Conviction on Itch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SYNTHESIS and STRUCTURE ACTIVITY STUDIES of NOVEL H3-RECEPTOR HISTAMINE ANTAGONISTS. a Thesis Presented in Partial Fulfilment Of
1 SYNTHESIS AND STRUCTURE ACTIVITY STUDIES OF NOVEL H3-RECEPTOR HISTAMINE ANTAGONISTS. A thesis presented in partial fulfilment of the requirements for the Doctor of Philosophy Degree of the University of London SEYED KIUMARS HOSSEINI Department of Chemistry University College London September 1991 Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that the copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without prior consent of the author. Signature: Date..^*^^~ ProQuest Number: 10609847 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10609847 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 2 Acknowledgements I would like to express my gratitude for the guidance and generous support of Prof. C. R. Ganellin and for the financial support of Bioproject in association with Centre Paul Broca de rinserm, Paris. Thanks to Prof. -
Histamine Receptors
Tocris Scientific Review Series Tocri-lu-2945 Histamine Receptors Iwan de Esch and Rob Leurs Introduction Leiden/Amsterdam Center for Drug Research (LACDR), Division Histamine is one of the aminergic neurotransmitters and plays of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit an important role in the regulation of several (patho)physiological Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The processes. In the mammalian brain histamine is synthesised in Netherlands restricted populations of neurons that are located in the tuberomammillary nucleus of the posterior hypothalamus.1 Dr. Iwan de Esch is an assistant professor and Prof. Rob Leurs is These neurons project diffusely to most cerebral areas and have full professor and head of the Division of Medicinal Chemistry of been implicated in several brain functions (e.g. sleep/ the Leiden/Amsterdam Center of Drug Research (LACDR), VU wakefulness, hormonal secretion, cardiovascular control, University Amsterdam, The Netherlands. Since the seventies, thermoregulation, food intake, and memory formation).2 In histamine receptor research has been one of the traditional peripheral tissues, histamine is stored in mast cells, eosinophils, themes of the division. Molecular understanding of ligand- basophils, enterochromaffin cells and probably also in some receptor interaction is obtained by combining pharmacology specific neurons. Mast cell histamine plays an important role in (signal transduction, proliferation), molecular biology, receptor the pathogenesis of various allergic conditions. After mast cell modelling and the synthesis and identification of new ligands. degranulation, release of histamine leads to various well-known symptoms of allergic conditions in the skin and the airway system. In 1937, Bovet and Staub discovered compounds that antagonise the effect of histamine on these allergic reactions.3 Ever since, there has been intense research devoted towards finding novel ligands with (anti-) histaminergic activity. -
In Vitro Pharmacology of Clinically Used Central Nervous System-Active Drugs As Inverse H1 Receptor Agonists
0022-3565/07/3221-172–179$20.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 322, No. 1 Copyright © 2007 by The American Society for Pharmacology and Experimental Therapeutics 118869/3215703 JPET 322:172–179, 2007 Printed in U.S.A. In Vitro Pharmacology of Clinically Used Central Nervous System-Active Drugs as Inverse H1 Receptor Agonists R. A. Bakker,1 M. W. Nicholas,2 T. T. Smith, E. S. Burstein, U. Hacksell, H. Timmerman, R. Leurs, M. R. Brann, and D. M. Weiner Department of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.A.B., H.T., R.L.); ACADIA Pharmaceuticals Inc., San Diego, California (R.A.B., M.W.N., T.T.S., E.S.B., U.H., M.R.B., D.M.W.); and Departments of Pharmacology (M.R.B.), Neurosciences (D.M.W.), and Psychiatry (D.M.W.), University of California, San Diego, California Received January 2, 2007; accepted March 30, 2007 Downloaded from ABSTRACT The human histamine H1 receptor (H1R) is a prototypical G on this screen, we have reported on the identification of 8R- protein-coupled receptor and an important, well characterized lisuride as a potent stereospecific partial H1R agonist (Mol target for the development of antagonists to treat allergic con- Pharmacol 65:538–549, 2004). In contrast, herein we report on jpet.aspetjournals.org ditions. Many neuropsychiatric drugs are also known to po- a large number of varied clinical and chemical classes of drugs tently antagonize this receptor, underlying aspects of their side that are active in the central nervous system that display potent effect profiles. -
