Kidins220/ARMS As a Functional Mediator of Multiple Receptor Signalling Pathways

Total Page:16

File Type:pdf, Size:1020Kb

Kidins220/ARMS As a Functional Mediator of Multiple Receptor Signalling Pathways Commentary 1845 Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways Veronika E. Neubrand1,*, Fabrizia Cesca2,*, Fabio Benfenati2 and Giampietro Schiavo3,` 1Instituto de Parasitologı´a y Biomedicina Lo´pez-Neyra, IPBLN-CSIC, Avda. Conocimiento S/N, 18100 Armilla, Granada, Spain 2Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy 3Molecular Neuropathology Laboratory Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK *These authors contributed equally to this work `Author for correspondence ([email protected]) Journal of Cell Science 125, 1845–1854 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.102764 Summary An increasing body of evidence suggests that several membrane receptors – in addition to activating distinct signalling cascades – also engage in substantial crosstalk with each other, thereby adjusting their signalling outcome as a function of specific input information. However, little is known about the molecular mechanisms that control their coordination and integration of downstream signalling. A protein that is likely to have a role in this process is kinase-D-interacting substrate of 220 kDa [Kidins220, also known as ankyrin repeat- rich membrane spanning (ARMS), hereafter referred to as Kidins220/ARMS]. Kidins220/ARMS is a conserved membrane protein that is preferentially expressed in the nervous system and interacts with the microtubule and actin cytoskeleton. It interacts with neurotrophin, ephrin, vascular endothelial growth factor (VEGF) and glutamate receptors, and is a common downstream target of several trophic stimuli. Kidins220/ARMS is required for neuronal differentiation and survival, and its expression levels modulate synaptic plasticity. Kidins220/ARMS knockout mice show developmental defects mainly in the nervous and cardiovascular systems, suggesting a crucial role for this protein in modulating the cross talk between different signalling pathways. In this Commentary, we summarise existing knowledge regarding the physiological functions of Kidins220/ARMS, and highlight some interesting directions for future studies on the role of this protein in health and disease. Key words: Kidins220/ARMS, Neuronal differentiation, Neurotrophins, RTK signalling, Synaptic plasticity Introduction The vast majority of these ligands perform their physiological Journal of Cell Science The correct development of the nervous system relies on functions through plasma membrane receptors that have tyrosine the ability of axons and dendrites to recognise their targets. kinase activity – the receptor tyrosine kinases (RTKs) – which During this highly regulated process, neurons migrate and form results in distinct signalling outputs and cellular effects. functional connections in response to gradients of growth factors However, how RTKs mediate such diverse biological that regulate multiple neuronal functions, including cell outcomes by starting from a common subset of signalling survival, differentiation and synaptic plasticity (Bibel and molecules – such as the Ras protein family, the extracellular Barde, 2000; Chao, 2003; Huang and Reichardt, 2003). The regulated kinases (ERKs; also known as mitogen activated neurotrophin (NT) family is one of the best-characterised groups protein kinases, MAPKs), Akt and phospholipase Cc (PLCc)– of neurotrophic factors and includes nerve growth factor (NGF), is presently unclear. The signal specificity of NT receptors is brain derived neurotrophic factor (BDNF), and neurotrophin-3 tuned by a number of factors, including the repertoire of Trk (NT3) and -4 (NT4, also known as NT4/5) (Huang and receptors and the level of p75NTR expressed by a particular Reichardt, 2001). Neurotrophins bind with high affinity to neuron, which determine the subset of neurotrophins to which a three related tropomyosin receptor kinases (Trks): NGF binds particular neuron would respond (Clary and Reichardt, 1994; mainly to TrkA, whereas BDNF and NT4/5 bind mainly to Strohmaier et al., 1996; Hapner et al., 1998; Palko et al., 1999; TrkB, and NT3 to TrkC. In addition, all neurotrophins also bind Stoilov et al., 2002). Upon binding of NTs, Trk receptors dimerise to the p75 