The A-Polynomial 2-Tuple of Twisted Whitehead Links

Total Page:16

File Type:pdf, Size:1020Kb

The A-Polynomial 2-Tuple of Twisted Whitehead Links THE A-POLYNOMIAL 2-TUPLE OF TWISTED WHITEHEAD LINKS ANH T. TRAN Abstract. We compute the A-polynomial 2-tuple of twisted Whitehead links. As ap- plications, we determine canonical components of twisted Whitehead links and give a formula for the volume of twisted Whitehead link cone-manifolds. 1. Introduction The A-polynomial of a knot in the 3-sphere S3 was introduced by Cooper, Culler, Gillet, Long and Shalen [CCGLS] in the 90’s. It describes the SL2(C)-character variety of the knot complement as viewed from the boundary torus. The A-polynomial carries a lot of information about the topology of the knot. For example, it distinguishes the unknot from other knots [BoZ, DG] and the sides of the Newton polygon of the A-polynomial give rise to incompressible surfaces in the knot complement [CCGLS]. The A-polynomial was generalized to links by Zhang [Zh] about ten years later. For an m-component link in S3, Zhang defined a polynomial m-tuple link invariant called the A- polynomial m-tuple. The A-polynomial 1-tuple of a knot is nothing but the A-polynomial defined in [CCGLS]. The A-polynomial m-tuple also caries important information about the topology of the link. For example, it can be used to construct concrete examples of hyperbolic link manifolds with non-integral traces [Zh]. Finding an explicit formula for the A-polynomial is a challenging problem. So far, the A-polynomial has been computed for a few classes of knots including two-bridge knots C(2n, p) (with 1 ≤ p ≤ 5) in Conway’s notation [HS, Pe, Ma, HL], (−2, 3, 2n + 1)-pretzel knots [TY, GM]. It should be noted that C(2n, p) is the double twist knot J(2n, −p) in the notation of [HS]. Moreover, C(2n, 1) is the torus knot T (2, 2n + 1) and C(2n, 2) is known as a twist knot. A cabling formula for the A-polynomial of a cable knot in S3 has recently been given in [NZ]. Using this formula, Ni and Zhang [NZ] has computed the A-polynomial of an iterated torus knot explicitly. arXiv:1608.01381v1 [math.GT] 3 Aug 2016 In this paper we will compute the A-polynomial 2-tuple for a family of 2-component links called twisted Whitehead links. As applications, we will determine canonical compo- nents of twisted Whitehead links and give a formula for the volume of twisted Whitehead link cone-manifolds. For k ≥ 0, the k-twisted Whitehead link Wk is the 2-component link depicted in Figure 1. Note that W0 is the torus link T (2, 4) and W1 is the Whitehead link. Moreover, Wk is the two-bridge link C(2, k, 2) in Conway’s notation and is b(4k+4, 2k+1) in Schubert’s notation. These links are all hyperbolic except for W0. The A-polynomial 2-tuple of the twisted Whitehead link Wk is a polynomial 2-tuple [A1(M, L), A2(M, L)] given as follows. 2000 Mathematics Subject Classification. Primary 57M27, Secondary 57M25. Key words and phrases. canonical component, cone-manifold, hyperbolic volume, the A-polynomial, twisted Whitehead link, two-bridge link. 1 2 ANH T. TRAN ... Figure 1. The k-twisted Whitehead link Wk. Theorem 1.1. If k =2n − 1 then A1(M, L)=(L − 1)F (M, L) where n n +1+ i n − 1+ i L − 1 2i F (M, L) = − (M − M −1)2i 2i +1 2i +1 L +1 i=0 X n−1 n + i L − 1 2i+1 + (M + M −1)(M − M −1)2i+1 . 2i +1 L +1 i=0 X 2 If k =2n then A1(M, L)=(LM − 1)G(M, L) where n n +1+ i n + i LM 2 − 1 2i+1 G(M, L) = + (M − M −1)2i+1 2i +1 2i +1 LM 2 +1 i=0 X n n + i LM 2 − 1 2i + (M + M −1)(M − M −1)2i . 