockinvestmentcanbe modeledaslog normal.

Page 10of18

Probability density function Cumulative distribution function

= 1 = 1

Parameters mean

Support

Probabilitydensityfunction (pdf)

Cumulativedistributionfunction (CDF)

Mean

Median Mode Variance

Skewness

Excess kurtosis

The MGF doesnotexist ,but momentsdo ,andaregivenby: Moment generatingfunction (MGF ) ⁄

••• Gamma (Erlang ) distribution Agammadistributedrandomvariableisdenotedby . TheErlangdistributionisa Γ, special case of the where the shape parameter k is an integer. In the Gammadistribution,thisparameterisarealnumber.

Applications: • Thenumberoftelephonecallswhichmightbemadeatthesametimeto aswitching center .

Page 11of18

Probability density function Cumulative distribution function

Parameters shape (real) rate ( real)

Support

Probabilitydensityfunction (pdf) Γ where the Γ becomes Γ − 1! if is an integer .

Cumulativedistributionfunction (CDF) Γ

Mean Median no simple closed form

Mode for

Variance

Skewness

Excess kurtosis

Moment generatingfunction (MGF ) for

Characteristicfunction

••• chi-square distribution Thechisquaredistribution( χ2distribution)isaspecialcaseofthe gammadistribution where k= n/2and λ=1/2. Applications: • Used in thecommonchi squaretestsforgoodnessoffitofobserved data toa theoretical distribution . • Used instatisticalsignificancetests . OneexampleisFriedman'sanalysisofvarianceby ranks.

Page 12of18

Probability density function Cumulative distribution function

Parameters degrees of freedom

Support

Probabilitydensityfunction (pdf)

Cumulativedistributionfunction (CDF) ⁄ Γ 2 Mean Median approximately

Mode if

Variance

Skewness Excess kurtosis

Moment generatingfunction (MGF) for

Characteristicfunction

••• TheRayleighdistribution hasbeenusedtomodelattenuationof wireless signalsfacing multipath fading .TheChi ,Riceand Weibull distribution sareall generalization softhe Rayleighdistribution .

Probability density function Cumulative distribution function

Page 13of18

Parameters Support

Probabilitydensityfunction (pdf)

Cumulativedistributionfunction (CDF)

Mean

Median Mode

Variance

Skewness

Excess kurtosis

Moment generatingfunction (MGF )

Characteristicfunction

••• Student's t distribution TheStudent’stdistributiona risesintheproblemofestimati ngthemeanofanormally distributedpopulationwhenthesamplesizeissmall . Applications: • It is the basis of the popular Student's t -tests for the statistical significance of the difference between two sample .

Cumulative distribution function Probability density function

Parameters deg. of freedom ( real )

Support

Page 14of18

Probabilitydensity function (pdf)

Cumulativedistribution where is the function (CDF) hypergeometric function Mean 0 for , otherwise undefined 1 Median 0

Mode 0

Variance , otherwise un defined

Skewness 0 for 3 Excess kurtosis

••• Applications: • In spectroscopy the Cauchydistributionisthedescriptionofthelineshapeofspectral lineswhicharebroadenedbycollision s. • In nuclear and particlephysics ,theenergyprofileofa resonance isdescribedby the relativisticCauchydistribution .

Probability density function Cumulative distribution function

The green line is the standard Cauchy distribution Colors match the pdf above

Parameters location (real) scale (real)

Support

Probabilitydensityfunction (pdf)

Cumulativedistributionfunction (CDF)

Page 15of18 ••• TheParetodistributionischaracterizedbyacurved whenplottedonalinear scale,thusisitusedtodescribelongrangedependentphenomena. Applications: • Usedtodescribetheallocationofwealthamongindividuals. • Describesfrequenciesofwordsinlongertexts(afewwordsareusedoften,lotsof wordsareusedinfrequently). • FilesizedistributionofInternettrafficwhichusestheTCPprotocol(manysmaller files,fewlargerones). • ClustersofBoseEinsteincondensatenearabsolutezero. • Thevaluesofoilreservesinoilfields(afewlargefields,manysmallfields) • Thelengthdistributioninjobsassignedtosupercomputers(afewlargeones,many smallones). • Thestandardizedpricereturnsonindividualstocks. • Areasburntinforestfires.

Probability density function Cumulative distribution function

xm = 1 xm = 1 Parameters location (real) shape (real)

Support

Probabilitydensityfunction(pdf)

Cumulativedistributionfunction(CDF)

Mean for k > 1

Median Mode

Variance for k > 2

Page16of18

Skewness for k > 3

Excesskurtosis for k > 4

••• Probability density function Cumulative distribution function

Parameters location (real) scale (real)

Support

Probabilitydensityfunction(pdf)

Cumulativedistributionfunction(CDF)

Mean Median Mode Variance Skewness Excesskurtosis

Momentgeneratingfunction(MGF) for

Characteristicfunction

Page17of18

Notes: Theexpectedvalueforadiscreterandomvariableis: Foracontinuousrandomvariable: The variance ofarandomvariableisameasureofitsstatisticaldispersion,indicatinghow itspossiblevaluesarespreadaroundtheexpectedvalue.Forarandomvariable X,the varianceis: Iftherandomvariableisdiscretethevarianceisequivalentto: Var − The mode isthemostfrequentvalueassumedbyarandomvariable, or occurring in a sampling of a random variable. The mode is not necessarily unique, since the same maximumfrequencymaybeattainedatdifferentvalues. The median is the number separating the higher half of a sample or a probability distribution,fromthelowerhalf.The median ofafinitelistofnumberscanbefoundby arrangingalltheobservationsfromlowestvaluetohighestvalueandpickingthemiddle one.Ifthereisanevennumberofobservations,themedianisnotunique. Skewness isameasureofthe asymmetry oftheprobabilitydensityfunction. Kurtosis (fromtheGreekwordkurtos)isameasureofthe peakedness oftheprobability densityfunction.

Page18of18