Lecanora Markjohnstonii (Lecanoraceae, Lichenized Ascomycetes), a New Sorediate Crustose Lichen from the Southeastern United States

Total Page:16

File Type:pdf, Size:1020Kb

Lecanora Markjohnstonii (Lecanoraceae, Lichenized Ascomycetes), a New Sorediate Crustose Lichen from the Southeastern United States Lecanora markjohnstonii (Lecanoraceae, lichenized Ascomycetes), a new sorediate crustose lichen from the southeastern United States Carly R. Anderson Stewart1,5, James C. Lendemer2, Kyle G. Keepers1, Cloe S. Pogoda3, Nolan C. Kane1, Christy M. McCain1 and Erin A. Tripp1,4 1 University of Colorado at Boulder, Ecology and Evolutionary Biology Department, Boulder, CO 80309, U.S.A.; 2 New York Botanical Garden, City University of New York, New York, NY 10458, U.S.A.; 3 University of Colorado at Boulder, Molecular, Cellular, and Developmental Biology Department, Boulder, CO 80309, U.S.A.; 4 University of Colorado at Boulder, Museum of Natural History, Herbarium, Boulder, CO 80309, U.S.A. ABSTRACT. Lecanora markjohnstonii is described as new to science from the southeastern United States, with a primary center of distribution in the southern Appalachian Mountain region. This sterile, sorediate crust is saxicolous on both sandstone and granite and occurs commonly in mixed hardwood-conifer forests with rock outcrops. It is characterized by a gray-green, rimose-areolate thallus, erumpent, raised soralia, and the production of atranorin together with 2-0-methylperlatolic acid. Molecular phylogenetic analyses of newly generated rDNA assemblies from a broad sampling of lineages within the Lecanoromycetes and Arthoniomycetes inferred placement of the unknown crust in the Lecanoraceae, specifically within Lecanora. Analysis of the mtSSU gene region then inferred placement in the Lecanora subfusca group. Finally, a fully assembled and annotated mitochondrial genome was compared to other lichenized fungal mitogenomes, including the publicly available Lecanora strobilina mitogenome, and showed that the gene region atp9 was missing as in other members of the Lecanorales. KEYWORDS. Asexual reproduction, biodiversity hotspot, endemism, genomics, Mark Johnston, natural history collections, new species, phylogenetics, phylogenomics, mitochondrial genome, taxonomic discovery. ^^^ The southern Appalachian Mountains of eastern Lendemer et al. 2014; Harris et al. 2014; Lendemer et North America are a hotspot of diversity for many al. 2017; Tripp & Lendemer, in press). Several of the organisms (ATBI 2016), including lichens (Allen & new species uncovered as a result of this work appear Lendemer 2016; Lendemer & Tripp 2016; Tripp & to be narrow, range-restricted endemics to the Lendemer 2019 [in press]). Great Smoky Mountains iconic, globally unique, and threatened high-eleva- National Park alone—spanning a mere ca. 830 tion ecosystems of the region (Allen & Lendemer square miles (ca. 2201 km2)—hosts nearly 1,000 2015; Lendemer et al. 2017; Tripp & Lendemer 2019 species of lichens, representing perhaps half of all [in press]; Tripp & Lendemer [in press]). These lichens that occur in the eastern United States newly discovered species can be considered evidence (Lendemer et al. 2013; Tripp & Lendemer 2019 [in for reinforcing the ecological importance and press]). In recent years, large-scale lichen biodiver- biodiversity value of high elevation habitats in the sity inventories spearheaded by two of the authors southern Appalachians (Dey 1978; Evans 1947; Lendemer & Allen 2015; Wei & Ahti 2002). (JL & ET) have resulted in the discovery and formal Lichenological study in the southern Appala- description of many species new to science from this chians has generally emphasized these charismatic biodiversity hotspot (e.g., Lendemer et al. 2013; and ecologically relatively intact high elevation 5 Corresponding author’s e-mail: ecosystems compared to middle and lower elevations [email protected] (Degelius 1941; Lendemer & Tripp 2008). Middle DOI: 10.1639/0007-2745-121.4.498 and low elevations of the southern Appalachians are The Bryologist 121(4), pp. 498–512 Published online: November 14 2018 0007-2745/18/$1.65/0 Copyright Ó2018 by The American Bryological and Lichenological Society, Inc. Downloaded From: https://bioone.org/journals/The-Bryologist on 24 Jul 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by University of Colorado System Anderson Stewart et al.: A new Lecanora species from southeastern United States 499 typically characterized by natural landscapes that are present in the new species. Our results support the comparatively much more fragmented and disturbed hypothesis that this species is new to science and (McConnel 2013; White 1984; Wiser et al. 1996). endemic to southeastern United States where it is Nonetheless, endemic, rare, or geographically dis- distributed primarily at low and middle elevations of junct species are not restricted to the highest the southern Appalachian Mountains and foothills. elevations of the region: a remarkable