neurotrophin receptor (p75NTR, also known as and cross-phosphorylate each other. Activated Trk receptors are NGFR), a member of the tumour necrosis factor (TNF)-receptor then able to recruit a number of adaptors through their superfamily (Bibel and Barde, 2000). Other growth factors that phosphorylated residues. At the intracellular level, availability of are paramount in neuronal growth and development are the different substrates or adaptors could, thus, control signalling glial-cell-line-derived neurotrophic factor (GDNF), which acts downstream of Trk receptors (Lee et al., 2001). Additionally, the through the Ret tyrosine kinase receptor, and the GDNF family response to neurotrophin signals depends on the temporal and receptor a (GFRa) (Paratcha and Ledda, 2008). In addition, spatial pattern of stimulation. Thus, transient or sustained trophic factors such as the VEGF and the ephrin–ephrin-receptor activation of the MAPK, phosphoinositide kinase-3 (PI3K) or (ephrin–Eph) families have crucial roles both inside and outside Akt pathways mediates distinct cellular effects, for example by the nervous system (Klein, 2009; Ruiz de Almodovar et al., promoting a local and fast response at the growth cone 2009). compared with a slower response at distal sites, such as the 1846 Journal of Cell Science 125 (8) soma (Marshall, 1995; Kuruvilla et al., 2000; Watson et al., Kidins220/ARMS is a multifunctional scaffolding protein 2001). To add a further level of complexity, different receptors Kidins220/ARMS was initially identified as a substrate for can interact with each other. For example, p75NTR is found in protein kinase D (PKD) in neural cells (Iglesias et al., 2000), and complex with Trk, sortilin-1 (Sorl1) or Nogo (RTN4R) receptors independently characterised as a downstream target of the (Bronfman and Fainzilber, 2004), whereas TrkB interacts with signalling mediated by neurotrophins and ephrins (Kong et al., ephrin-A7 and EphA5 (Fitzgerald et al., 2008; Marler et al., 2001). Kidins220/ARMS is an integral membrane protein, 2008). Similarly, GDNFaR, Ret tyrosine kinase and containing four transmembrane segments in the central part of protocadherins cooperate to regulate neuronal survival the molecule, and N- and C-terminal tails both exposed to the (Schalm et al., 2010), and the interaction between EphB and cytoplasm (Fig. 1). Sequence analysis of Kidins220/ARMS N-methyl-D-aspartate (NMDA) receptors – an important class revealed the presence of numerous domains that mediate of glutamate receptors – is crucial for the modulation of synaptic protein–protein interactions. The N-terminus of Kidins220/ plasticity (Dalva et al., 2000; Henderson et al., 2001). Thus, a ARMS contains eleven ankyrin repeats (residues 37–398 in the complex interplay between the repertoire of receptors and the mouse sequence), which form a concave binding surface that is availability of downstream effectors ultimately determines the accessible to molecular partners, such as the Rho–guanine response of a neuron to a given stimulus. nucleotide exchange factor (RhoGEF) Trio (Neubrand et al., A common downstream effector of these pathways is the 2010). Kidins220/ARMS has been included in the Kidins220/ scaffolding protein Kidins220/ARMS. In mice, embryos that lack ARMS and PifA (KAP) family of P-loop nucleotide phosphatases Kidins220/ARMS die at birth, indicating that this protein is (NTPases). P-loop NTPases contain Walker A and Walker B essential for life. In addition to a variety of neuronal phenotypes, motifs (WA and WB, respectively) (Higgins et al., 1988), which these embryos show severe defects in vascular development and are often involved in the binding of nucleotides and have been cardiac malformations, which are likely to be the cause of death identified in the juxtamembrane regions flanking the N- and C- (Cesca et al., 2011; Cesca et al., 2012). Mutants of Kidins220/ terminus of Kidins220/ARMS. Members of this family are ARMS have been described in Caenorhabditis elegans (tag-114) predicted to mediate the assembly of protein complexes that are and Drosophila melanogaster (Dmel\CG42672) (see also http:// associated with the inner surface of cell membranes (Aravind www.wormbase.org/ and http://flybase.org/). However, only a et al., 2004). Interestingly, Kidins220/ARMS binds ATP partial phenotypic characterisation of these mutants has