2i LM 2 +1 i=0 X In both cases we have A1(M, L)= A2(M, L). It should be noted that in the definition of the A-polynomial m-tuple of an m-component link, we discard the irreducible component of the SL2(C)-character variety containing only characters of reducible representations and therefore consider only the nonabelian SL2(C)-character variety of the link group. 3 3 For a link L in S , let EL = S \L denote the link exterior. The link group of L is defined to be the fundamental group π1(EL) of EL. It is known that the link group of the twisted Whitehead link Wk has a standard two-generator presentation of a two-bridge link group π1(EWk )= ha, b | aw = wai, where a, b are meridians depicted in Figure 1 and w is a word in the letters a, b. More precisely, we have w = (bab−1a−1)na(a−1b−1ab)n if k =2n − 1 and w =(bab−1a−1)nbab(a−1b−1ab)n if k =2n. C For a presentation ρ : π1(EWk ) → SL2( ) we let x, y, z denote the traces of the images of a, b, ab respectively. We also let v denote the trace of the image of bab−1a−1. Explicitly, 2 2 2 we have v = x + y + z − xyz − 2. It was shown in [Tr1] that the nonabelian SL2(C)- k character variety of Wk has exactly ⌊ 2 ⌋ irreducible components. For a hyperbolic link, there are distinguished components of the SL2(C)-character variety called the canonical components. They contain important information about the hyperbolic structure of the link. By using the formula of the A-polynomial in Theorem 1.1, we can determine the canonical component of the hyperbolic twisted Whitehead link Wk (with k ≥ 1) as follows. THEA-POLYNOMIALOFTWISTEDWHITEHEADLINKS 3 Theorem 1.2. If k = 2n − 1 then the canonical component of Wk is the zero set of the polynomial (xy − vz)Sn−1(v) − (xy − 2z)Sn−2(v). If k =2n then the canonical component of Wk is the zero set of the polynomial zSn(v)− (xy − z)Sn−1(v). Here the Sk(v) are the Chebychev polynomials of the second kind defined by S0(v) = 1, S1(v)= v and Sk(v)= vSk−1(v) − Sk−2(v) for all integers k. Explicitly, we have k − i S (v)= (−1)i vk−2i k k − 2i 0≤Xi≤k/2 for k ≥ 0, Sk(v)= −S−k−2(v) for k ≤ −2, and S−1(v) = 0. 3 For a hyperbolic link L ⊂ S , let ρhol be a holonomy representation of π1(EL) into P SL2(C). Thurston [Th] showed that ρhol can be deformed into an m-parameter family {ρα1,··· ,αm } of representations to give a corresponding family {EL(α1, ··· ,αm)} of singular complete hyperbolic manifolds, where m is the number of components of L. In this paper we will consider only the case where all of αi’s are equal to a single parameter α. In which case we also denote EL(α1, ··· ,αm) by EL(α). These α’s and EL(α)’s are called the cone-angles and hyperbolic cone-manifolds of L, respectively. We consider the complete hyperbolic structure on a link complement as the cone- manifold structure of cone-angle zero. It is known that for a two-bridge knot or link L 2π there exists an angle αL ∈ [ 3 , π) such that EL(α) is hyperbolic for α ∈ (0,αL), Euclidean for α = αL, and spherical for α ∈ (αL, π) [HLM, Ko1, Po, PW]. Explicit volume formulas for hyperbolic cone-manifolds of knots were known for 41 [HLM, Ko1, Ko2, MR], 52 [Me1], twist knots [HMP] and two-bridge knots C(2n, 3) [HL]. Recently, the volume of double twist knot cone-manifolds has been computed in [Tr3]. We should remark that a formula for the volume of the cone-manifold of C(2n, 4) has just been given in [HLMR1]. However, with an appropriate change of variables, this formula has already obtained in [Tr3], since C(2n, 4) is the double twist knot J(2n, −4). In this paper we are interested in hyperbolic cone-manifolds of links. Explicit volume 2 2 formulas for hyperbolic cone-manifolds of links have been only known for 51 [MV], 62 2 2 [Me2], 63 [DMM] and 73 [HLMR2]. From the proof of Theorem 1.1, we can compute the volume of the hyperbolic cone-manifold of the twisted