On the Uniqueness of Diffeomorphism Symmetry in Conformal Field Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Weak Representation Theory in the Calculus of Relations Jeremy F
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2006 Weak representation theory in the calculus of relations Jeremy F. Alm Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mathematics Commons Recommended Citation Alm, Jeremy F., "Weak representation theory in the calculus of relations " (2006). Retrospective Theses and Dissertations. 1795. https://lib.dr.iastate.edu/rtd/1795 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Weak representation theory in the calculus of relations by Jeremy F. Aim A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Roger Maddux, Major Professor Maria Axenovich Paul Sacks Jonathan Smith William Robinson Iowa State University Ames, Iowa 2006 Copyright © Jeremy F. Aim, 2006. All rights reserved. UMI Number: 3217250 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
Geometric Representation Theory, Fall 2005
GEOMETRIC REPRESENTATION THEORY, FALL 2005 Some references 1) J. -P. Serre, Complex semi-simple Lie algebras. 2) T. Springer, Linear algebraic groups. 3) A course on D-modules by J. Bernstein, availiable at www.math.uchicago.edu/∼arinkin/langlands. 4) J. Dixmier, Enveloping algebras. 1. Basics of the category O 1.1. Refresher on semi-simple Lie algebras. In this course we will work with an alge- braically closed ground field of characteristic 0, which may as well be assumed equal to C Let g be a semi-simple Lie algebra. We will fix a Borel subalgebra b ⊂ g (also sometimes denoted b+) and an opposite Borel subalgebra b−. The intersection b+ ∩ b− is a Cartan subalgebra, denoted h. We will denote by n, and n− the unipotent radicals of b and b−, respectively. We have n = [b, b], and h ' b/n. (I.e., h is better to think of as a quotient of b, rather than a subalgebra.) The eigenvalues of h acting on n are by definition the positive roots of g; this set will be denoted by ∆+. We will denote by Q+ the sub-semigroup of h∗ equal to the positive span of ∆+ (i.e., Q+ is the set of eigenvalues of h under the adjoint action on U(n)). For λ, µ ∈ h∗ we shall say that λ ≥ µ if λ − µ ∈ Q+. We denote by P + the sub-semigroup of dominant integral weights, i.e., those λ that satisfy hλ, αˇi ∈ Z+ for all α ∈ ∆+. + For α ∈ ∆ , we will denote by nα the corresponding eigen-space. -
Molecular Symmetry
Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry . -
Group of Diffeomorphisms of the Unite Circle As a Principle U(1)-Bundle
Group of diffeomorphisms of the unite circle as a principle U(1)-bundle Irina Markina, University of Bergen, Norway Summer school Analysis - with Applications to Mathematical Physics Gottingen¨ August 29 - September 2, 2011 Group of diffeomorphisms of the unite circle as a principle U(1)-bundle – p. 1/49 String Minkowski space-time moving in time woldsheet string string Worldsheet as an imbedding of a cylinder C into the Minkowski space-time with the induced metric g. 2 Nambu-Gotô action SNG = −T dσ | det gαβ| ZC p T is the string tension. Group of diffeomorphisms of the unite circle as a principle U(1)-bundle – p. 2/49 Polyakov action Change to the imbedding independent metric h on worldsheet. 2 αβ Polyakov action SP = −T dσ | det hαβ|h ∂αx∂βx, ZC p 0 1 δSP α, β = 0, 1, x = x(σ ,σ ). Motion satisfied δhαβ = 0. −1 δSP Energy-momentum tensor Tαβ = αβ T | det hαβ| δh p Tαβ = 0 and SP = SNG, whereas in general SP ≥ SNG Group of diffeomorphisms of the unite circle as a principle U(1)-bundle – p. 3/49 Gauges The metric h has 3 degrees of freedom - gauges that one need to fix. • Global Poincaré symmetries - invariance under Poincare group in Minkowski space • Local invariance under the reparametrizaition by 2D-diffeomorphisms dσ˜2 | det h˜| = dσ2 | det h| • Local Weyl rescaling p p α β ρ(σ0,σ1) α β hαβdσ dσ → e hαβdσ dσ ρ(σ0,σ1) 2 αβ µ ν hαβ = e ηαβ, SP = −T dσ η ηµν∂αx ∂βx ZC Group of diffeomorphisms of the unite circle as a principle U(1)-bundle – p. -
Arxiv:1910.10745V1 [Cond-Mat.Str-El] 23 Oct 2019 2.2 Symmetry-Protected Time Crystals
