Spectral Analysis of Explosive and Effusive Volcanic Edifices in the Marius Hills Volcanic Complex with Moon Mineralogy Mapper. M

Total Page:16

File Type:pdf, Size:1020Kb

Spectral Analysis of Explosive and Effusive Volcanic Edifices in the Marius Hills Volcanic Complex with Moon Mineralogy Mapper. M 52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2465.pdf SPECTRAL ANALYSIS OF EXPLOSIVE AND EFFUSIVE VOLCANIC EDIFICES IN THE MARIUS HILLS VOLCANIC COMPLEX WITH MOON MINERALOGY MAPPER. M. J. Henderson1 B. H. N. Horgan1 1Purdue University, 610 Purdue Mall, West Lafayette, IN 47907 ([email protected]). Introduction: WitHin Oceanus Procellarum on tHe prevented the separation and interpretation of the spec- near-side of tHe Moon, tHe Marius Hills Volcanic Com- tral signatures from the cones and domes [9,10,11]. plex (FIGURE 1a; MHVC; 13.3ºN, 47.5ºW) is a 35,000 However, spectral data were not utilized to investigate km2 plateau raised 100-200 m from the surrounding specific morpHologic features in tHe MHVC. plains with a wide assortment and unusual concentration Previous investigations of the MHVC developed a of volcanic features [1,2]. THese volcanic features in- hypothesized volcanic evolution timeline [2,9,10,11, clude domes interpreted as shield volcanoes, lava flows, 12]. The range and superposition of volcanic features, sinuous rilles, and cones. as well as the spectral diversity of the volcanic units in The cones in tHe MHVC were identified initially us- MHVC, indicate an episodic volcanic History of the re- ing visible imagery witH morpHologies similar to terres- gion, wHicH may be reflected in the mafic mineralogy. trial cinder cones [1,3]. Cinder cones would require ev- a idence that the volcanic edifice was constructed of bal- listic pyroclasts from an explosive, volatile-ricH erup- tion. An explosive, volatile-ricH eruption produces rap- idly quencHed glassy pyroclasts as represented by cin- ders on EartH, and it is expected that the same process would occur on tHe lunar surface. The Lunar Reconnais- sance Orbiter Wide and Narrow Angle Cameras were utilized to complete a morpHological survey of the cin- der cones of the MHVC [4]. Despite the previous anal- yses, the volcanic constructs' compositions are still poorly constrained, partially due to the resolution and tecHniques required to study the small volcanic cones. This study uses spectral data collected from tHe b Moon Mineralogy Mapper (M3) visible/near-infrared imaging spectrometer to investigate spectral diversity in MHVC. Previously, we used M3 maps to investigate the spectral properties of proposed cone features visible in the imagery and evaluate the presence of volcanic edi- fices, where visual imagery is ambiguous [5]. Here we assess the implications of the spectral properties of var- ious volcanic features in MHVC to provide greater in- sigHt into the region's magmatic History. Background: The Marius Hills Volcanic Complex was a proposed Apollo Landing site, and the first spec- FIGURE 1: (a) Topography from Lunar Orbiter Laser Altim- eter (LOLA) overlaid on the LROC WAC mosaic. (b) Mosa- tral reflectivity analyses used EartH-based telescopes icked composite RGB spectral maps from high-resolution M3 [6,7]. THese low-resolution observations prevented the data where R= glass band depth, G=1µm band center, B= ability to distinguish specific volcanic features but indi- 2µm band center. The horizontal striping across the M3 cated bulk soil composition similar to the remainder of frames is due to data variability. Oceanus Procellarum [6]. Since the Apollo-era investi- Methods: M3 was an imaging spectrometer witH 85 gations, photogeologic and compositional analyses have spectral cHannels on the CHandrayaan-1 lunar orbiter previously characterized the geologic units within the [13,14]. M3 operated in the visible to near-infrared MHVC. The visual imagery of the region from the Lu- (VNIR; 0.42µm-3.0µm), whicH is sensitive to absorp- nar Reconnaissance Orbiter Camera (LROC) has been tion bands exHibited by iron-bearing minerals. M3 col- used to distinguish the morphologic properties of the lected data witH varying resolution across the mission volcanic features within MHVC [4,8]. (75-280 m/pixel) due to variable orbital configurations Compositional analyses included UV-VIS spectral [13,14]. Here we created an M3 map of tHe MHVC using data from Clementine [9,10], and VNIR spectra from 15 high-resolution (140m/pixel) spectral images witH M3, using the global 280µm/pixel data [11]. The resolu- bounds 300-312.5ºE and 8-17ºN using mosaicking and tion and methods of previous observations Have continuum removal metHods described in [15] and [16]. 