been (Teresa Iglesias and G.S., unpublished), although a functional provided so far, making the analysis performed in mice the most role for its Walker motifs has so far not been established. Thus, informative to date. further work is required to establish whether Kidins220/ARMS NT VEGF ephrin-A1 Journal of Cell Science Glut VEGFRs p75NTR NMDAR Trks AMPAR EphA4 α-syntrophin S-SCAM Neuronal survival and/or K891 Vascular death upon excitotoxicity PKD S919 Trk signalling development from endosomes Jak–Stat signalling Exit from TGN Y1096 SCG10 Localisation Kinesin-1 Synapse development SCLIP to lipid rafts CrkL MAP1a, 1b, 2 Trio Sustained MAPK activation MT cytoskeleton Connection to actin Neuronal differentiation and MT cytoskeleton Key Walker A, B KIM Caspase-3 site Transmembrane region Proline-rich domain PDZ-binding motif Ubiquitylation site Ankyrin repeat SAM domain
Recommended publications
  • The Receptor Tyrosine Kinase Trka Is Increased and Targetable in HER2-Positive Breast Cancer
    biomolecules Article The Receptor Tyrosine Kinase TrkA Is Increased and Targetable in HER2-Positive Breast Cancer Nathan Griffin 1,2, Mark Marsland 1,2, Severine Roselli 1,2, Christopher Oldmeadow 2,3, 2,4 2,4 1,2, , 1,2, John Attia , Marjorie M. Walker , Hubert Hondermarck * y and Sam Faulkner y 1 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; nathan.griffi[email protected] (N.G.); [email protected] (M.M.); [email protected] (S.R.); [email protected] (S.F.) 2 Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia; [email protected] (C.O.); [email protected] (J.A.); [email protected] (M.M.W.) 3 School of Mathematical and Physical Sciences, Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia 4 School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia * Correspondence: [email protected]; Tel.: +61-2492-18830; Fax: +61-2492-16903 Contributed equally to the study. y Received: 19 August 2020; Accepted: 15 September 2020; Published: 17 September 2020 Abstract: The tyrosine kinase receptor A (NTRK1/TrkA) is increasingly regarded as a therapeutic target in oncology. In breast cancer, TrkA contributes to metastasis but the clinicopathological significance remains unclear. In this study, TrkA expression was assessed via immunohistochemistry of 158 invasive ductal carcinomas (IDC), 158 invasive lobular carcinomas (ILC) and 50 ductal carcinomas in situ (DCIS).
    [Show full text]
  • Stress Hormones Trk Neurons Into Survival
    RESEA r CH HIGHLIGHTS M olec U lar ne U roscience Similar to the in vivo experi- ments, Dex treatment of cultured neurons did not increase levels of Stress hormones Trk BDNF, NGF or NT3, suggesting that the neuroprotective effect of Dex is independent of neurotrophin release. neurons into survival Administration of an inhibitor of the PI3K–AKT pathway abolished Dex- which adult neurogenesis occurs. mediated neuroprotection, whereas Surprisingly, Dex administration did adding a Trk inhibitor only reduced not alter levels of the neurotrophins it; thus, glucocorticoids might also nerve growth factor (NGF), brain- stimulate the PI3K–AKT pathway derived neurotrophic factor (BDNF) through a route that does not involve and neurotrophin 3 (NT3) in the hip- TrkB phosphorylation. pocampus or in the parietal cortex, The mechanism by which gluco- indicating that the phosphorylation corticoids activate Trks is unknown of TrkB by glucocorticoids did not but probably involves the gluco- require increased neurotrophin corticoid receptor, as addition of a production. glucocorticoid receptor antagonist Phosphorylated Trks are activated abolished Dex-mediated neuropro- tyrosine kinases, which can phospho- tection. The glucocorticoid effects rylate other proteins. Thus, adding were slow and lasted for several Glucocorticoids have a bad reputa- Dex or BDNF (the main ligand for hours, which is suggestive of genomic tion. However, although these stress the TrkB receptor) to cortical slices actions. Indeed, Trk activation by hormones can be neurotoxic in activated TrkB and phosphorylated Dex could be abolished by actinomy- high levels, they are also required the intracellular signalling molecules cin D and cycloheximine, inhibitors for neuronal survival, and they AKT, phospholipase Cγ (PLCγ) and of transcription and translation, promote neuronal growth and dif- extracellular signal-regulated kinase respectively.
