Stress Hormones Trk Neurons Into Survival

Total Page:16

File Type:pdf, Size:1020Kb

Stress Hormones Trk Neurons Into Survival RESEA r CH HIGHLIGHTS M olec U lar ne U roscience Similar to the in vivo experi- ments, Dex treatment of cultured neurons did not increase levels of Stress hormones Trk BDNF, NGF or NT3, suggesting that the neuroprotective effect of Dex is independent of neurotrophin release. neurons into survival Administration of an inhibitor of the PI3K–AKT pathway abolished Dex- which adult neurogenesis occurs. mediated neuroprotection, whereas Surprisingly, Dex administration did adding a Trk inhibitor only reduced not alter levels of the neurotrophins it; thus, glucocorticoids might also nerve growth factor (NGF), brain- stimulate the PI3K–AKT pathway derived neurotrophic factor (BDNF) through a route that does not involve and neurotrophin 3 (NT3) in the hip- TrkB phosphorylation. pocampus or in the parietal cortex, The mechanism by which gluco- indicating that the phosphorylation corticoids activate Trks is unknown of TrkB by glucocorticoids did not but probably involves the gluco- require increased neurotrophin corticoid receptor, as addition of a production. glucocorticoid receptor antagonist Phosphorylated Trks are activated abolished Dex-mediated neuropro- tyrosine kinases, which can phospho- tection. The glucocorticoid effects rylate other proteins. Thus, adding were slow and lasted for several Glucocorticoids have a bad reputa- Dex or BDNF (the main ligand for hours, which is suggestive of genomic tion. However, although these stress the TrkB receptor) to cortical slices actions. Indeed, Trk activation by hormones can be neurotoxic in activated TrkB and phosphorylated Dex could be abolished by actinomy- high levels, they are also required the intracellular signalling molecules cin D and cycloheximine, inhibitors for neuronal survival, and they AKT, phospholipase Cγ (PLCγ) and of transcription and translation, promote neuronal growth and dif- extracellular signal-regulated kinase respectively. ferentiation and support synaptic (ERK), indicating downstream This study raises some interesting plasticity in the hippocampus. Chao activation of the phosphatidylinositol questions. For example, which genes and colleagues now show that, in 3-kinase (PI3K) pathway. are upregulated by glucocorticoids, rats, the neuroprotective effects of Because neurotrophins promote with Trk phosphorylation as a result? glucocorticoids are mediated by the neuronal survival by binding to Trk And do glucocorticoids also have activation of neurotrophin receptors. receptors, the authors investigated neuroprotective effects in vivo? The authors showed that elevated whether glucocorticoid-induced If they do, it will be interesting to levels of the endogenous glucocorti- activation of TrkB is also neuro- investigate why glucocorticoids coid corticosterone or administration protective. They removed trophic are associated with neurotoxicity of the synthetic glucocorticoid factors from the culture medium of in models of neuron death such as dexamethasone (Dex) resulted in primary hippocampal and cortical experimental hypoxia/ischaemia. phosphorylation of the neurotrophin neurons, a manipulation that nor- Leonie Welberg receptor TrkB in hippocampal cell mally induces apoptosis. However, lysates. In brain sections of Dex- treatment with Dex or BDNF ORIGINAL RESEARCH PAPER Jeanneteau, F., treated rats, phosphorylated TrkB rescued over 30% of neurons. Dex Garabedian, M. J. & Chao, M. V. Activation of Trk was detected in the subgranular and BDNF probably acted through neurotrophin receptors by glucocorticoids provides a neuroprotective effect. zone of the dentate gyrus and in the the same mechanism, as their effects Proc. Natl Acad. Sci. USA 105, 4862–4867 (2008) subventricular zone, two regions in were not additive. natUre reVieWs | NEUROSCIENCE VOlUMe 9 | MaY 2008 © 2008 Nature Publishing Group .