A Brief History of Time Crystals Vedika Khemania,b,∗, Roderich Moessnerc, S. L. Sondhid aDepartment of Physics, Harvard University, Cambridge, Massachusetts 02138, USA bDepartment of Physics, Stanford University, Stanford, California 94305, USA cMax-Planck-Institut f¨urPhysik komplexer Systeme, 01187 Dresden, Germany dDepartment of Physics, Princeton University, Princeton, New Jersey 08544, USA Abstract The idea of breaking time-translation symmetry has fascinated humanity at least since ancient proposals of the per- petuum mobile. Unlike the breaking of other symmetries, such as spatial translation in a crystal or spin rotation in a magnet, time translation symmetry breaking (TTSB) has been tantalisingly elusive. We review this history up to recent developments which have shown that discrete TTSB does takes place in periodically driven (Floquet) systems in the presence of many-body localization (MBL). Such Floquet time-crystals represent a new paradigm in quantum statistical mechanics — that of an intrinsically out-of-equilibrium many-body phase of matter with no equilibrium counterpart. We include a compendium of the necessary background on the statistical mechanics of phase structure in many- body systems, before specializing to a detailed discussion of the nature, and diagnostics, of TTSB. In particular, we provide precise definitions that formalize the notion of a time-crystal as a stable, macroscopic, conservative clock — explaining both the need for a many-body system in the infinite volume limit, and for a lack of net energy absorption or dissipation. Our discussion emphasizes that TTSB in a time-crystal is accompanied by the breaking of a spatial symmetry — so that time-crystals exhibit a novel form of spatiotemporal order. -
7 International Centre for Theoretical Physics
IC/93/173 -n I 'r.2_. \ INTERNATIONAL CENTRE FOR 7 THEORETICAL PHYSICS IIK;IIKK SPIN EXTENSIONS OF THE VIRASORO ALCE1IRA, AREA-PRESERVING AL(;EURAS AND THE MATRIX ALGEBRA M. Zakkuri INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION MIRAMARE-TRIESTE IC/93/173 Infinite dimensional algebras have played a central role in the development of string theories and two dimensional conformal field theory. These symmetries have been shown International Atomic Energy Agency to be related to the Virasoro algebra, its supersymmetric extensions and the Kac-Moody and one. Together, they are generated by conformal spin ,s currents with s <2. United Nations Educational Scientific and Cultural Organization However, some years ago, Zamolodchikov discovered a new extension, W3, involving besides the usual spin 2 conformal current, a conformal spin 3 current [1]. The obtained INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS structure is called non-linear Lie algebra. Recently, much interest has been made in the understanding of these higher conformal spin extensions of the Virasoro algebra [2.3,4}. In this paper, we study these algebraic structures using the infinite matrix representa- tion. Actually the present work may be viewed as a generalization of the infinite matrix HIGHER SPIN EXTENSIONS OF THE VIRASORO ALGEBRA, realization of the Virasoro algebra obtained by Kac et al. [5|. Some results have been AREA-PRESERVING ALGEBRAS AND THE MATRIX ALGEBRA described in our first papers [6,7]. However, we give here some precisions on the generality of above results. Moreover, we extend the above construction to include the algebra of area preserving diffeomorphism on the 2-dimensional torus [8], Actually, this result is k 1 expected to be generalizable for higher dimensions [10], namely for the torus T , k > 1. -
Strings, Symmetries and Representations
Strings, symmetries and representations C. Schweigert, I. Runkel LPTHE, Universite´ Paris VI, 4 place Jussieu, F – 75 252 Paris Cedex 05 J. Fuchs Institutionen for¨ fysik, Universitetsgatan 5, S – 651 88 Karlstad Abstract. Several aspects of symmetries in string theory are reviewed. We discuss the roleˆ of symmetries both of the string world sheet and of the target space. We also show how to obtain string scattering amplitudes with the help of structures familiar from the representation theory of quantum groups. 1. Strings and conformal field theory Symmetries of various types, and consequently representation theoretic tools, play an important roleˆ in string theory and conformal field theory. The present contribution aims at reviewing some of their aspects, the choice of topics being influenced by our personal taste. After a brief overview of string theory and conformal field theory, we first discuss orbifolds and duality symmetries. We then turn to D-branes and theories of open strings, which we investigate in the final section using Frobenius algebras in representation categories. A minimalistic point of view on (perturbative) string theory is to regard it as a pertur- bative quantization of a field theory, with the perturbation expansion being organized not in terms of graphs, i.e. one-dimensional objects, but rather in terms of surfaces. What makes this perturbation expansion particularly interesting is that it even covers the quantization of theories that include a gravitational sector. The configuration space of a classical string is given by the embeddings of its two- dimensional world sheet Σ, with local coordinates τ and σ, into a target space M with coordinates Xµ. -