52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2465.pdf Once tHe continuum of tHe spectrum was removed, sim- Spectral analysis of the MHVC confirms that dis- ple arithmetical spectral parameters, including tHe glass tinct spectral signatures are associated with different ge- band depth, OPX band depth, and CPX band depth, ologic units, including volcanic cones and domes (Fig- were applied to distinguisH between spectral signatures ure 2). M3 spectra for MHVC units show distinctive leading to the identification of minerals. Band parame- iron-bearing absorption bands near 1- and 2-µm. Vol- ters for the shape and position of tHe 1 and 2 µm iron canic cones of all shape classes in the MHVC display a absorption bands were also calculated based on the tech- symmetric band at 1.05-1.1 μm in addition to a band at niques described in [15]. Spectra were then extracted as 2.0 µm, consistent witH significant glass in tHe cones, as averages of ROI’s created using spectral parameters for inferred from the parameter map in Figure 1b. The the localities of cinder cones, volcanic domes, and the glass-ricH spectral interpretation suggests that the vol- mare. Parameter maps were tHen co-registered to an canic cones were likely formed in an explosive eruption LROC image to compare to volcanic morpHologies [4]. resulting in cinders. In contrast, volcanic dome struc- tures exhibit M3 spectra witH strong bands centered near 0.95µm and 2.05 µm, consistent with orthopyroxene. Discussion: Volcanic History: The range of volcan- ism in MHVC is further amplified by the region's spec- tral diversity. Combining the morpHology and the spec- tral data, we hypothesize the magma evolution of the re- gion was long-lived and episodic. The formation of the plateau, possibly as an enormous shield volcano, may have been the first volcanic episode [12]. Next, the su- perimposed OPX-ricH domes and glass-ricH cones were built witH the eruption of primitive and relatively vola- tile-ricH magma [9,10,11]. Lastly, more evolved, CPX- bearing magmas erupted to form the youngest basalt flows in MHVC that embayed the volcanic domes and cones on the plateau, then followed rilles and channels to the mare units of Oceanus Procellarum [11]. In this scenario, MHVC could uniquely preserve ancient and possibly pre-mare volcanic materials. Future Exploration: Marius Hills is proposed as a priority target for returning to the Moon [18]. The long- lived volcanism visible through multiple volcanic units in MHVC would be ideal for collecting samples to be returned to Earth for dating and analyses within close proximity. Spectral mapping would be imperative for planning a mission to MHVC either by a proposed long- lived rover capable of traversing slopes [18] or human explorers. 3 Figure 2:M extracted spectra of cones (blue) and domes RefErEncEs: [1] McCauley, J.F. (1967), IMAP. [2] Whitford- (green) compared to laboratory spectra (gray) Stark, J.L., and J.W. Head (1977), LPS, 8, 2705–2724. [3] Results: An RGB composite image is shown in Wood, C.A. (1979), LPSC. [4] Lawrence, S.J. et al. (2013), (Figure 1b), where red represents the glass band depth, JGR:Planets, 118(4), 615–634 [5] McBride, M.J. et al. (2018) green is the 1µm band center, and blue is the 2µm band LPSC, 49, #2798.[6] McCord, T.B. et al. (1972), The Moon, center. Therefore, green typically indicates orthopyrox- 5(1), 52–89 [7] Pieters, C., and T.B. McCord (1976) LPS, 7, ene, yellow can indicate increased glass, and blue typi- 2677–2690. [8] Gustafson, J.O., et al. (2012), JGR 117, E00H25. [9] Weitz, C., and J.W. Head (1999), JGR:Oceans, cally indicates clinopyroxene. The Horizontal variability 104(E8), 18933–18956. [10] Heather, D.J., et al. (2003), JGR: across the M3 frames in Figure 1b maps is due to reso- Planets, 108(E3), 5017 [11] Besse, S., et al. (2011), JGR, lution and sensitivity changes. Both tHe surface of the 116(E6), E00G13 [12] Spudis, P.D. et al. (2013), JGR: Plan- plateau and surrounding mare present as pink/blue in ets, 118(5), 1063–1081. [13] Pieters, C.M. et al. (2009), Curr Figure 1b, indicating they may have erupted from the Sci. [14] Green, R.O. et al. (2011), JGR:Planets, 116(E10), same source. These areas are spectrally distinct from the E00G19. [15] Horgan, B.H.N et al. (2014), ICARUS, 234, 132–154. [16] Bennett, K.A., et al. (2016), ICARUS, 273, materials composing tHe domes and cones, wHicH ap- 296–314. [17] Jawin, E.R., et al. (2019), ESS, 6(1), 2–40. [18] pear green and yellow, respectively, in Figure 1b. Stopar, J.D., et al. (2016). LEAG. Abstract # 5074. .