Whitehead link Wk as follows. Let 2 2 x Sn−1(v) − zSn(v) − (x − z)Sn−2(v) if k =2n − 1 RWk (s, z)= 2 (zSn(v) − (x − z)Sn−1(v) if k =2n, where x = s + s−1 and v =2x2 + z2 − x2z − 2. Theorem 1.3. For α ∈ (0,αWk ) we have π z − (s−2 + 1) Vol E (α)= 2 log dω Wk z − (s2 + 1) Zα where s = eiω/2 and z (with Im z ≥ 0) satisfy R (s, z)=0. Wk Note that the above volume formula for the hyperbolic cone-manifold EWk (α) depends iω/2 on the choice of a root z of RWk (e , z) = 0. In practice, we choose the root z which gives the maximal volume. As a direct consequence of Theorem 1.3, we obtain the following. 4 ANH T. TRAN Corollary 1.4. The hyperbolic volume of the r-fold cyclic covering over the twisted White- head link Wk, with r ≥ 3, is given by the following formula 2π π z − (s−2 + 1) rVol EWk ( )= r 2 log 2 dω r 2π z − (s + 1) Z r where s = eiω/2 and z (with Im z ≥ 0) satisfy R (s, z)=0.
Recommended publications
  • View Given in Figure 7
    New York Journal of Mathematics New York J. Math. 26 (2020) 149{183. Arithmeticity and hidden symmetries of fully augmented pretzel link complements Jeffrey S. Meyer, Christian Millichap and Rolland Trapp Abstract. This paper examines number theoretic and topological prop- erties of fully augmented pretzel link complements. In particular, we determine exactly when these link complements are arithmetic and ex- actly which are commensurable with one another. We show these link complements realize infinitely many CM-fields as invariant trace fields, which we explicitly compute. Further, we construct two infinite fami- lies of non-arithmetic fully augmented link complements: one that has no hidden symmetries and the other where the number of hidden sym- metries grows linearly with volume. This second family realizes the maximal growth rate for the number of hidden symmetries relative to volume for non-arithmetic hyperbolic 3-manifolds. Our work requires a careful analysis of the geometry of these link complements, including their cusp shapes and totally geodesic surfaces inside of these manifolds. Contents 1. Introduction 149 2. Geometric decomposition of fully augmented pretzel links 154 3. Hyperbolic reflection orbifolds 163 4. Cusp and trace fields 164 5. Arithmeticity 166 6. Symmetries and hidden symmetries 169 7. Half-twist partners with many hidden symmetries 174 References 181 1. Introduction 3 Every link L ⊂ S determines a link complement, that is, a non-compact 3 3-manifold M = S n L. If M admits a metric of constant curvature −1, we say that both M and L are hyperbolic, and in fact, if such a hyperbolic Received June 5, 2019.
    [Show full text]
  • Hyperbolic Structures from Link Diagrams
    Hyperbolic Structures from Link Diagrams Anastasiia Tsvietkova, joint work with Morwen Thistlethwaite Louisiana State University/University of Tennessee Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 1/23 Every knot can be uniquely decomposed as a knot sum of prime knots (H. Schubert). It also true for non-split links (i.e. if there is no a 2–sphere in the complement separating the link). Of the 14 prime knots up to 7 crossings, 3 are non-hyperbolic. Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 2/23 Of the 14 prime knots up to 7 crossings, 3 are non-hyperbolic. Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Every knot can be uniquely decomposed as a knot sum of prime knots (H. Schubert). It also true for non-split links (i.e. if there is no a 2–sphere in the complement separating the link). Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 2/23 Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Every knot can be uniquely decomposed as a knot sum of prime knots (H.