TASI 2008 Lectures: Introduction to Supersymmetry And
TASI 2008 Lectures: Introduction to Supersymmetry and Supersymmetry Breaking Yuri Shirman Department of Physics and Astronomy University of California, Irvine, CA 92697. [email protected] Abstract These lectures, presented at TASI 08 school, provide an introduction to supersymmetry and supersymmetry breaking. We present basic formalism of supersymmetry, super- symmetric non-renormalization theorems, and summarize non-perturbative dynamics of supersymmetric QCD. We then turn to discussion of tree level, non-perturbative, and metastable supersymmetry breaking. We introduce Minimal Supersymmetric Standard Model and discuss soft parameters in the Lagrangian. Finally we discuss several mech- anisms for communicating the supersymmetry breaking between the hidden and visible sectors. arXiv:0907.0039v1 [hep-ph] 1 Jul 2009 Contents 1 Introduction 2 1.1 Motivation..................................... 2 1.2 Weylfermions................................... 4 1.3 Afirstlookatsupersymmetry . .. 5 2 Constructing supersymmetric Lagrangians 6 2.1 Wess-ZuminoModel ............................... 6 2.2 Superfieldformalism .............................. 8 2.3 VectorSuperfield ................................. 12 2.4 Supersymmetric U(1)gaugetheory ....................... 13 2.5 Non-abeliangaugetheory . .. 15 3 Non-renormalization theorems 16 3.1 R-symmetry.................................... 17 3.2 Superpotentialterms . .. .. .. 17 3.3 Gaugecouplingrenormalization . ..... 19 3.4 D-termrenormalization. ... 20 4 Non-perturbative dynamics in SUSY QCD 20 4.1 Affleck-Dine-Seiberg -
Observability and Symmetries of Linear Control Systems
S S symmetry Article Observability and Symmetries of Linear Control Systems Víctor Ayala 1,∗, Heriberto Román-Flores 1, María Torreblanca Todco 2 and Erika Zapana 2 1 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile; [email protected] 2 Departamento Académico de Matemáticas, Universidad, Nacional de San Agustín de Arequipa, Calle Santa Catalina, Nro. 117, Arequipa 04000, Peru; [email protected] (M.T.T.); [email protected] (E.Z.) * Correspondence: [email protected] Received: 7 April 2020; Accepted: 6 May 2020; Published: 4 June 2020 Abstract: The goal of this article is to compare the observability properties of the class of linear control systems in two different manifolds: on the Euclidean space Rn and, in a more general setup, on a connected Lie group G. For that, we establish well-known results. The symmetries involved in this theory allow characterizing the observability property on Euclidean spaces and the local observability property on Lie groups. Keywords: observability; symmetries; Euclidean spaces; Lie groups 1. Introduction For general facts about control theory, we suggest the references, [1–5], and for general mathematical issues, the references [6–8]. In the context of this article, a general control system S can be modeled by the data S = (M, D, h, N). Here, M is the manifold of the space states, D is a family of differential equations on M, or if you wish, a family of vector fields on the manifold, h : M ! N is a differentiable observation map, and N is a manifold that contains all the known information that you can see of the system through h. -
Geometric Approach to Kac–Moody and Virasoro Algebras