Pharmacological Treatments in Insomnia
Pharmacological treatments in insomnia Sue Wilson Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College, London Drugs used in insomnia Licensed for insomnia •GABA-A positive allosteric modulators •melatonin (modified release) •promethazine •diphenhydramine •doxepin (USA) Unlicensed prescribed frequently •antihistamines (and OTC) •antidepressants Sometimes prescribed drugs for psychosis Some GABA-A positive allosteric modulators Drugs acting at the GABA-A benzodiazepine receptor zopiclone zolpidem zaleplon benzodiazepines eg temazepam, lorazepam (safe in overdose, as long as no other drug involved) Drugs acting at the barbiturate/alcohol receptor chloral hydrate/chloral betaine clomethiazole (dangerous in overdose) GABA calms the brain Gamma aminobutyic acid (GABA) is the main inhibitory transmitter in the mammalian central nervous system. It plays the principal role in reducing neuronal excitability and its receptors are prolific throughout the brain, in cortex, limbic system, thalamus and cerebellum sedative Increase anticonvulsant GABA anxiolytic function ataxia, memory effects Effects of GABA-A positive allosteric modulators •These drugs enhance the effect of GABA, the main inhibitory neurotransmitter in the brain •They all produce sedation, sleep promotion, ataxia, muscle relaxation, effects on memory, anticonvulsant effects •Therefore for insomnia the duration of action of the drug is important – these effects are unwanted during the day Effects of these GABA-ergic drugs on sleep EEG/PSG • Appearance of -
Etiology, Classification, and Treatment of Urticaria
CONTINUING MEDICAL EDUCATION Etiology, Classification, and Treatment of Urticaria Kjetil Kristoffer Guldbakke, MD; Amor Khachemoune, MD, CWS GOAL To understand urticaria to better manage patients with the condition OBJECTIVES Upon completion of this activity, dermatologists and general practitioners should be able to: 1. Discuss the clinical classification of urticaria. 2. Recognize how to diagnose urticaria. 3. Identify treatment options. CME Test on page 50. This article has been peer reviewed and approved Einstein College of Medicine is accredited by by Michael Fisher, MD, Professor of Medicine, the ACCME to provide continuing medical edu- Albert Einstein College of Medicine. Review date: cation for physicians. December 2006. Albert Einstein College of Medicine designates This activity has been planned and imple- this educational activity for a maximum of 1 AMA mented in accordance with the Essential Areas PRA Category 1 CreditTM. Physicians should only and Policies of the Accreditation Council for claim credit commensurate with the extent of their Continuing Medical Education through the participation in the activity. joint sponsorship of Albert Einstein College of This activity has been planned and produced in Medicine and Quadrant HealthCom, Inc. Albert accordance with ACCME Essentials. Drs. Guldbakke and Khachemoune report no conflict of interest. The authors discuss off-label use of colchi- cine, cyclophosphamide, cyclosporine, dapsone, intravenous immunoglobulin, methotrexate, montelukast sodium, nifedipine, plasmapheresis, rofecoxib, sulfasalazine, tacrolimus, thyroxine, and zafirlukast. Dr. Fisher reports no conflict of interest. Urticaria is among the most common skin dis- autoimmune mechanisms are now recognized as a eases. It can be acute, chronic, mediated by a cause of chronic urticaria. A search of the PubMed physical stimulus, or related to contact with an database (US National Library of Medicine) for urticant. -
Drug Repurposing for the Management of Depression: Where Do We Stand Currently?