    [Show full text]
  • Differential Effects of Dehydroepiandrosterone and Testosterone in Prostate and Colon Cancer Cell Apoptosis: the Role of Nerve Growth Factor (NGF) Receptors
    DHEA e testosterona e apoptose no câncer de próstata e de colon, papel do NGF – fator de crescimento neural. Differential effects of dehydroepiandrosterone and testosterone in prostate and colon cancer cell apoptosis: the role of nerve growth factor (NGF) receptors. Anagnostopoulou V1, Pediaditakis I, Alkahtani S, Alarifi SA, Schmidt EM, Lang F, Gravanis A, Charalampopoulos I, Stournaras C. Endocrinology. 2013 Jul;154(7):2446-56. Author information 1 Department of Biochemistry, University of Crete Medical School, GR-71003 Heraklion, Greece. Abstract Tumor growth is fostered by inhibition of cell death, which involves the receptiveness of tumor to growth factors and hormones. We have recently shown that testosterone exerts proapoptotic effects in prostate and colon cancer cells through a membrane-initiated mechanism. In addition, we have recently reported that dehydroepiandrosterone (DHEA) can control cell fate, activating nerve growth factor (NGF) receptors, namely tropomyosin-related kinase (Trk)A and p75 neurotrophin receptor, in primary neurons and in PC12 tumoral cells. NGF was recently involved in cancer cell proliferation and apoptosis. In the present study, we explored the cross talk between androgens (testosterone and DHEA) and NGF in regulating apoptosis of prostate and colon cancer cells. DHEA and NGF strongly blunted serum deprivation-induced apoptosis, whereas testosterone induced apoptosis of both cancer cell lines. The antiapoptotic effect of both DHEA and NGF was completely reversed by testosterone. In line with this, DHEA or NGF up-regulated, whereas testosterone down- regulated, the expression of TrkA receptor. The effects of androgens were abolished in both cell lines in the presence of TrkA inhibitor. DHEA induced the phosphorylation of TrkA and the interaction of p75 neurotrophin receptor with its effectors, Rho protein GDP dissociation inhibitor and receptor interacting serine/threonine-protein kinase 2.
    [Show full text]
  • Wnt/Β-Catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish
    Wnt/β-catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish Nicholas Stockton Strand A dissertation Submitted in partial fulfillment of the Requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Randall Moon, Chair Neil Nathanson Ronald Kwon Program Authorized to Offer Degree: Pharmacology ©Copyright 2016 Nicholas Stockton Strand University of Washington Abstract Wnt/β-catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish Nicholas Stockton Strand Chair of the Supervisory Committee: Professor Randall T Moon Department of Pharmacology The ability to regenerate tissue after injury is limited by species, tissue type, and age of the organism. Understanding the mechanisms of endogenous regeneration provides greater insight into this remarkable biological process while also offering up potential therapeutic targets for promoting regeneration in humans. The Wnt/β-catenin signaling pathway has been implicated in zebrafish regeneration, including the fin and nervous system. The body of work presented here expands upon the role of Wnt/β-catenin signaling in regeneration, characterizing roles for Wnt/β-catenin signaling in multiple tissues. We show that cholinergic signaling is required for blastema formation and Wnt/β-catenin signaling initiation in the caudal fin, and that overexpression of Wnt/β-catenin ligand is sufficient to rescue blastema formation in fins lacking cholinergic activity. Next, we characterized the glial response to Wnt/β-catenin signaling after spinal cord injury, demonstrating that Wnt/β-catenin signaling is necessary for recovery of motor function and the formation of bipolar glia after spinal cord injury. Lastly, we defined a role for Wnt/β-catenin signaling in heart regeneration, showing that cardiomyocyte proliferation is regulated by Wnt/β-catenin signaling.