    [Show full text]
  • A Note on Quasi-Alternating Montesinos Links
    A NOTE ON QUASI-ALTERNATING MONTESINOS LINKS ABHIJIT CHAMPANERKAR AND PHILIP ORDING Abstract. Quasi-alternating links are a generalization of alternating links. They are ho- mologically thin for both Khovanov homology and knot Floer homology. Recent work of Greene and joint work of the first author with Kofman resulted in the classification of quasi- alternating pretzel links in terms of their integer tassel parameters. Replacing tassels by rational tangles generalizes pretzel links to Montesinos links. In this paper we establish conditions on the rational parameters of a Montesinos link to be quasi-alternating. Using recent results on left-orderable groups and Heegaard Floer L-spaces, we also establish con- ditions on the rational parameters of a Montesinos link to be non-quasi-alternating. We discuss examples which are not covered by the above results. 1. Introduction The set Q of quasi-alternating links was defined by Ozsv´athand Szab´o[17] as the smallest set of links satisfying the following: • the unknot is in Q • if link L has a diagram L with a crossing c such that (1) both smoothings of c, L0 and L1 are in Q (2) det(L0) 6= 0 6= det(L1) L L0 L• (3) det(L) = det(L0) + det(L1) then L is in Q. The set Q includes the class of non-split alternating links. Like alternating links, quasi- alternating links are homologically thin for both Khovanov homology and knot Floer ho- mology [14]. The branched double covers of quasi-alternating links are L-spaces [17]. These properties make Q an interesting class to study from the knot homological point of view.
    [Show full text]
  • Some Generalizations of Satoh's Tube
    SOME GENERALIZATIONS OF SATOH'S TUBE MAP BLAKE K. WINTER Abstract. Satoh has defined a map from virtual knots to ribbon surfaces embedded in S4. Herein, we generalize this map to virtual m-links, and use this to construct generalizations of welded and extended welded knots to higher dimensions. This also allows us to construct two new geometric pictures of virtual m-links, including 1-links. 1. Introduction In [13], Satoh defined a map from virtual link diagrams to ribbon surfaces knotted in S4 or R4. This map, which he called T ube, preserves the knot group and the knot quandle (although not the longitude). Furthermore, Satoh showed that if K =∼ K0 as virtual knots, T ube(K) is isotopic to T ube(K0). In fact, we can make a stronger statement: if K and K0 are equivalent under what Satoh called w- equivalence, then T ube(K) is isotopic to T ube(K0) via a stable equivalence of ribbon links without band slides. For virtual links, w-equivalence is the same as welded equivalence, explained below. In addition to virtual links, Satoh also defined virtual arc diagrams and defined the T ube map on such diagrams. On the other hand, in [15, 14], the notion of virtual knots was extended to arbitrary dimensions, building on the geometric description of virtual knots given by Kuperberg, [7]. It is therefore natural to ask whether Satoh's idea for the T ube map can be generalized into higher dimensions, as well as inquiring into a generalization of the virtual arc diagrams to higher dimensions.