Recommended publications
  • Antidepressants Increase Human Hippocampal Neurogenesis By
    Molecular Psychiatry (2011) 16, 738–750 & 2011 Macmillan Publishers Limited All rights reserved 1359-4184/11 www.nature.com/mp ORIGINAL ARTICLE Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor C Anacker1,2,3, PA Zunszain1, A Cattaneo1,4, LA Carvalho1, MJ Garabedian5, S Thuret3, J Price3 and CM Pariante1,2 1King’s College London, Institute of Psychiatry, Section of Perinatal Psychiatry and Stress, Psychiatry and Immunology (SPI-lab), Department of Psychological Medicine, London, UK; 2National Institute for Health Research ‘Biomedical Research Centre for Mental Health’, Institute of Psychiatry and South London and Maudsley NHS Foundation Trust, London, UK; 3King’s College London, Institute of Psychiatry, Centre for the Cellular Basis of Behaviour (CCBB), London, UK; 4Genetics Unit, IRCCS San Giovanni di Dio, Brescia, Italy and 5Department of Microbiology, NYU School of Medicine, New York, NY, USA Antidepressants increase adult hippocampal neurogenesis in animal models, but the underlying molecular mechanisms are unknown. In this study, we used human hippocampal progenitor cells to investigate the molecular pathways involved in the antidepressant-induced modulation of neurogenesis. Because our previous studies have shown that antidepressants regulate glucocorticoid receptor (GR) function, we specifically tested whether the GR may be involved in the effects of these drugs on neurogenesis. We found that treatment (for 3–10 days) with the antidepressant, sertraline, increased neuronal differentiation via a GR-dependent mechanism. Specifically, sertraline increased both immature, double- cortin (Dcx)-positive neuroblasts ( þ 16%) and mature, microtubulin-associated protein-2 (MAP2)-positive neurons ( þ 26%). This effect was abolished by the GR-antagonist, RU486. Interestingly, progenitor cell proliferation, as investigated by 50-bromodeoxyuridine (BrdU) incorporation, was only increased when cells were co-treated with sertraline and the GR-agonist, dexamethasone, ( þ 14%) an effect which was also abolished by RU486.
    [Show full text]
  • The Antidepressant Effect of Testosterone an Effect Of
    Neurology, Psychiatry and Brain Research 32 (2019) 104–110 Contents lists available at ScienceDirect Neurology, Psychiatry and Brain Research journal homepage: www.elsevier.com/locate/npbr The antidepressant effect of testosterone: An effect of neuroplasticity? T ⁎ Andreas Walthera,b,c, , Joanna Marta Wasielewskad, Odette Leitere a Biological Psychology, Technische Universität Dresden, Dresden, Germany b Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland c Task Force on Men’s Mental Health of the World Federation of the Societies of Biological Psychiatry (WFSBP), Germany d Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Germany e Queensland Brain Institute (QBI), University of Queensland, St Lucia, QLD, 4072, Australia ARTICLE INFO ABSTRACT Keywords: Background: Rodent and human studies indicate that testosterone has an antidepressant effect. The mechanisms Testosterone via which testosterone exerts its antidepressant effect, however, remain to be elucidated. Some studies assume Depression downstream effects of testosterone on sexual function and vitality followed by improvement of mood. Emerging Men evidence suggests that testosterone may be acting in the brain within depression-relevant areas, whereby eli- Neurogenesis citing direct antidepressant effects, potentially via neuroplasticity. Neuroplasticity Methods: Literature was searched focusing on testosterone treatment and depression and depression-like be- Antidepressant havior. Due to the unilateral clinical use of testosterone in men and the different modes of action of sex hor- mones in the central nervous system in men and women, predominantly studies on male populations were identified. Results: The two proposed mechanisms via which testosterone might act as antidepressant in the central nervous system are the support of neuroplasticity as well as the activation of the serotonin system.