Recommended publications
  • EPSC-DPS2011-1845, 2011 EPSC-DPS Joint Meeting 2011 C Author(S) 2011
    EPSC Abstracts Vol. 6, EPSC-DPS2011-1845, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 Analysis of mineralogy of an effusive volcanic lunar dome in Marius Hills, Oceanus Procellarum. A.S. Arya, Guneshwar Thangjam, R.P. Rajasekhar, Ajai Space Applications Centre, Indian Space Research Organization, Ahmedabad-380 015 (India). Email:[email protected] Abstract found on the lunar surface. As a part of initiation of the study of mineralogy of MHC, an effusive dome Domes are analogous to the terrestrial shield located in the south of Rima Galilaei, near the volcanoes and are among the important volcanic contact of Imbrian and Eratosthenian geological units features found on the lunar surface indicative of is taken up for the present study. The morphology, effusive vents of primary volcanism within Mare rheology and the possible dike parameters have regions. Marius Hills Complex (MHC) is one of the already been studied and reported [5]. most important regions on the entire lunar surface, having a complex geological setting and largest distribution of volcanic constructs with an abundant number of volcanic features like domes, cones and rilles. The mineralogical study of an effusive dome located in the south of Rima Galilaei, near the contact of Imbrian and Eratosthenian geological units is done using hyperspectral band parameters and spectral plots so as to understand the compositional variation, the nature of the volcanism and relate it to the rheology of the dome. Fig. 1: Distribution of dome in MHC (Red-the dome under study, Green- from Virtual Moon Atlas, Magenta [6]) and the Study area showing the dome under study on M3 1.
    [Show full text]
  • A Guideline for a Sustainable Lunar Base Design for Constructed in Lunar Lava Tubes and Their Vertical Skylights
    50th International Conference on Environmental Systems ICES-2021-186 12-15 July 2021 A Guideline for a Sustainable Lunar Base Design for Constructed in Lunar Lava Tubes and Their Vertical Skylights Masato Sakurai1, Asuka Shima2, Isao Kawano3, Junichi Haruyama4 Japan Aerospace Exploration Agency (JAXA), Chofu-shi, Tokyo, 182-8522, Japan. and Hiroyuki Miyajima5 International University of Health and Welfare, Narita Campus 1, 4-3, Kōzunomori, Narita, Chiba, 286-8686 Japan The lunar surface is a hostile environment subject to harmful radiation and meteorite impacts. A recently discovered lava tube avoids these risks and, as it undergoes only slight temperature changes, it is a promising location for constructing a lunar base. JAXA engages in research in regenerative ECLSS (Environmental Control Life Support Systems), particularly addressing water and air recycling and treating organic waste. Overcoming these challenges is essential for long-term lunar habitation. This paper presents a guideline for a sustainable lunar base design. Nomenclature ECLSS = Environmental Control Life Support System HTV = H-II Transfer Vehicle ISS = International Space Station JAXA = Japan Aerospace Exploration Agency JSASS = Japan Society for Aeronautical and Space Science MHH = Marius Hills Hole MIH = Mare Ingenii Hole MTH = Mare Tranquillitatis Hole SELENE = Selenological and Engineering Explorer UZUME = Unprecedented Zipangu Underworld of the Moon Exploration (name of the research group for vertical holes) SDGs = Sustainable Development Goals SELENE = Selenological and Engineering Explorer I. Introduction uture space exploration will extend beyond low Earth orbit and dramatically expand in scope. In particular, F industrial activities are planned for the Moon with the development of infrastructure that includes lunar bases. This paper summarizes our study of the construction of a crewed permanent settlement, which will be essential to support long-term habitation, resource utilization, and industrial activities on the Moon.