    [Show full text]
  • On Spectral Sequences from Khovanov Homology 11
    ON SPECTRAL SEQUENCES FROM KHOVANOV HOMOLOGY ANDREW LOBB RAPHAEL ZENTNER Abstract. There are a number of homological knot invariants, each satis- fying an unoriented skein exact sequence, which can be realized as the limit page of a spectral sequence starting at a version of the Khovanov chain com- plex. Compositions of elementary 1-handle movie moves induce a morphism of spectral sequences. These morphisms remain unexploited in the literature, perhaps because there is still an open question concerning the naturality of maps induced by general movies. In this paper we focus on the spectral sequences due to Kronheimer-Mrowka from Khovanov homology to instanton knot Floer homology, and on that due to Ozsv´ath-Szab´oto the Heegaard-Floer homology of the branched double cover. For example, we use the 1-handle morphisms to give new information about the filtrations on the instanton knot Floer homology of the (4; 5)-torus knot, determining these up to an ambiguity in a pair of degrees; to deter- mine the Ozsv´ath-Szab´ospectral sequence for an infinite class of prime knots; and to show that higher differentials of both the Kronheimer-Mrowka and the Ozsv´ath-Szab´ospectral sequences necessarily lower the delta grading for all pretzel knots. 1. Introduction Recent work in the area of the 3-manifold invariants called knot homologies has il- luminated the relationship between Floer-theoretic knot homologies and `quantum' knot homologies. The relationships observed take the form of spectral sequences starting with a quantum invariant and abutting to a Floer invariant. A primary ex- ample is due to Ozsv´athand Szab´o[15] in which a spectral sequence is constructed from Khovanov homology of a knot (with Z=2 coefficients) to the Heegaard-Floer homology of the 3-manifold obtained as double branched cover over the knot.
    [Show full text]
  • Arxiv:2003.00512V2 [Math.GT] 19 Jun 2020 the Vertical Double of a Virtual Link, As Well As the More General Notion of a Stack for a Virtual Link
    A GEOMETRIC INVARIANT OF VIRTUAL n-LINKS BLAKE K. WINTER Abstract. For a virtual n-link K, we define a new virtual link VD(K), which is invariant under virtual equivalence of K. The Dehn space of VD(K), which we denote by DD(K), therefore has a homotopy type which is an invariant of K. We show that the quandle and even the fundamental group of this space are able to detect the virtual trefoil. We also consider applications to higher-dimensional virtual links. 1. Introduction Virtual links were introduced by Kauffman in [8], as a generalization of classical knot theory. They were given a geometric interpretation by Kuper- berg in [10]. Building on Kuperberg's ideas, virtual n-links were defined in [16]. Here, we define some new invariants for virtual links, and demonstrate their power by using them to distinguish the virtual trefoil from the unknot, which cannot be done using the ordinary group or quandle. Although these knots can be distinguished by means of other invariants, such as biquandles, there are two advantages to the approach used herein: first, our approach to defining these invariants is purely geometric, whereas the biquandle is en- tirely combinatorial. Being geometric, these invariants are easy to generalize to higher dimensions. Second, biquandles are rather complicated algebraic objects. Our invariants are spaces up to homotopy type, with their ordinary quandles and fundamental groups. These are somewhat simpler to work with than biquandles. The paper is organized as follows. We will briefly review the notion of a virtual link, then the notion of the Dehn space of a virtual link.
    [Show full text]
  • Knots: a Handout for Mathcircles
    Knots: a handout for mathcircles Mladen Bestvina February 2003 1 Knots Informally, a knot is a knotted loop of string. You can create one easily enough in one of the following ways: • Take an extension cord, tie a knot in it, and then plug one end into the other. • Let your cat play with a ball of yarn for a while. Then find the two ends (good luck!) and tie them together. This is usually a very complicated knot. • Draw a diagram such as those pictured below. Such a diagram is a called a knot diagram or a knot projection. Trefoil and the figure 8 knot 1 The above two knots are the world's simplest knots. At the end of the handout you can see many more pictures of knots (from Robert Scharein's web site). The same picture contains many links as well. A link consists of several loops of string. Some links are so famous that they have names. For 2 2 3 example, 21 is the Hopf link, 51 is the Whitehead link, and 62 are the Bor- romean rings. They have the feature that individual strings (or components in mathematical parlance) are untangled (or unknotted) but you can't pull the strings apart without cutting. A bit of terminology: A crossing is a place where the knot crosses itself. The first number in knot's \name" is the number of crossings. Can you figure out the meaning of the other number(s)? 2 Reidemeister moves There are many knot diagrams representing the same knot. For example, both diagrams below represent the unknot.