    [Show full text]
  • Human NT4 / Neurotrophin 5 ELISA Kit (ARG81416)
    Product datasheet [email protected] ARG81416 Package: 96 wells Human NT4 / Neurotrophin 5 ELISA Kit Store at: 4°C Component Cat. No. Component Name Package Temp ARG81416-001 Antibody-coated 8 X 12 strips 4°C. Unused strips microplate should be sealed tightly in the air-tight pouch. ARG81416-002 Standard 2 X 10 ng/vial 4°C ARG81416-003 Standard/Sample 30 ml (Ready to use) 4°C diluent ARG81416-004 Antibody conjugate 1 vial (100 µl) 4°C concentrate (100X) ARG81416-005 Antibody diluent 12 ml (Ready to use) 4°C buffer ARG81416-006 HRP-Streptavidin 1 vial (100 µl) 4°C concentrate (100X) ARG81416-007 HRP-Streptavidin 12 ml (Ready to use) 4°C diluent buffer ARG81416-008 25X Wash buffer 20 ml 4°C ARG81416-009 TMB substrate 10 ml (Ready to use) 4°C (Protect from light) ARG81416-010 STOP solution 10 ml (Ready to use) 4°C ARG81416-011 Plate sealer 4 strips Room temperature Summary Product Description ARG81416 Human NT4 / Neurotrophin 5 ELISA Kit is an Enzyme Immunoassay kit for the quantification of Human NT4 / Neurotrophin 5 in serum and cell culture supernatants. Tested Reactivity Hu Tested Application ELISA Specificity There is no detectable cross-reactivity with other relevant proteins. Target Name NT4 / Neurotrophin 5 Conjugation HRP Conjugation Note Substrate: TMB and read at 450 nm. Sensitivity 15.6 pg/ml Sample Type Serum and cell culture supernatants. Standard Range 31.2 - 2000 pg/ml Sample Volume 100 µl www.arigobio.com 1/2 Precision Intra-Assay CV: 6.6% Inter-Assay CV: 7.7% Alternate Names NTF5; NT-4/5; NT5; NT4; GLC10; GLC1O; NT-5; NT-4; Neurotrophin-4; Neurotrophin-5; Neutrophic factor 4 Application Instructions Assay Time ~ 5 hours Properties Form 96 well Storage instruction Store the kit at 2-8°C.
    [Show full text]
  • Expression of the Neurotrophic Tyrosine Kinase Receptors, Ntrk1 and Ntrk2a, Precedes Expression of Other Ntrk Genes in Embryonic Zebrafish
    Expression of the neurotrophic tyrosine kinase receptors, ntrk1 and ntrk2a, precedes expression of other ntrk genes in embryonic zebrafish Katie Hahn, Paul Manuel and Cortney Bouldin Department of Biology, Appalachian State University, Boone, NC, USA ABSTRACT Background: The neurotrophic tyrosine kinase receptor (Ntrk) gene family plays a critical role in the survival of somatosensory neurons. Most vertebrates have three Ntrk genes each of which encode a Trk receptor: TrkA, TrkB, or TrkC. The function of the Trk receptors is modulated by the p75 neurotrophin receptors (NTRs). Five ntrk genes and one p75 NTR gene (ngfrb) have been discovered in zebrafish. To date, the expression of these genes in the initial stages of neuron specification have not been investigated. Purpose: The present work used whole mount in situ hybridization to analyze expression of the five ntrk genes and ngfrb in zebrafish at a timepoint when the first sensory neurons of the zebrafish body are being established (16.5 hpf). Because expression of multiple genes were not found at this time point, we also checked expression at 24 hpf to ensure the functionality of our six probes. Results: At 16.5 hpf, we found tissue specific expression of ntrk1 in cranial ganglia, and tissue specific expression of ntrk2a in cranial ganglia and in the spinal cord. Other genes analyzed at 16.5 hpf were either diffuse or not detected. At 24 hpf, we found expression of both ntrk1 and ntrk2a in the spinal cord as well as in multiple cranial ganglia, and we identified ngfrb expression in cranial ganglia at 24 hpf.