    [Show full text]
  • Differential Effects of Dehydroepiandrosterone and Testosterone in Prostate and Colon Cancer Cell Apoptosis: the Role of Nerve Growth Factor (NGF) Receptors
    DHEA e testosterona e apoptose no câncer de próstata e de colon, papel do NGF – fator de crescimento neural. Differential effects of dehydroepiandrosterone and testosterone in prostate and colon cancer cell apoptosis: the role of nerve growth factor (NGF) receptors. Anagnostopoulou V1, Pediaditakis I, Alkahtani S, Alarifi SA, Schmidt EM, Lang F, Gravanis A, Charalampopoulos I, Stournaras C. Endocrinology. 2013 Jul;154(7):2446-56. Author information 1 Department of Biochemistry, University of Crete Medical School, GR-71003 Heraklion, Greece. Abstract Tumor growth is fostered by inhibition of cell death, which involves the receptiveness of tumor to growth factors and hormones. We have recently shown that testosterone exerts proapoptotic effects in prostate and colon cancer cells through a membrane-initiated mechanism. In addition, we have recently reported that dehydroepiandrosterone (DHEA) can control cell fate, activating nerve growth factor (NGF) receptors, namely tropomyosin-related kinase (Trk)A and p75 neurotrophin receptor, in primary neurons and in PC12 tumoral cells. NGF was recently involved in cancer cell proliferation and apoptosis. In the present study, we explored the cross talk between androgens (testosterone and DHEA) and NGF in regulating apoptosis of prostate and colon cancer cells. DHEA and NGF strongly blunted serum deprivation-induced apoptosis, whereas testosterone induced apoptosis of both cancer cell lines. The antiapoptotic effect of both DHEA and NGF was completely reversed by testosterone. In line with this, DHEA or NGF up-regulated, whereas testosterone down- regulated, the expression of TrkA receptor. The effects of androgens were abolished in both cell lines in the presence of TrkA inhibitor. DHEA induced the phosphorylation of TrkA and the interaction of p75 neurotrophin receptor with its effectors, Rho protein GDP dissociation inhibitor and receptor interacting serine/threonine-protein kinase 2.
    [Show full text]
  • Trkb Receptor Controls Striatal Formation by Regulating the Number of Newborn Striatal Neurons
    TrkB receptor controls striatal formation by regulating the number of newborn striatal neurons Maryna Baydyuka, Theron Russella, Guey-Ying Liaoa, Keling Zangb, Juan Ji Ana, Louis French Reichardtb, and Baoji Xua,1 aDepartment of Pharmacology, Georgetown University Medical Center, Washington, DC 20057; and bDepartment of Physiology, University of California, San Francisco, CA 94158 Edited* by Michael P. Stryker, University of California, San Francisco, CA, and approved November 19, 2010 (received for review April 8, 2010) In the peripheral nervous system, target tissues control the final son disease (6, 7). Approximately 95% of striatal neurons are size of innervating neuronal populations by producing limited medium-sized spiny neurons (MSNs) with the rest being inter- amounts of survival-promoting neurotrophic factors during de- neurons (8). MSNs, which use γ-aminobutyric acid (GABA) as velopment. However, it remains largely unknown if the same a transmitter, are born in the lateral ganglionic eminence (LGE) principle works to regulate the size of neuronal populations in the and migrate to the striatum during embryogenesis (9). They are developing brain. Here we show that neurotrophin signaling divided into two populations based on their projection sites. mediated by the TrkB receptor controls striatal size by promoting MSNs at the origin of the direct pathway directly project to the the survival of developing medium-sized spiny neurons (MSNs). output nuclei of the basal ganglia, such as the internal segment of Selective deletion of the gene for the TrkB receptor in striatal the globus pallidus, the substantia nigra pars reticulata, and the progenitors, using the Dlx5/6-Cre transgene, led to a hindpaw- ventral pallidum.
    [Show full text]
  • Regulation of Adult Neurogenesis in Mammalian Brain
    International Journal of Molecular Sciences Review Regulation of Adult Neurogenesis in Mammalian Brain 1,2, 3, 3,4 Maria Victoria Niklison-Chirou y, Massimiliano Agostini y, Ivano Amelio and Gerry Melino 3,* 1 Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK; [email protected] 2 Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK 3 Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; [email protected] (M.A.); [email protected] (I.A.) 4 School of Life Sciences, University of Nottingham, Nottingham NG7 2HU, UK * Correspondence: [email protected] These authors contributed equally to this work. y Received: 18 May 2020; Accepted: 7 July 2020; Published: 9 July 2020 Abstract: Adult neurogenesis is a multistage process by which neurons are generated and integrated into existing neuronal circuits. In the adult brain, neurogenesis is mainly localized in two specialized niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. Neurogenesis plays a fundamental role in postnatal brain, where it is required for neuronal plasticity. Moreover, perturbation of adult neurogenesis contributes to several human diseases, including cognitive impairment and neurodegenerative diseases. The interplay between extrinsic and intrinsic factors is fundamental in regulating neurogenesis. Over the past decades, several studies on intrinsic pathways, including transcription factors, have highlighted their fundamental role in regulating every stage of neurogenesis. However, it is likely that transcriptional regulation is part of a more sophisticated regulatory network, which includes epigenetic modifications, non-coding RNAs and metabolic pathways.