    [Show full text]
  • Analysis of Lava Tubes and Skylights in the Lunar Exploration Context
    EPSC Abstracts Vol. 7 EPSC2012-632-1 2012 European Planetary Science Congress 2012 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2012 Analysis of Lava Tubes and Skylights in the Lunar Exploration Context E. Martellato, B. Foing, J. Benkhoff ESA/ESTEC, Keplerlaan 1, 2201 Noordwijk ZH, The Netherlands (corresponding author: [email protected], [email protected]) collapsed sections of roofs ([6]). Skylights could Abstract originate as enlargement of pre-existing fractures, for instance following a moonquake ([8]), or as The past and current scientific activities related to the incompleting crusting over the melted lava flow (e.g., future robotic and human exploration of the Moon [4]), or as collapse of the lava tubes ceiling caused by have stressed the importance of lava tubes as random meteoroids impacts (e.g., [6]). convenient settlements in an inhospitable planet, providing a natural shielding to a variety of natural 2. Observations hazards with minimizing costs of the construction of manned bases. The detection of lava tubes could be In our analysis, we consider two skylights candidates favoured by the presence of skylights, which also detected by the Terrain Camera onboard the Japanese represent a way to access to these underground orbiter SELenological and Engineering Explorer structures. In this context, we analyze one of the (SELENE) ([9], [10]), and then observed at higher proposed mechanism of skylights formation, that is resolution by Lunar Reconnaissance Orbiter Camera random impacts craters, by comparing crater- (LROC) onboard the NASA spacecraft Lunar geometry argumentations ([11]) with numerical Reconnaissance Orbiter (LRO) ([2]). modelling outcomes. A first pit is located on the Marius Hills region 1.
    [Show full text]
  • GRAIL-Identified Gravity Anomalies In
    Solar System Exploration Division, GSFC Code 690 GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into subsurface impact and volcanic/magmatic structures on the Moon Ariel N. Deutsch1, Gregory A. Neumann2, James W. Head1 1Department of Earth, Environmental and Planetary Sciences, Brown University, 2NASA Goddard Space Flight Center Introduction: Lunar gravity anomalies. Positive Bouguer gravity anomalies. • Four distinctive positive Bouguer gravity anomalies are • Previous work has suggested that these four positive gravity anomalies may be due to: -Subsurface volcanic sills [2]. • New, higher-resolution GRAIL data [3] allow for the re- analysis of these anomalies. • Understanding the subsurface density structures that contribute to these anomalies is important in order to discuss regional impact and volcanic histories, and the evolution of the lunar crust in Oceanus Procellarum. Objectives. 1. Constrain subsurface structures that contribute to the . four positive Bouguer gravity anomalies. 2. Discuss the hidden impact and volcanic histories of . the Moon. Methods. Results: Filled and buried impact craters. RESULTS: MANTLE UPWELLING • Six geologic end-member scenarios are explored to 20 200 1. Filled and Buried Impact 2. Southern Aristarchus Plateau analyze the four observed gravitational anomalies. 15 Model 3 10 GRAIL 100 • Impact crater parameters [e.g., 4] are estimated to C Gravity 5 B from uplift Gravity from A 0 0 km -3 km km ρ = 3150 kg m -5 mGal mGal • Analyses of the generation, ascent, and eruption of -3 mGal ρ = 2800 kg m crater -10 Surface topography -100 -3 of subsurface magmatic structures and also the . -15 ∆ρ = 600 kg m Highland crust -20 -200 Mantle interpretation of surface volcanic features.