diversity of We present the results of these analyses below and lichens has been documented to occur at low and formally describe the species as Lecanora markjohn- middle elevations (Lendemer & Tripp 2008, Tripp & stonii. Lendemer [in press]; Tripp & Lendemer unpub- lished data), and these records include a plethora of MATERIALS AND METHODS endemic, rare, and/or disjunct lichen elements (Lendemer et al. Sheard 2014; Muscavitch & Lend- Morphology and chemistry. This study is based emer 2016; Tripp & Lendemer [in press]). on material collected as part of our southern In 2015, authors ET and JT initiated a large- Appalachian lichen project, together with specimens scale, multi-year project aimed at understanding already deposited in herbaria at the University of correlates of lichen biodiversity gradients in the Colorado (COLO) and New York Botanical Garden southern Appalachian Mountains. This project has (NY). Georeferenced voucher metadata for all involved the establishment of numerous study plots collections examined are available online via the throughout the region, and it was during this work C.V. Starr Virtual Herbarium (http://sweetgum. and on numerous occasions that we encountered a nybg.org/science/vh/), at the COLO internal database chemically and morphologically distinctive sorediate (https://botanydb.colorado.edu/index.php), and also and apparently sterile crustose lichen occurring on on SEINet (http://swbiodiversity.org/seinet/) and sandstone and granite outcrops. A search of the iDigBio (https://www.idigbio.org/). relevant literature on sorediate crustose lichens failed Morphology was investigated using an Olympus to reveal an existing name for the material SZX10 stereomicroscope as well as an Olympus (Hodkinson & Lendemer 2012; Lendemer 2010). BX51 compound epifluorescent microscope. Micro- Although it was readily recognizable even in the morphology and anatomy were studied using hand field, sexual reproductive structures were unknown sections of the thallus and squash mounts of the in the species, and neither morphology nor chem- propagules in water. All microscopic measurements istry alone or in combination were distinctive were obtained using a Retiga 2000R optical imaging enough to assign this unknown entity to a genus system. Chemistry was studied using standard spot or family. Therefore, we used genomic data and test protocols and reagents following Brodo et al. associated bioinformatic techniques that we gener- (2001). Thin Layer Chromatography was conducted ated and developed for the southern Appalachian using Solvents A and C, following Culberson & lichen project to infer phylogenetic relatedness of the Kristinsson (1970). The presence of 2-0-methylper- new species to its closest relatives. latolic acid in the specimens examined was con- First, we generated and assembled rDNA contigs firmed by comparison to known standards for representing diverse lineages of lichen-forming fungi secondary compounds with similar profiles in TLC. to infer the placement of the focal species within the Specifically, reference standards for 2-0-methylper- Lecanoromycetes. Second, building on an inferred latolic acid (Loxospora confusa and Lecanora pseu- placement in the Lecanoraceae, specifically within distera), barbatic acid (Cladonia didyma var. the genus Lecanora, we conducted a finer scale didyma), confluentic acid (Lecidea tessellata), divar- phylogenetic analysis using mtSSU data retrieved icatic acid (Lepraria hodkinsoniana), perlatolic acid from a newly generated, assembled, and annotated (Ropalospora viridis), and sphaerophorin (Cladonia mitochondrial genome of the focal species, together petrophila) were used. with mtSSU data from other species of Lecanora Molecular data generation and analyses. Mo- retrieved from previously published matrices, to lecular data newly generated for this study were infer placement within Lecanora. Finally, we com- derived entirely from vouchers collected during our pared mitogenome characteristics of the new species southern Appalachian lichen project. We analyzed with other lichenized fungal genomes to assess two sources of molecular data: rDNA contigs from whether the full complement of coding regions was the nuclear genome, and sequence data from the Downloaded From: https://bioone.org/journals/The-Bryologist on 24 Jul 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by University of Colorado System 500 The Bryologist 121(4): 2018 mtSSU region. A two-step procedure was used to of sampling. The primary mycobiont rDNA contig infer phylogenetic placement. First, we examined was identified via a command-line BLAST search higher-level phylogenetic relationships of the taxon using Lecanora cinereofusca rDNA [NCBI accession to other lichens by analyzing newly generated rDNA KY406736] as a query. The rDNA contig was then contigs
Recommended publications
  • Appendix K. Survey and Manage Species Persistence Evaluation
    Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site.