    [Show full text]
  • Dehn Filling of the “Magic” 3-Manifold
    communications in analysis and geometry Volume 14, Number 5, 969–1026, 2006 Dehn filling of the “magic” 3-manifold Bruno Martelli and Carlo Petronio We classify all the non-hyperbolic Dehn fillings of the complement of the chain link with three components, conjectured to be the smallest hyperbolic 3-manifold with three cusps. We deduce the classification of all non-hyperbolic Dehn fillings of infinitely many one-cusped and two-cusped hyperbolic manifolds, including most of those with smallest known volume. Among other consequences of this classification, we mention the following: • for every integer n, we can prove that there are infinitely many hyperbolic knots in S3 having exceptional surgeries {n, n +1, n +2,n+3}, with n +1,n+ 2 giving small Seifert manifolds and n, n + 3 giving toroidal manifolds. • we exhibit a two-cusped hyperbolic manifold that contains a pair of inequivalent knots having homeomorphic complements. • we exhibit a chiral 3-manifold containing a pair of inequivalent hyperbolic knots with orientation-preservingly homeomorphic complements. • we give explicit lower bounds for the maximal distance between small Seifert fillings and any other kind of exceptional filling. 0. Introduction We study in this paper the Dehn fillings of the complement N of the chain link with three components in S3, shown in figure 1. The hyperbolic structure of N was first constructed by Thurston in his notes [28], and it was also noted there that the volume of N is particularly small. The relevance of N to three-dimensional topology comes from the fact that by filling N, one gets most of the hyperbolic manifolds known and most of the interesting non-hyperbolic fillings of cusped hyperbolic manifolds.
    [Show full text]
  • RASMUSSEN INVARIANTS of SOME 4-STRAND PRETZEL KNOTS Se
    Honam Mathematical J. 37 (2015), No. 2, pp. 235{244 http://dx.doi.org/10.5831/HMJ.2015.37.2.235 RASMUSSEN INVARIANTS OF SOME 4-STRAND PRETZEL KNOTS Se-Goo Kim and Mi Jeong Yeon Abstract. It is known that there is an infinite family of general pretzel knots, each of which has Rasmussen s-invariant equal to the negative value of its signature invariant. For an instance, homo- logically σ-thin knots have this property. In contrast, we find an infinite family of 4-strand pretzel knots whose Rasmussen invariants are not equal to the negative values of signature invariants. 1. Introduction Khovanov [7] introduced a graded homology theory for oriented knots and links, categorifying Jones polynomials. Lee [10] defined a variant of Khovanov homology and showed the existence of a spectral sequence of rational Khovanov homology converging to her rational homology. Lee also proved that her rational homology of a knot is of dimension two. Rasmussen [13] used Lee homology to define a knot invariant s that is invariant under knot concordance and additive with respect to connected sum. He showed that s(K) = σ(K) if K is an alternating knot, where σ(K) denotes the signature of−K. Suzuki [14] computed Rasmussen invariants of most of 3-strand pret- zel knots. Manion [11] computed rational Khovanov homologies of all non quasi-alternating 3-strand pretzel knots and links and found the Rasmussen invariants of all 3-strand pretzel knots and links. For general pretzel knots and links, Jabuka [5] found formulas for their signatures. Since Khovanov homologically σ-thin knots have s equal to σ, Jabuka's result gives formulas for s invariant of any quasi- alternating− pretzel knot.
    [Show full text]
  • Hyperbolic Structures from Link Diagrams
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Hyperbolic Structures from Link Diagrams Anastasiia Tsvietkova [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Geometry and Topology Commons Recommended Citation Tsvietkova, Anastasiia, "Hyperbolic Structures from Link Diagrams. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1361 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Anastasiia Tsvietkova entitled "Hyperbolic Structures from Link Diagrams." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Mathematics. Morwen B. Thistlethwaite, Major Professor We have read this dissertation and recommend its acceptance: Conrad P. Plaut, James Conant, Michael Berry Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Hyperbolic Structures from Link Diagrams A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Anastasiia Tsvietkova May 2012 Copyright ©2012 by Anastasiia Tsvietkova. All rights reserved. ii Acknowledgements I am deeply thankful to Morwen Thistlethwaite, whose thoughtful guidance and generous advice made this research possible.