life Review Drug Repurposing for the Management of Depression: Where Do We Stand Currently? Hosna Mohammad Sadeghi 1,†, Ida Adeli 1,† , Taraneh Mousavi 1,2, Marzieh Daniali 1,2, Shekoufeh Nikfar 3,4,5 and Mohammad Abdollahi 1,2,* 1 Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; [email protected] (H.M.S.); [email protected] (I.A.); [email protected] (T.M.); [email protected] (M.D.) 2 Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran 3 Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1417614411, Iran; [email protected] 4 Pharmaceutical Sciences Research Center (PSRC) and the Pharmaceutical Management and Economics Research Center (PMERC), Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran 5 Department of Pharmacoeconomics and Pharmaceutical Administration, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran * Correspondence: [email protected] † Equally contributed as first authors. Citation: Mohammad Sadeghi, H.; Abstract: A slow rate of new drug discovery and higher costs of new drug development attracted Adeli, I.; Mousavi, T.; Daniali, M.; the attention of scientists and physicians for the repurposing and repositioning of old medications. Nikfar, S.; Abdollahi, M. Drug Experimental studies and off-label use of drugs have helped drive data for further studies of ap- Repurposing for the Management of proving these medications. -
G Protein-Coupled Receptors
S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. -
Receptor Antagonist
Gut: first published as 10.1136/gut.29.7.890 on 1 July 1988. Downloaded from Gut, 1988, 29, 890-893 Alteration of H2 receptor sensitivity in duodenal ulcer patients after maintenance treatment with an H2 receptor antagonist D B JONES, C W HOWDEN, D W BURGET, CINDY SILLETTI, AND R H HUNT From the Division of Gastroenterology, McMaster University Medical Centre, Hamilton, Ontario, Canada SUMMARY The effects of a specific H2 receptor agonist impromidine, on gastric acid secretion were measured in six patients with duodenal ulcer in clinical remission before and after three months treatment with ranitidine 150 mg nocte. After treatment basal acid output increased from 1 2 to 2-8 mmol/h and after maximal impromidine stimulation from 36-9 (4 7) to 44-2 (6 2) mmol/h (p<002). Intravenous ranitidine 50 mg was given at the end ofthe impromidine infusion on each study day; the antisecretory effect of intravenous ranitidine was accentuated after the treatment with ranitidine from a trough acid output of8 5 (1-2) mmol/h before, to 3-8 (1-5) mmol/h (p<0 05) after, treatment. The increased response to the H2 agonist impromidine and the H2 antagonist ranitidine after treatment with ranitidine suggests an enhanced sensitivity of the H2 receptor. This might be ex- plained on the basis of an increase in the number of H2 receptors ('up-regulation'). http://gut.bmj.com/ The discovery of the histamine H2 receptor on the a highly potent, and specific agonist for the H2 parietal cell' initiated the development of H2 receptor' exhibiting up to 27 times the affinity of receptor antagonists with potent gastric antisecretory histamine.9 In this study we have examined the effect activity and these agents have now become firmly of three months of treatment with ranitidine 150 mg established in the treatment of peptic ulceration.- nocte on impromidine stimulated gastric acid secre- After heaing of duodenal ulcer by the H2 receptor tion in six patients with duodenal ulcer in remission. -
288 Part 348—External Analgesic Drug Products
Pt. 348 21 CFR Ch. I (4–1–11 Edition) should be used and any or all of the ad- Subpart C—Labeling ditional indications for sunscreen drug 348.50 Labeling of external analgesic drug products may be used. products. (c) Warnings. The labeling of the AUTHORITY: 21 U.S.C. 321, 351, 352, 353, 355, product states, under the heading 360, 371. ‘‘Warnings,’’ the warning(s) for each in- gredient in the combination, as estab- SOURCE: 57 FR 27656, June 19, 1992, unless otherwise noted. lished in the warnings section of the applicable OTC drug monographs un- less otherwise stated in this paragraph Subpart A—General Provisions (c). § 348.1 Scope. (1) For combinations containing a skin (a) An over-the-counter external an- protectant and a sunscreen identified in algesic drug product in a form suitable §§ 347.20(d) and 352.20(b). The warnings for topical administration is generally for sunscreen drug products in recognized as safe and effective and is § 352.60(c) of this chapter are used. not misbranded if it meets each condi- (2) [Reserved] tion in this part and each general con- (d) Directions. The labeling of the dition established in § 330.1 of this product states, under the heading ‘‘Di- chapter. rections,’’ directions that conform to (b) References in this part to regu- the directions established for each in- latory sections of the Code of Federal gredient in the directions sections of Regulations are to chapter I of title 21 the applicable OTC drug monographs, unless otherwise noted. unless otherwise stated in this para- § 348.3 Definitions. -