    [Show full text]
  • Wnt/Β-Catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish
    Wnt/β-catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish Nicholas Stockton Strand A dissertation Submitted in partial fulfillment of the Requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Randall Moon, Chair Neil Nathanson Ronald Kwon Program Authorized to Offer Degree: Pharmacology ©Copyright 2016 Nicholas Stockton Strand University of Washington Abstract Wnt/β-catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish Nicholas Stockton Strand Chair of the Supervisory Committee: Professor Randall T Moon Department of Pharmacology The ability to regenerate tissue after injury is limited by species, tissue type, and age of the organism. Understanding the mechanisms of endogenous regeneration provides greater insight into this remarkable biological process while also offering up potential therapeutic targets for promoting regeneration in humans. The Wnt/β-catenin signaling pathway has been implicated in zebrafish regeneration, including the fin and nervous system. The body of work presented here expands upon the role of Wnt/β-catenin signaling in regeneration, characterizing roles for Wnt/β-catenin signaling in multiple tissues. We show that cholinergic signaling is required for blastema formation and Wnt/β-catenin signaling initiation in the caudal fin, and that overexpression of Wnt/β-catenin ligand is sufficient to rescue blastema formation in fins lacking cholinergic activity. Next, we characterized the glial response to Wnt/β-catenin signaling after spinal cord injury, demonstrating that Wnt/β-catenin signaling is necessary for recovery of motor function and the formation of bipolar glia after spinal cord injury. Lastly, we defined a role for Wnt/β-catenin signaling in heart regeneration, showing that cardiomyocyte proliferation is regulated by Wnt/β-catenin signaling.
    [Show full text]
  • Human NT4 / Neurotrophin 5 ELISA Kit (ARG81416)
    Product datasheet [email protected] ARG81416 Package: 96 wells Human NT4 / Neurotrophin 5 ELISA Kit Store at: 4°C Component Cat. No. Component Name Package Temp ARG81416-001 Antibody-coated 8 X 12 strips 4°C. Unused strips microplate should be sealed tightly in the air-tight pouch. ARG81416-002 Standard 2 X 10 ng/vial 4°C ARG81416-003 Standard/Sample 30 ml (Ready to use) 4°C diluent ARG81416-004 Antibody conjugate 1 vial (100 µl) 4°C concentrate (100X) ARG81416-005 Antibody diluent 12 ml (Ready to use) 4°C buffer ARG81416-006 HRP-Streptavidin 1 vial (100 µl) 4°C concentrate (100X) ARG81416-007 HRP-Streptavidin 12 ml (Ready to use) 4°C diluent buffer ARG81416-008 25X Wash buffer 20 ml 4°C ARG81416-009 TMB substrate 10 ml (Ready to use) 4°C (Protect from light) ARG81416-010 STOP solution 10 ml (Ready to use) 4°C ARG81416-011 Plate sealer 4 strips Room temperature Summary Product Description ARG81416 Human NT4 / Neurotrophin 5 ELISA Kit is an Enzyme Immunoassay kit for the quantification of Human NT4 / Neurotrophin 5 in serum and cell culture supernatants. Tested Reactivity Hu Tested Application ELISA Specificity There is no detectable cross-reactivity with other relevant proteins. Target Name NT4 / Neurotrophin 5 Conjugation HRP Conjugation Note Substrate: TMB and read at 450 nm. Sensitivity 15.6 pg/ml Sample Type Serum and cell culture supernatants. Standard Range 31.2 - 2000 pg/ml Sample Volume 100 µl www.arigobio.com 1/2 Precision Intra-Assay CV: 6.6% Inter-Assay CV: 7.7% Alternate Names NTF5; NT-4/5; NT5; NT4; GLC10; GLC1O; NT-5; NT-4; Neurotrophin-4; Neurotrophin-5; Neutrophic factor 4 Application Instructions Assay Time ~ 5 hours Properties Form 96 well Storage instruction Store the kit at 2-8°C.