    [Show full text]
  • Garden's Bulletin Part2 13.Indd
    Gardens’A Conspectus Bulletin of the Lichens Singapore (Lichenized 61 (2):Fungi) 437-481. of Singapore 2010 437 A Conspectus of the Lichens (Lichenized Fungi) of Singapore H.J.M. SIPMAN Free University of Berlin Botanical Garden and Museum Königin-Luise-Str. 6-8 D-14195 Berlin, Germany Abstract A total of 296 species of lichenized fungi are reported from Singapore and presented in an annotated list with local distributional information. It is based on herbarium and literature study and the fieldwork done in the year 2000. Unidentified samples suggest the figure to be an underestimation, while some of the listed species may have become extinct. Lists of synonyms and collectors are added. Introduction Tropical conurbations, the world’s most fast-growing habitat, have turned out to harbour significant numbers of lichenized fungi.A ptroot and Seaward (1999) and Aptroot and Sipman (2001) report no less than 308 species for the city of Hongkong. Singapore seems particularly suitable for a study of lichens in an urbanized tropical area because it has received regular attention from botanists during its development from primary lowland forest with small settlements ca 1800 to extensive plantations a century later and to the present urbanized area with large built-up high rise areas interspersed by parks and secondary forest. During 1800-1964 scattered lichen collections were made by visiting and resident general botanists, e.g., E. Almquist, O. Beccari, T.R. Chipp, Kiah, A.M. Lemaitre, A.C. Maingay, H. Möller. Their collections have been investigated and published by, e.g., Krempelhuber (1875, 1877), Nylander and Crombie (1884) and Müller Argoviensis (1893).
    [Show full text]
  • Lichenicolous Biota (Nos 201–230)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Fritschiana Jahr/Year: 2015 Band/Volume: 80 Autor(en)/Author(s): Hafellner Josef Artikel/Article: Lichenicolous Biota (Nos 201-230) 21-41 - 21 - Lichenicolous Biota (Nos 201–230) Josef HAFELLNER* HAFELLNER Josef 2015: Lichenicolous Biota (Nos 201–230). – Frit- schiana (Graz) 80: 21–41. - ISSN 1024-0306. Abstract: The 9th fascicle (30 numbers) of the exsiccata 'Lichenicolous Biota' is published. The issue contains ma- terial of 20 non-lichenized fungal taxa (14 teleomorphs of ascomycetes, 4 anamorphic states of ascomycetes, 2 an- amorphic states of basidiomycetes) and 9 lichenized as- comycetes, including paratype material of Dimelaena li- chenicola K.Knudsen et al. (no 223), Miriquidica invadens Hafellner et al. (no 226, 227), and Stigmidium xantho- parmeliarum Hafellner (no 210). Furthermore, collections of the type species of the following genera are distributed: Illosporiopsis (I. christiansenii), Illosporium (I. carneum), Marchandiomyces (M. corallinus), Marchandiobasidium (M. aurantiacum, sub Erythricium aurantiacum), Micro- calicium (M. disseminatum), Nigropuncta (N. rugulosa), Paralecanographa (P. grumulosa), Phaeopyxis (P. punc- tum), Placocarpus (P. schaereri), Rhagadostoma (R. li- chenicola), and Stigmidium (S. schaereri). *Institut für Pflanzenwissenschaften, NAWI Graz, Karl-Franzens-Universität, Holteigasse 6, 8010 Graz, AUSTRIA e-mail: [email protected] Introduction The exsiccata 'Lichenicolous Biota' is continued with fascicle 9, containing 30 numbers. The exsiccata covers all lichenicolous biota, i.e., it is open not only to non- lichenized and lichenized fungi, but also to myxomycetes, bacteria, and even animals, whenever they cause a characteristic symptom on their host (e.g. discoloration or galls).