    [Show full text]
  • GRAIL-Identified Gravity Anomalies in Oceanus Procellarum: Insight Into 2 Subsurface Impact and Magmatic Structures on the Moon 3 4 Ariel N
    1 GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into 2 subsurface impact and magmatic structures on the Moon 3 4 Ariel N. Deutscha, Gregory A. Neumannb, James W. Heada, Lionel Wilsona,c 5 6 aDepartment of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 7 02912, USA 8 bNASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 9 cLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK 10 11 Corresponding author: Ariel N. Deutsch 12 Corresponding email: [email protected] 13 14 Date of re-submission: 5 April 2019 15 16 Re-submitted to: Icarus 17 Manuscript number: ICARUS_2018_549 18 19 Highlights: 20 • Four positive Bouguer gravity anomalies are analyzed on the Moon’s nearside. 21 • The amplitudes of the anomalies require a deep density contrast. 22 • One 190-km anomaly with crater-related topography is suggestive of mantle uplift. 23 • Marius Hills anomalies are consistent with intruded dike swarms. 24 • An anomaly south of Aristarchus has a crater rim and possibly magmatic intrusions. 25 26 Key words: 27 Moon; gravity; impact cratering; volcanism 1 28 Abstract 29 30 Four, quasi-circular, positive Bouguer gravity anomalies (PBGAs) that are similar in diameter 31 (~90–190 km) and gravitational amplitude (>140 mGal contrast) are identified within the central 32 Oceanus Procellarum region of the Moon. These spatially associated PBGAs are located south of 33 Aristarchus Plateau, north of Flamsteed crater, and two are within the Marius Hills volcanic 34 complex (north and south). Each is characterized by distinct surface geologic features suggestive 35 of ancient impact craters and/or volcanic/plutonic activity.
    [Show full text]
  • Development and Field Testing of Moonraker: a Four-Wheel Rover in Minimal Design
    Development and Field Testing of Moonraker: a Four-Wheel Rover in Minimal Design Kazuya Yoshida*, Nathan Britton*, John Walker* *Dept. of Aerospace Engineering, Tohoku University, Japan e-mail: yoshida, nathan, [email protected] Abstract A light-weight, four-wheel rover was developed as a research test platform for a low cost lunar exploration that could be conducted commercially near future. The name of the platform is MoonRaker, The purpose of the Moon- Raker development is investigate control techniques and physical performance for a lunar rover with minimal size, such as less than 10 kg. In this paper, the authors de- scribe the design, development and field testing results of the MoonRaker project. 1 Introduction In the Space Robotics Laboratory, Tohoku University, Japan, we developed a light-weight, four-wheel rover as Figure 1. An image of a lava tube skylight, a research test platform for a low cost lunar exploration Marius Hills Hole acquired by Lunar that could be conducted commercially near future. As a Reconnaissance Orbiter Narrow Angle case study, the requirements for the Google Lunar X-Prize Camera (M122584310LE). (GLXP) is considered. In the GLXP, more-than-500 m of traverse across the surface of the Moon and transmission of high quality video images to the Earth are set as the ing for water ice or Helium-3, But one of the most exciting minimum requirements [1]. targets for lunar exploration is potential caves on the sur- ffi As a technical partner of Team Hakuto, an o cial face of the moon. team of the GLXP challenge in Japan, the Space Robotics In recent years, researchers have speculated that un- Laboratory has been working on the development of mo- derground tubes or caves, similar to those found on Earth bile robots (rovers) for wheel-based traverse on the lunar in volcanic areas, may exist on the moon.
    [Show full text]
  • Detection of Buried Empty Lunar Lava Tubes Using Grail Gravity Data
    47th Lunar and Planetary Science Conference (2016) 1509.pdf DETECTION OF BURIED EMPTY LUNAR LAVA TUBES USING GRAIL GRAVITY DATA. R. Sood1, L. Chappaz1, H. J. Melosh1,2, K. C. Howell1, and C. Milbury2. 1School of Aeronautics and Astronautics, Purdue Uni- versity, West Lafayette, Indiana 47907, [email protected], 2Earth, Atmospheric and Planetary Science, Purdue University, West Lafayette, Indiana 47907. Introduction: As a part of NASA's Discovery Program, the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were launched in September 2011. The sister spacecraft, Ebb and Flow, mapped lunar gravity to an unprecedented precision [1]. High resolu- tion data is currently being utilized to gain a greater understanding of the Moon's interior. Through gravita- tional analysis of the Moon, subsurface features, such as potential buried empty lava tubes, have also been detected [2]. Lava tubes are of interest as possible hu- man habitation sites safe from cosmic radiation, mi- crometeorite impacts and temperature extremes. The existence of such natural caverns is now supported by Kaguya's discoveries [3] of deep pits that may poten- tially be openings to empty lava tubes. In the current investigation, GRAIL gravity data collected at different altitudes is utilized to detect the presence and extent of candidate empty lava tubes beneath the surface of the Figure 1: Free-air and Bouguer cross-correlation maps lunar maria. and free-air/Bouguer correlation along with regional Detection Strategy: Previous work done by Chap- topography in the vicinity of Marius Hills skylight. paz et al., (2014) makes use of two detection strategies based on gradiometry and cross-correlation to detect rrelation between free-air and Bouguer maps where a subsurface features.