    [Show full text]
  • Introduction to Vassiliev Knot Invariants First Draft. Comments
    Introduction to Vassiliev Knot Invariants First draft. Comments welcome. July 20, 2010 S. Chmutov S. Duzhin J. Mostovoy The Ohio State University, Mansfield Campus, 1680 Univer- sity Drive, Mansfield, OH 44906, USA E-mail address: [email protected] Steklov Institute of Mathematics, St. Petersburg Division, Fontanka 27, St. Petersburg, 191011, Russia E-mail address: [email protected] Departamento de Matematicas,´ CINVESTAV, Apartado Postal 14-740, C.P. 07000 Mexico,´ D.F. Mexico E-mail address: [email protected] Contents Preface 8 Part 1. Fundamentals Chapter 1. Knots and their relatives 15 1.1. Definitions and examples 15 § 1.2. Isotopy 16 § 1.3. Plane knot diagrams 19 § 1.4. Inverses and mirror images 21 § 1.5. Knot tables 23 § 1.6. Algebra of knots 25 § 1.7. Tangles, string links and braids 25 § 1.8. Variations 30 § Exercises 34 Chapter 2. Knot invariants 39 2.1. Definition and first examples 39 § 2.2. Linking number 40 § 2.3. Conway polynomial 43 § 2.4. Jones polynomial 45 § 2.5. Algebra of knot invariants 47 § 2.6. Quantum invariants 47 § 2.7. Two-variable link polynomials 55 § Exercises 62 3 4 Contents Chapter 3. Finite type invariants 69 3.1. Definition of Vassiliev invariants 69 § 3.2. Algebra of Vassiliev invariants 72 § 3.3. Vassiliev invariants of degrees 0, 1 and 2 76 § 3.4. Chord diagrams 78 § 3.5. Invariants of framed knots 80 § 3.6. Classical knot polynomials as Vassiliev invariants 82 § 3.7. Actuality tables 88 § 3.8. Vassiliev invariants of tangles 91 § Exercises 93 Chapter 4.
    [Show full text]
  • Milnor Invariants of String Links, Trivalent Trees, and Configuration Space Integrals
    MILNOR INVARIANTS OF STRING LINKS, TRIVALENT TREES, AND CONFIGURATION SPACE INTEGRALS ROBIN KOYTCHEFF AND ISMAR VOLIC´ Abstract. We study configuration space integral formulas for Milnor's homotopy link invari- ants, showing that they are in correspondence with certain linear combinations of trivalent trees. Our proof is essentially a combinatorial analysis of a certain space of trivalent \homotopy link diagrams" which corresponds to all finite type homotopy link invariants via configuration space integrals. An important ingredient is the fact that configuration space integrals take the shuffle product of diagrams to the product of invariants. We ultimately deduce a partial recipe for writing explicit integral formulas for products of Milnor invariants from trivalent forests. We also obtain cohomology classes in spaces of link maps from the same data. Contents 1. Introduction 2 1.1. Statement of main results 3 1.2. Organization of the paper 4 1.3. Acknowledgment 4 2. Background 4 2.1. Homotopy long links 4 2.2. Finite type invariants of homotopy long links 5 2.3. Trivalent diagrams 5 2.4. The cochain complex of diagrams 7 2.5. Configuration space integrals 10 2.6. Milnor's link homotopy invariants 11 3. Examples in low degrees 12 3.1. The pairwise linking number 12 3.2. The triple linking number 12 3.3. The \quadruple linking numbers" 14 4. Main Results 14 4.1. The shuffle product and filtrations of weight systems for finite type link invariants 14 4.2. Specializing to homotopy weight systems 17 4.3. Filtering homotopy link invariants 18 4.4. The filtrations and the canonical map 18 4.5.
    [Show full text]