Journal of Geometry and Physics 62 (2012) 1984–1997 Contents lists available at SciVerse ScienceDirect Journal of Geometry and Physics journal homepage: www.elsevier.com/locate/jgp Geometric approach to Kac–Moody and Virasoro algebrasI E. Gómez González, D. Hernández Serrano ∗, J.M. Muñoz Porras ∗, F.J. Plaza Martín ∗ Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain IUFFYM, Instituto Universitario de Física Fundamental y Matemáticas, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain article info a b s t r a c t Article history: In this paper we show the existence of a group acting infinitesimally transitively on the Received 17 March 2011 moduli space of pointed-curves and vector bundles (with formal trivialization data) and Received in revised form 12 January 2012 whose Lie algebra is an algebra of differential operators. The central extension of this Accepted 1 May 2012 Lie algebra induced by the determinant bundle on the Sato Grassmannian is precisely a Available online 8 May 2012 semidirect product of a Kac–Moody algebra and the Virasoro algebra. As an application of this geometric approach, we give a local Mumford-type formula in terms of the cocycle MSC: associated with this central extension. Finally, using the original Mumford formula we primary 14H60 14D21 show that this local formula is an infinitesimal version of a general relation in the secondary 22E65 Picard group of the moduli of vector bundles on a family of curves (without any formal 22E67 trivialization). 22E47 ' 2012 Elsevier B.V. All rights reserved. -
Introuduction to Representation Theory of Lie Algebras
Introduction to Representation Theory of Lie Algebras Tom Gannon May 2020 These are the notes for the summer 2020 mini course on the representation theory of Lie algebras. We'll first define Lie groups, and then discuss why the study of representations of simply connected Lie groups reduces to studying representations of their Lie algebras (obtained as the tangent spaces of the groups at the identity). We'll then discuss a very important class of Lie algebras, called semisimple Lie algebras, and we'll examine the repre- sentation theory of two of the most basic Lie algebras: sl2 and sl3. Using these examples, we will develop the vocabulary needed to classify representations of all semisimple Lie algebras! Please email me any typos you find in these notes! Thanks to Arun Debray, Joakim Færgeman, and Aaron Mazel-Gee for doing this. Also{thanks to Saad Slaoui and Max Riestenberg for agreeing to be teaching assistants for this course and for many, many helpful edits. Contents 1 From Lie Groups to Lie Algebras 2 1.1 Lie Groups and Their Representations . .2 1.2 Exercises . .4 1.3 Bonus Exercises . .4 2 Examples and Semisimple Lie Algebras 5 2.1 The Bracket Structure on Lie Algebras . .5 2.2 Ideals and Simplicity of Lie Algebras . .6 2.3 Exercises . .7 2.4 Bonus Exercises . .7 3 Representation Theory of sl2 8 3.1 Diagonalizability . .8 3.2 Classification of the Irreducible Representations of sl2 .............8 3.3 Bonus Exercises . 10 4 Representation Theory of sl3 11 4.1 The Generalization of Eigenvalues . -
The Symmetry Group of a Finite Frame
Technical Report 3 January 2010 The symmetry group of a finite frame Richard Vale and Shayne Waldron Department of Mathematics, Cornell University, 583 Malott Hall, Ithaca, NY 14853-4201, USA e–mail: [email protected] Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand e–mail: [email protected] ABSTRACT We define the symmetry group of a finite frame as a group of permutations on its index set. This group is closely related to the symmetry group of [VW05] for tight frames: they are isomorphic when the frame is tight and has distinct vectors. The symmetry group is the same for all similar frames, in particular for a frame, its dual and canonical tight frames. It can easily be calculated from the Gramian matrix of the canonical tight frame. Further, a frame and its complementary frame have the same symmetry group. We exploit this last property to construct and classify some classes of highly symmetric tight frames. Key Words: finite frame, geometrically uniform frame, Gramian matrix, harmonic frame, maximally symmetric frames partition frames, symmetry group, tight frame, AMS (MOS) Subject Classifications: primary 42C15, 58D19, secondary 42C40, 52B15, 0 1. Introduction Over the past decade there has been a rapid development of the theory and application of finite frames to areas as diverse as signal processing, quantum information theory and multivariate orthogonal polynomials, see, e.g., [KC08], [RBSC04] and [W091]. Key to these applications is the construction of frames with desirable properties. These often include being tight, and having a high degree of symmetry. Important examples are the harmonic or geometrically uniform frames, i.e., tight frames which are the orbit of a single vector under an abelian group of unitary transformations (see [BE03] and [HW06]).