    [Show full text]
  • Detection of Lunar Lava Tubes by Lunar Radar Sounder Onboard Selene (Kaguya)
    Lunar and Planetary Science XLVIII (2017) 1711.pdf DETECTION OF LUNAR LAVA TUBES BY LUNAR RADAR SOUNDER ONBOARD SELENE (KAGUYA). J. Haruyama1, T. Kaku1,2, R. Shinoda1,2, W. Miyake2, A. Kumamoto3, K. Ishiyama1, T. Nishibori1, K. Yamamoto1, K. Kurosawa4, A.I. Suzuki1, S.T. Crites1, T. Michikami5, Y. Yokota6, R. Sood7, H. J. Melosh7,8, L. Chappaz, K.C. Howell. 1Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan), 2Engineering Department, Tokai Universi- ty, 3Science Department, Tohoku University, 4Planetary Exploration Research Center, Chiba Institute of Technolo- gy, 5Faculty of Engineering, Kindai University, 6Faculty of Science, Kochi University, 7School of Aeronautics and Astronautics, Purdue University, 8Earth, Atmospheric and Planetary Science, Purdue University . E- Mail:haruyama.junichi_at_jaxa.jp (change “_at_” to @). Introduction: In 2009, three huge pits were dis- aperture radar (SAR) processing[9] with a synthetic covered on the Moon in image data acquired by the aperture of 5 km. The data set is available via the SELENE Terrain Camera. Their diameters and depths JAXA/SELENE (Kaguya) data archive.[10] are several tens of meters or more.[1-3] They are possi- Results: Figure 1 shows an A-scan diagram (pow- ble skylight holes opening on large subsurface caverns ers of received echo vs elevation of subsurface reflect- such as lava tubes, [1] by analogy with similar pits found ing the echo). The echo power was normalized to be on Mars.[4] This possibility was enhanced significantly zero dB for a standard surface echo level, and to be 0 by LRO oblique observations; large openings were km in elevation for the mean radius of 1737.4 km.
    [Show full text]
  • Technologies Enabling Exploration of Skylights, Lava Tubes and Caves
    Technologies Enabling Exploration of Skylights, Lava Tubes and Caves NASA Innovative Advanced Concepts (NIAC) Phase I FOR OFFICE OF THE CHIEF TECHNOLOGIST NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANT NUMBER: NNX11AR42G AWARD DATE: SEPTEMBER 15, 2011 END DATE: SEPTEMBER 14, 2012 FINAL REPORT BY ASTROBOTIC TECHNOLOGY 4551 FORBES AVE #300 PITTSBURGH, PA 15213-3524 WILLIAM WHITTAKER, PRINCIPAL INVESTIGATOR Abstract Robotic exploration of skylights and caves can seek out life, investigate geology and origins, and open the subsurface of other worlds to humankind. However, exploration of these features is a daunting venture. Planetary voids present perilous terrain that requires innovative technologies for access, exploration, and modeling. This research developed technologies for venturing underground and conceived mission architectures for robotic expeditions that explore skylights, lava tubes and caves. The investigation identified effective designs for mobile robot architecture to explore sub-planetary features. Results provide insight into mission architectures, skylight reconnaissance and modeling, robot configuration and operations, and subsurface sensing and modeling. These are developed as key enablers for robotic missions to explore planetary caves. These results are compiled to generate “Spelunker”, a prototype mission concept to explore a lunar skylight and cave. The Spelunker mission specifies safe landing on the rim of a skylight, tethered descent of a power and communications hub, and autonomous cave exploration by hybrid
    [Show full text]
  • The Marius Hills Volcanic Complex: a Stratigraphic Study S
    Lunar and Planetary Science XXX 1180.pdf THE MARIUS HILLS VOLCANIC COMPLEX: A STRATIGRAPHIC STUDY S. K. Dunkin and D. J. Heather, Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK ([email protected] and [email protected]) Introduction: Marius Hills is a volcanic complex est FeO contents on the Moon. Volcanic features are covering an area of 35,000km2 in the south-central seen on both high- and low-Ti mare units with some, region of Oceanus Procellarum. It is host to a variety such as sinuous rilles, cutting through several flows of of volcanic landforms including sinuous rilles, low more than one unit. As noted by [5] and [7] there ap- domes, steep-sided domes and cones [1]. Previous pears to be no correlation between mare colour and work on this region include both photogeological volcanic features. Mare flows formed both before and studies [1,2,3] and, more recently, multispectral work after the sinuous rilles, as evidenced by the fact that from the Galileo [4] and Clementine missions [5,6,7]. some mare flows overlie part of Rille A (see below) Using the Clementine dataset, we have constructed a making it indistinguishable from the surrounding multispectral mosaic and FeO and TiO2 maps of the mare on the multispectral image. When seen on a Lu- Marius Hills region from 9-16N and 300-312E, in nar Orbiter photograph however, the presence of the order to determine the mare stratigraphy in the region. rille can still be seen at the point where the flow cov- Data Reduction: The Clementine data for this re- ers the rille, which suggests that the flow itself is thin gion was processed using the ISIS software and meth- relative to the depth of the rille.