    [Show full text]
  • The Impact of Neurotrophin-3 on the Dorsal Root Transitional Zone Following Injury
    Spinal Cord (2008) 46, 804–810 & 2008 International Spinal Cord Society All rights reserved 1362-4393/08 $32.00 www.nature.com/sc ORIGINAL ARTICLE The impact of neurotrophin-3 on the dorsal root transitional zone following injury AT Hanna-Mitchell1, D O’Leary1, MS Mobarak1, MS Ramer2, SB McMahon3, JV Priestley4, EN Kozlova5, H Aldskogius5, P Dockery6 and JP Fraher1 1Department of Anatomy/Neuroscience, BioSciences Institute, National University of Ireland, Cork, Ireland; 2CORD (Collaboration on Repair Discoveries), University of British Columbia, Vancouver, Canada; 3Neurorestoration Group, Wolfson Centre for Age Related Diseases, Kings College London, London, UK; 4Neuroscience Centre, Institute of Cell and Molecular Science, Queen Mary University of London, London, UK; 5Department of Neuroscience, Biomedical Centre, Uppsala University, Uppsala, Sweden and 6Department of Anatomy, National University of Ireland, Galway, Ireland Study design: Morphological and Stereological assessment of the dorsal root transitional zone (DRTZ) following complete crush injury, using light microscopy (LM) and transmission electron microscopy (TEM). Objectives: To assess the effect of exogenous neurotrophin-3 (NT-3) on the response of glial cells and axons to dorsal root damage. Setting: Department of Anatomy, University College Cork, Ireland and Department of Physiology, UMDS, University of London, UK. Methods: Cervical roots (C6-8) from rats which had undergone dorsal root crush axotomy 1 week earlier, in the presence (n ¼ 3) and absence (n ¼ 3) of NT-3, were processed for LM and TEM. Results: Unmyelinated axon number and size was greater in the DRTZ proximal (Central Nervous System; CNS) and distal (Peripheral Nervous System; PNS) compartments of NT-3-treated tissue.
    [Show full text]
  • Trkb Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders
    Int. J. Mol. Sci. 2013, 14, 10122-10142; doi:10.3390/ijms140510122 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review TrkB Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders Vivek K. Gupta 1,*, Yuyi You 1, Veer Bala Gupta 2, Alexander Klistorner 1,3 and Stuart L. Graham 1,3 1 Australian School of Advanced Medicine, Macquarie University, F10A, 2 Technology Place, North Ryde, Sydney, NSW 2109, Australia; E-Mails: [email protected] (Y.Y.); [email protected] (A.K.); [email protected] (S.L.G.) 2 Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; E-Mail: [email protected] 3 Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-2-98-123-537; Fax: +61-2-98-123-600. Received: 27 March 2013; in revised form: 27 April 2013 / Accepted: 28 April 2013 / Published: 13 May 2013 Abstract: The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4 (NT4). TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions.
    [Show full text]
  • Open Full Page
    1924 Vol. 8, 1924–1931, June 2002 Clinical Cancer Research The Neurotrophin-Trk Receptor Axes Are Critical for the Growth and Progression of Human Prostatic Carcinoma and Pancreatic Ductal Adenocarcinoma Xenografts in Nude Mice Sheila J. Miknyoczki,1 Weihua Wan, select types of nonneuronal human cancers, specifically Hong Chang, Pawel Dobrzanski, prostatic and pancreatic carcinomas. Bruce A. Ruggeri, Craig A. Dionne, and INTRODUCTION Karen Buchkovich The NT2 family of growth factors, NGF, BDNF, NT-3, Cephalon, Inc., West Chester, Pennsylvania 19380 NT-4/5, and their cognate receptors (trks A, B, C and the low-affinity NGF receptor, p75NGFR) have been implicated in ABSTRACT the paracrine growth regulation of a number of neuronal and Purpose: Aberrant expression of trk receptor kinases nonneuronal tumor types. Each NT binds to a specific trk and enhanced expression of various neurotrophins (NTs) receptor; trkA binds specifically to NGF, trkB binds to both have been implicated in the development and progression of BDNF and NT-4/5, and trkC binds primarily to NT-3. However, human prostatic carcinoma and pancreatic ductal adenocar- NT-3 can bind and activate trkA and trkB as well (1, 2). All NTs NGFR cinoma. We examined the antitumor efficacy of administra- bind with various affinities to p75 , a receptor implicated in tion of NT neutralizing antibodies on the growth of estab- the regulation of neuronal cell survival, and in the modulation of lished human prostatic carcinoma and pancreatic ductal NT affinity to the various trk receptor subtypes
    [Show full text]
  • Neurotrophins and Their Receptors: a Convergence Point for Many Signalling Pathways
    REVIEWS NEUROTROPHINS AND THEIR RECEPTORS: A CONVERGENCE POINT FOR MANY SIGNALLING PATHWAYS Moses V.Chao The neurotrophins are a family of proteins that are essential for the development of the vertebrate nervous system. Each neurotrophin can signal through two different types of cell surface receptor — the Trk receptor tyrosine kinases and the p75 neurotrophin receptor. Given the wide range of activities that are now associated with neurotrophins, it is probable that additional regulatory events and signalling systems are involved. Here, I review recent findings that neurotrophins, in addition to promoting survival and differentiation, exert various effects through surprising interactions with other receptors and ion channels. 5,6 LONG-TERM POTENTIATION The era of growth factor research began fifty years ago receptor . Despite considerable progress in understand- (LTP).An enduring increase in with the discovery of nerve growth factor (NGF). Since ing the roles of these receptors, additional mechanisms the amplitude of excitatory then, the momentum to study the NGF — or neu- are needed to explain the many cellular and synaptic postsynaptic potentials as a rotrophin — family has never abated because of their interactions that occur between neurons. An emerging result of high-frequency (tetanic) stimulation of afferent continuous capacity to provide new insights into neural view is that neurotrophin receptors act as sensors for var- pathways. It is measured both as function; the influence of neurotrophins spans from ious extracellular and intracellular inputs, and several the amplitude of excitatory developmental neurobiology to neurodegenerative and new mechanisms have recently been put forward. Here, I postsynaptic potentials and as psychiatric disorders. In addition to their classic effects will consider several ways in which Trk and p75 receptors the magnitude of the postsynaptic-cell population on neuronal cell survival, neurotrophins can also regu- might account for the unique effects of neurotrophins spike.