    [Show full text]
  • Opuscula Philolichenum, 6: 1-XXXX
    Opuscula Philolichenum, 15: 56-81. 2016. *pdf effectively published online 25July2016 via (http://sweetgum.nybg.org/philolichenum/) Lichens, lichenicolous fungi, and allied fungi of Pipestone National Monument, Minnesota, U.S.A., revisited M.K. ADVAITA, CALEB A. MORSE1,2 AND DOUGLAS LADD3 ABSTRACT. – A total of 154 lichens, four lichenicolous fungi, and one allied fungus were collected by the authors from 2004 to 2015 from Pipestone National Monument (PNM), in Pipestone County, on the Prairie Coteau of southwestern Minnesota. Twelve additional species collected by previous researchers, but not found by the authors, bring the total number of taxa known for PNM to 171. This represents a substantial increase over previous reports for PNM, likely due to increased intensity of field work, and also to the marked expansion of corticolous and anthropogenic substrates since the site was first surveyed in 1899. Reexamination of 116 vouchers deposited in MIN and the PNM herbarium led to the exclusion of 48 species previously reported from the site. Crustose lichens are the most common growth form, comprising 65% of the lichen diversity. Sioux Quartzite provided substrate for 43% of the lichen taxa collected. Saxicolous lichen communities were characterized by sampling four transects on cliff faces and low outcrops. An annotated checklist of the lichens of the site is provided, as well as a list of excluded taxa. We report 24 species (including 22 lichens and two lichenicolous fungi) new for Minnesota: Acarospora boulderensis, A. contigua, A. erythrophora, A. strigata, Agonimia opuntiella, Arthonia clemens, A. muscigena, Aspicilia americana, Bacidina delicata, Buellia tyrolensis, Caloplaca flavocitrina, C. lobulata, C.
    [Show full text]
  • Taxonomy of Cladonia Angustiloba and Related Species
    Taxonomy of Cladonia angustiloba and related species Raquel PINO-BODAS, Ana Rosa BURGAZ, Teuvo AHTI, Soili STENROOS R. Pino-Bodas, Real Jardín Botánico de Madrid, CSIC, Spain, [email protected] A.R. Burgaz, Departamento de Biología Vegetal 1, Universidad Complutense de Madrid, Spain T. Ahti, S. Stenroos, Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland Abstract: The lichen species Cladonia angustiloba is characterized by a well- developed primary thallus, and narrow squamules, which show deep incisions and presence of usnic and fumarprotocetraric acids. Morphologically it is similar to C. foliacea and C. convoluta, from which it can be distiguished by the squamule size and morphology. In this study, the species delimitation within the C. foliacea complex has been studied by sequencing three loci, ITS rDNA, cox1 and rpb2. The data were analyzed by means of phylogenetic and species delimitation methods (GMYC, PTP, ABGD and BPP). Our results show that none of the three species is monophyletic. Most of the species delimitation methods did not support the current species as evolutionary lineages. Only some of the BPP analyses supported that C. angustiloba is a different species from C. foliacea and C. convoluta. However, the hypothesis that considers the C. foliacea complex as constituted by a unique species obtained the best Bayes Factor value. Therefore, C. angustiloba and C. convoluta are synonymized with C. foliacea. A new, thoroughly checked synonymy with typifications of the whole C. foliacea complex is presented. An updated survey of the world distribution data was compiled. Key words: Cladonia, lichens, Macaronesia, molecular systematics, species delimitation Introduction 1 Cladonia is one of the most diverse macrolichen genera, with 470 species recognized at present (Ahti 2017, pers.
    [Show full text]
  • Foliicolous Lichens and Their Lichenicolous Fungi Collected During the Smithsonian International Cryptogamic Expedition to Guyana 1996
    45 Tropical Bryology 15: 45-76, 1998 Foliicolous lichens and their lichenicolous fungi collected during the Smithsonian International Cryptogamic Expedition to Guyana 1996 Robert Lücking Lehrstuhl für Pflanzensystematik, Universität Bayreuth, D-95447 Bayreuth, Germany Abstract: A total of 233 foliicolous lichen species and 18 lichenicolous fungi are reported from Guyana as a result of the Smithsonian „International Cryptogamic Expedition to Guyana“ 1996. Three lichens and two lichenicolous fungi are new to science: Arthonia grubei sp.n., Badimia subelegans sp.n., Calopadia pauciseptata sp.n., Opegrapha matzeri sp.n. (lichenicolous on Amazonomyces sprucei), and Pyrenidium santessonii sp.n. (lichenicolous on Bacidia psychotriae). The new combination Strigula janeirensis (Bas.: Phylloporina janeirensis; syn.: Raciborskiella janeirensis) is proposed. Apart from Amazonomyces sprucei and Bacidia psychotriae, Arthonia lecythidicola (with the lichenicolous A. pseudopegraphina) and Byssolecania deplanata (with the lichenicolous Opegrapha cf. kalbii) are reported as new hosts for lichenicolous fungi. Arthonia pseudopegraphina growing on A. lecythidicola is the first known case of adelphoparasitism at generic level in foliicolous Arthonia. Arthonia flavoverrucosa, Badimia polillensis, and Byssoloma vezdanum are new records for the Neotropics, and 115 species are new for Guyana, resulting in a total of c. 280 genuine foliicolous species reported for that country, while Porina applanata and P. verruculosa are excluded from its flora. The foliicolous lichen flora of Guyana is representative for the Guianas (Guyana, Suriname, French Guiana) and has great affinities with the Amazon region, while the degree of endemism is low. A characteristic species for this area is Amazonomyces sprucei. Species composition is typical of Neotropical lowland to submontane humid forests, with a dominance of the genera Porina, Strigula, and Mazosia.