    [Show full text]
  • Amitriptyline-Mediated Cognitive Enhancement in Aged 36Tg Alzheimer’S Disease Mice Is Associated with Neurogenesis and Neurotrophic Activity
    Amitriptyline-Mediated Cognitive Enhancement in Aged 36Tg Alzheimer’s Disease Mice Is Associated with Neurogenesis and Neurotrophic Activity Wayne Chadwick1, Nick Mitchell2, Jenna Caroll3, Yu Zhou1, Sung-Soo Park1, Liyun Wang1, Kevin G. Becker4, Yongqing Zhang4, Elin Lehrmann4, William H. Wood III4, Bronwen Martin5, Stuart Maudsley1* 1 Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America, 2 Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America, 3 Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 4 Genomics Unit, Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America, 5 Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America Abstract Approximately 35 million people worldwide suffer from Alzheimer’s disease (AD). Existing therapeutics, while moderately effective, are currently unable to stem the widespread rise in AD prevalence. AD is associated with an increase in amyloid beta (Ab) oligomers and hyperphosphorylated tau, along with cognitive impairment and neurodegeneration. Several antidepressants have shown promise in improving cognition and alleviating oxidative stress in AD but have failed as long- term therapeutics. In this study, amitriptyline, an FDA-approved tricyclic antidepressant, was administered orally to aged and cognitively impaired transgenic AD mice (36TgAD). After amitriptyline treatment, cognitive behavior testing demonstrated that there was a significant improvement in both long- and short-term memory retention. Amitriptyline treatment also caused a significant potentiation of non-toxic Ab monomer with a concomitant decrease in cytotoxic dimer Ab load, compared to vehicle-treated 36TgAD controls.
    [Show full text]
  • Expression of the Neurotrophic Tyrosine Kinase Receptors, Ntrk1 and Ntrk2a, Precedes Expression of Other Ntrk Genes in Embryonic Zebrafish
    Expression of the neurotrophic tyrosine kinase receptors, ntrk1 and ntrk2a, precedes expression of other ntrk genes in embryonic zebrafish Katie Hahn, Paul Manuel and Cortney Bouldin Department of Biology, Appalachian State University, Boone, NC, USA ABSTRACT Background: The neurotrophic tyrosine kinase receptor (Ntrk) gene family plays a critical role in the survival of somatosensory neurons. Most vertebrates have three Ntrk genes each of which encode a Trk receptor: TrkA, TrkB, or TrkC. The function of the Trk receptors is modulated by the p75 neurotrophin receptors (NTRs). Five ntrk genes and one p75 NTR gene (ngfrb) have been discovered in zebrafish. To date, the expression of these genes in the initial stages of neuron specification have not been investigated. Purpose: The present work used whole mount in situ hybridization to analyze expression of the five ntrk genes and ngfrb in zebrafish at a timepoint when the first sensory neurons of the zebrafish body are being established (16.5 hpf). Because expression of multiple genes were not found at this time point, we also checked expression at 24 hpf to ensure the functionality of our six probes. Results: At 16.5 hpf, we found tissue specific expression of ntrk1 in cranial ganglia, and tissue specific expression of ntrk2a in cranial ganglia and in the spinal cord. Other genes analyzed at 16.5 hpf were either diffuse or not detected. At 24 hpf, we found expression of both ntrk1 and ntrk2a in the spinal cord as well as in multiple cranial ganglia, and we identified ngfrb expression in cranial ganglia at 24 hpf.
    [Show full text]
  • Effects of Neuregulin-1 Administration on Neurogenesis in the Adult Mouse
    www.nature.com/scientificreports OPEN Effects of neuregulin-1 administration on neurogenesis in the adult mouse hippocampus, Received: 30 January 2016 Accepted: 04 July 2016 and characterization of immature Published: 29 July 2016 neurons along the septotemporal axis Ian Mahar1,2, Angus MacIsaac1, John Junghan Kim1, Calvin Qiang1, Maria Antonietta Davoli1, Gustavo Turecki1,2,3 & Naguib Mechawar1,2,3 Adult hippocampal neurogenesis is associated with learning and affective behavioural regulation. Its diverse functionality is segregated along the septotemporal axis from the dorsal to ventral hippocampus. However, features distinguishing immature neurons in these regions have yet to be characterized. Additionally, although we have shown that administration of the neurotrophic factor neuregulin-1 (NRG1) selectively increases proliferation and overall neurogenesis in the mouse ventral dentate gyrus (DG), likely through ErbB3, NRG1’s effects on intermediate neurogenic stages in immature neurons are unknown. We examined whether NRG1 administration increases DG ErbB3 phosphorylation. We labeled adultborn cells using BrdU, then administered NRG1 to examine in vivo neurogenic effects on immature neurons with respect to cell survival, morphology, and synaptogenesis. We also characterized features of immature neurons along the septotemporal axis. We found that neurogenic effects of NRG1 are temporally and subregionally specific to proliferation in the ventral DG. Particular morphological features differentiate immature neurons in the dorsal and ventral DG, and cytogenesis differed between these regions. Finally, we identified synaptic heterogeneity surrounding the granule cell layer. These results indicate neurogenic involvement of NRG1-induced antidepressant- like behaviour is particularly associated with increased ventral DG cell proliferation, and identify novel distinctions between dorsal and ventral hippocampal neurogenic development.