Deadly Pediatric Poisons: Nine Common Agents That Kill at Low Doses Joshua B
Emerg Med Clin N Am 22 (2004) 1019–1050 Deadly pediatric poisons: nine common agents that kill at low doses Joshua B. Michael, MD, Matthew D. Sztajnkrycer, MD, PhD* Department of Emergency Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA Children are exposed more frequently to potentially toxic substances than any other age group [1]. According to data compiled by the American Association of Poison Control Centers (AAPCC), more than 1.3 million exposures involving children age 12 and younger were reported to poison control centers in 2001 [2]. Of these, more than 1 million (79%) involved children 3 years old or younger. The peak incidence for pediatric poisonings occurs in toddlers age 1 to 3 years, as does the peak incidence for hospitalization [3]. Most exposures in this age group are unintentional and reflect acquisition of developmental milestones and subsequent behaviors while exploring the environment. Children may be attracted to potentially toxic substances based on color or appearance of the agent or the container, mistakenly identifying it as a candy or beverage. Younger children are more willing to taste dangerous substances than older children and perform hand-mouth behaviors nearly 10 times an hour [4,5]. Physical environmental change plays a significant role in the epidemiology of accidental ingestion [6]. In approximately half of all accidental poisonings, the product either was in use at the time of ingestion or had been moved recently from its usual storage site. Ingestion characteristics differ significantly in toddler exposures com- pared with adolescent or adult exposures [7]. Most exposures are nontoxic because the intent is exploration rather than self-harm. -
International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors
1521-0081/67/3/601–655$25.00 http://dx.doi.org/10.1124/pr.114.010249 PHARMACOLOGICAL REVIEWS Pharmacol Rev 67:601–655, July 2015 Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: ELIOT H. OHLSTEIN International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors Pertti Panula, Paul L. Chazot, Marlon Cowart, Ralf Gutzmer, Rob Leurs, Wai L. S. Liu, Holger Stark, Robin L. Thurmond, and Helmut L. Haas Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry (H.S.) and Institute of Neurophysiology, Medical Faculty (H.L.H.), Heinrich-Heine-University Duesseldorf, Germany; and Janssen Research & Development, LLC, San Diego, California (R.L.T.) Abstract ....................................................................................602 Downloaded from I. Introduction and Historical Perspective .....................................................602 II. Histamine H1 Receptor . ..................................................................604 A. Receptor Structure -
Pathophysiology and Treatment of Pruritus in Elderly
International Journal of Molecular Sciences Review Pathophysiology and Treatment of Pruritus in Elderly Bo Young Chung † , Ji Young Um †, Jin Cheol Kim , Seok Young Kang , Chun Wook Park and Hye One Kim * Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University, Seoul KS013, Korea; [email protected] (B.Y.C.); [email protected] (J.Y.U.); [email protected] (J.C.K.); [email protected] (S.Y.K.); [email protected] (C.W.P.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Pruritus is a relatively common symptom that anyone can experience at any point in their life and is more common in the elderly. Pruritus in elderly can be defined as chronic pruritus in a person over 65 years old. The pathophysiology of pruritus in elderly is still unclear, and the quality of life is reduced. Generally, itch can be clinically classified into six types: Itch caused by systemic diseases, itch caused by skin diseases, neuropathic pruritus, psychogenic pruritus, pruritus with multiple factors, and from unknown causes. Senile pruritus can be defined as a chronic pruritus of unknown origin in elderly people. Various neuronal mediators, signaling mechanisms at neuronal terminals, central and peripheral neurotransmission pathways, and neuronal sensitizations are included in the processes causing itch. A variety of therapies are used and several novel drugs are being developed to relieve itch, including systemic and topical treatments. Keywords: elderly; ion channel; itch; neurotransmission pathophysiology of itch; pruritogen; senile pruritus; treatment of itch 1. Introduction Citation: Chung, B.Y.; Um, J.Y.; Kim, Pruritus is a relatively common symptom that anyone can experience at any point in J.C.; Kang, S.Y.; Park, C.W.; Kim, H.O.