    [Show full text]
  • Composition Analysis of the Marius Hills Volcanic Complex Using Diviner Lunar Radiometer Experiment and Moon Mineralogy Mapper
    44th Lunar and Planetary Science Conference (2013) 1225.pdf Composition Analysis of the Marius Hills Volcanic Complex using Diviner Lunar Radiometer Experiment and Moon Mineralogy Mapper. K. M. Lehman1,2 , G. Y. Kramer2, R. G. Mayne1,3, W. S. Kiefer2, 1School of Geology, Energy, and the Environment, Texas Christian University, Fort Worth, TX ([email protected]), 2Lunar and Planetary Institute, Houston, TX. 3Monnig Meteorite Gallery, Fort Worth, TX. Introduction: the material [9, 10]. It is also important to note that a low CF value has a high correlation to high visual al- The Marius Hills Volcanic Complex, located in bedo, and that space weathering causes the CF value to Central Oceanus Procellarum at 13.3 N, 306.8 E , has move to longer wavelengths [10, 11]. All this makes an undoubtedly complicated volcanic history. Over 250 domes and complex surrounding volcanic geo- the CF value very helpful in understanding the geology morphologies suggest multiple volcanic episodes[1]. In of an area. This value is complementary to M3 spectra, allowing for more felsic materials to be observed and light of this, many have investigated potential compo- for a deeper understanding of the entire compositional sitional differences using both Clementine and Chan- mixture as comparison between spectra compositions dryann-1’s Moon Mineralogy Mapper (M3 ) and have and Diviner compositions occur. identified the area as a high titanium basalt with glass features surrounding cones associated with pyroclastic Methodology: [2,3,4]. Beyond subtle variation in FeO percent, TiO2 Three different data sets were used to analyze percent and olivine content, the complex has been this region: Clementine, M3 spectral data, and the deemed compositionally homogenous [2,3,5].
    [Show full text]
  • Characterization of Previously Unidentified Lunar Pyroclastic Deposits Using Lunar Reconnaissance Orbiter Camera Data J
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, E00H25, doi:10.1029/2011JE003893, 2012 Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera data J. Olaf Gustafson,1 J. F. Bell III,2,3 L. R. Gaddis,4 B. R. Hawke,5 and T. A. Giguere5,6 Received 1 July 2011; revised 31 March 2012; accepted 14 April 2012; published 8 June 2012. [1] We used a Lunar Reconnaissance Orbiter Camera (LROC) global monochrome Wide-angle Camera (WAC) mosaic to conduct a survey of the Moon to search for previously unidentified pyroclastic deposits. Promising locations were examined in detail using LROC multispectral WAC mosaics, high-resolution LROC Narrow Angle Camera (NAC) images, and Clementine multispectral (ultraviolet-visible or UVVIS) data. Out of 47 potential deposits chosen for closer examination, 12 were selected as probable newly identified pyroclastic deposits. Potential pyroclastic deposits were generally found in settings similar to previously identified deposits, including areas within or near mare deposits adjacent to highlands, within floor-fractured craters, and along fissures in mare deposits. However, a significant new finding is the discovery of localized pyroclastic deposits within floor-fractured craters Anderson E and F on the lunar farside, isolated from other known similar deposits. Our search confirms that most major regional and localized low-albedo pyroclastic deposits have been identified on the Moon down to 100 m/pix resolution, and that additional newly identified deposits are likely to be either isolated small deposits or additional portions of discontinuous, patchy deposits. Citation: Gustafson, J. O., J. F. Bell III, L. R. Gaddis, B.
    [Show full text]