    [Show full text]
  • 8667.Full-Text.Pdf
    The Journal of Neuroscience, November 15, 1997, 17(22):8667–8675 Brain-Derived Neurotrophic Factor, Neurotrophin-3, and Neurotrophin-4 Complement and Cooperate with Each Other Sequentially during Visceral Neuron Development Wael M. ElShamy and Patrik Ernfors Department of Medical Biochemistry and Biophysics, Laboratory of Molecular Neurobiology, Doktorsringen 12A, Karolinska Institute, 171 77 Stockholm, Sweden The neurotrophins nerve growth factor (NGF), brain-derived they are essential in preventing the death of N/P ganglion neurotrophic factor (BDNF), neurotrophin-3 (NT3), and neurons during different periods of embryogenesis. Both NT3 neurotrophin-4 (NT4) are crucial target-derived factors control- and NT4 are crucial during the period of ganglion formation, ling the survival of peripheral sensory neurons during the em- whereas BDNF acts later in development. Many, but not all, of bryonic period of programmed cell death. Recently, NT3 has the NT3- and NT4-dependent neurons switch to BDNF at later also been found to act in a local manner on somatic sensory stages. We conclude that most of the N/P ganglion neurons precursor cells during early development in vivo. Culture stud- depend on more than one neurotrophin and that they act in a ies suggest that these cells switch dependency to NGF at later complementary as well as a collaborative manner in a devel- stages. The neurotrophins acting on the developing placode- opmental sequence for the establishment of a full complement derived visceral nodose/petrosal (N/P) ganglion neurons are
    [Show full text]
  • Combined C-Met/Trk Inhibition Overcomes Resistance to CDK4/6 Inhibitors In
    Author Manuscript Published OnlineFirst on May 29, 2018; DOI: 10.1158/0008-5472.CAN-17-3124 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Combined c-Met/Trk inhibition overcomes resistance to CDK4/6 inhibitors in Glioblastoma Inan Olmez1,*, Ying Zhang2, Laryssa Manigat1, Mouadh Benamar3,4, Breanna Brenneman1, Ichiro Nakano5, Jakub Godlewski6, Agnieszka Bronisz6, Jeongwu Lee7, Tarek Abbas3,4, Roger Abounader2, and Benjamin Purow1 1Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA. 2Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA. 3Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA. 4Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA. 5Department of Neurosurgery, University of Alabama, Birmingham, AL 35233, USA. 6Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA. 7Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA. Running title: c-Met/Trk activation drives resistance to CDK4/6 inhibition *Corresponding Author: Inan Olmez, M.D., University of Virginia, Old Medical School, Room 4885, 21 Hospital Drive, Charlottesville, VA 22908, USA. P: 434-892-6664, F: 434-982-4467, [email protected] or [email protected] Disclosure of Potential Conflicts of Interest: Authors declare no competing financial interests. Word count: 4080 Number of figures and tables: 5 figures and 1 table 1 Downloaded from cancerres.aacrjournals.org on September 24, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 29, 2018; DOI: 10.1158/0008-5472.CAN-17-3124 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]