    [Show full text]
  • Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
    Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A.
    [Show full text]
  • 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families ⇑ Jolanta Miadlikowska A, , Frank Kauff B,1, Filip Högnabba C, Jeffrey C
    Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, Soili Stenroos c,10 a Department of Biology, Duke University, Durham, NC 27708-0338, USA b FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany c Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland d Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA e Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria f Department of Plant Taxonomy and Nature Conservation, University of Gdan´sk, ul. Wita Stwosza 59, 80-308 Gdan´sk, Poland g Science and Education, The Field Museum, 1400 S.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • Mycologieycologie 2021 ● 42 ● 1 DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno DAVID Président Du Muséum National D’Histoire Naturelle
    cryptogamie MMycologieycologie 2021 ● 42 ● 1 DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno DAVID Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Bart BUYCK ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Marianne SALAÜN ([email protected]) MISE EN PAGE / PAGE LAYOUT : Marianne SALAÜN RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS : Slavomír ADAMČÍK Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523, Bratislava (Slovakia) André APTROOT ABL Herbarium, G.v.d. Veenstraat 107, NL-3762 XK Soest (The Netherlands) Cony DECOCK Mycothèque de l’Université catholique de Louvain, Earth and Life Institute, Microbiology, Université catholique de Louvain, Croix du Sud 3, B-1348 Louvain-la-Neuve (Belgium) André FRAITURE Botanic Garden Meise, Domein van Bouchout, B-1860 Meise (Belgium) Kevin D. HYDE School of Science, Mae Fah Luang University, 333 M. 1 T.Tasud Muang District, Chiang Rai 57100 (Thailand) Valérie HOFSTETTER Station de recherche Agroscope Changins-Wädenswil, Dépt. Protection des plantes, Mycologie, CH-1260 Nyon 1 (Switzerland) Sinang HONGSANAN College of Life Science and Oceanography, Shenzhen University, 1068, Nanhai Avenue, Nanshan, ShenZhen 518055 (China) Egon HORAK Schlossfeld 17, A-6020 Innsbruck (Austria) Jing LUO Department of Plant Biology & Pathology, Rutgers University New Brunswick, NJ 08901 (United States) Ruvishika S. JAYAWARDENA Center of Excellence in Fungal Research, Mae Fah Luang University, 333 M. 1 T.Tasud Muang District, Chiang Rai 57100 (Thailand) Chen JIE Instituto de Ecología, Xalapa 91070, Veracruz (México) Sajeewa S.N. MAHARCHCHIKUMBURA Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University (Oman) Pierre-Arthur MOREAU UE 7144.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • A Field Guide to Biological Soil Crusts of Western U.S. Drylands Common Lichens and Bryophytes
    A Field Guide to Biological Soil Crusts of Western U.S. Drylands Common Lichens and Bryophytes Roger Rosentreter Matthew Bowker Jayne Belnap Photographs by Stephen Sharnoff Roger Rosentreter, Ph.D. Bureau of Land Management Idaho State Office 1387 S. Vinnell Way Boise, ID 83709 Matthew Bowker, Ph.D. Center for Environmental Science and Education Northern Arizona University Box 5694 Flagstaff, AZ 86011 Jayne Belnap, Ph.D. U.S. Geological Survey Southwest Biological Science Center Canyonlands Research Station 2290 S. West Resource Blvd. Moab, UT 84532 Design and layout by Tina M. Kister, U.S. Geological Survey, Canyonlands Research Station, 2290 S. West Resource Blvd., Moab, UT 84532 All photos, unless otherwise indicated, copyright © 2007 Stephen Sharnoff, Ste- phen Sharnoff Photography, 2709 10th St., Unit E, Berkeley, CA 94710-2608, www.sharnoffphotos.com/. Rosentreter, R., M. Bowker, and J. Belnap. 2007. A Field Guide to Biological Soil Crusts of Western U.S. Drylands. U.S. Government Printing Office, Denver, Colorado. Cover photos: Biological soil crust in Canyonlands National Park, Utah, cour- tesy of the U.S. Geological Survey. 2 Table of Contents Acknowledgements ....................................................................................... 4 How to use this guide .................................................................................... 4 Introduction ................................................................................................... 4 Crust composition ..................................................................................
    [Show full text]