    [Show full text]
  • The Impact of Neurotrophin-3 on the Dorsal Root Transitional Zone Following Injury
    Spinal Cord (2008) 46, 804–810 & 2008 International Spinal Cord Society All rights reserved 1362-4393/08 $32.00 www.nature.com/sc ORIGINAL ARTICLE The impact of neurotrophin-3 on the dorsal root transitional zone following injury AT Hanna-Mitchell1, D O’Leary1, MS Mobarak1, MS Ramer2, SB McMahon3, JV Priestley4, EN Kozlova5, H Aldskogius5, P Dockery6 and JP Fraher1 1Department of Anatomy/Neuroscience, BioSciences Institute, National University of Ireland, Cork, Ireland; 2CORD (Collaboration on Repair Discoveries), University of British Columbia, Vancouver, Canada; 3Neurorestoration Group, Wolfson Centre for Age Related Diseases, Kings College London, London, UK; 4Neuroscience Centre, Institute of Cell and Molecular Science, Queen Mary University of London, London, UK; 5Department of Neuroscience, Biomedical Centre, Uppsala University, Uppsala, Sweden and 6Department of Anatomy, National University of Ireland, Galway, Ireland Study design: Morphological and Stereological assessment of the dorsal root transitional zone (DRTZ) following complete crush injury, using light microscopy (LM) and transmission electron microscopy (TEM). Objectives: To assess the effect of exogenous neurotrophin-3 (NT-3) on the response of glial cells and axons to dorsal root damage. Setting: Department of Anatomy, University College Cork, Ireland and Department of Physiology, UMDS, University of London, UK. Methods: Cervical roots (C6-8) from rats which had undergone dorsal root crush axotomy 1 week earlier, in the presence (n ¼ 3) and absence (n ¼ 3) of NT-3, were processed for LM and TEM. Results: Unmyelinated axon number and size was greater in the DRTZ proximal (Central Nervous System; CNS) and distal (Peripheral Nervous System; PNS) compartments of NT-3-treated tissue.
    [Show full text]
  • Neurotrophins and Their Receptors: a Convergence Point for Many Signalling Pathways
    REVIEWS NEUROTROPHINS AND THEIR RECEPTORS: A CONVERGENCE POINT FOR MANY SIGNALLING PATHWAYS Moses V.Chao The neurotrophins are a family of proteins that are essential for the development of the vertebrate nervous system. Each neurotrophin can signal through two different types of cell surface receptor — the Trk receptor tyrosine kinases and the p75 neurotrophin receptor. Given the wide range of activities that are now associated with neurotrophins, it is probable that additional regulatory events and signalling systems are involved. Here, I review recent findings that neurotrophins, in addition to promoting survival and differentiation, exert various effects through surprising interactions with other receptors and ion channels. 5,6 LONG-TERM POTENTIATION The era of growth factor research began fifty years ago receptor . Despite considerable progress in understand- (LTP).An enduring increase in with the discovery of nerve growth factor (NGF). Since ing the roles of these receptors, additional mechanisms the amplitude of excitatory then, the momentum to study the NGF — or neu- are needed to explain the many cellular and synaptic postsynaptic potentials as a rotrophin — family has never abated because of their interactions that occur between neurons. An emerging result of high-frequency (tetanic) stimulation of afferent continuous capacity to provide new insights into neural view is that neurotrophin receptors act as sensors for var- pathways. It is measured both as function; the influence of neurotrophins spans from ious extracellular and intracellular inputs, and several the amplitude of excitatory developmental neurobiology to neurodegenerative and new mechanisms have recently been put forward. Here, I postsynaptic potentials and as psychiatric disorders. In addition to their classic effects will consider several ways in which Trk and p75 receptors the magnitude of the postsynaptic-cell population on neuronal cell survival, neurotrophins can also regu- might account for the unique effects of neurotrophins spike.
    [Show full text]