From the Bethe-Salpeter Equation to Time-Dependent Density Functional Theory

Total Page:16

File Type:pdf, Size:1020Kb

From the Bethe-Salpeter Equation to Time-Dependent Density Functional Theory Th`esepr´esent´eepour obtenir le grade de DOCTEUR DE L’ECOLE´ POLYTECHNIQUE par FRANCESCO SOTTILE Response functions of semiconductors and insulators: from the Bethe-Salpeter equation to time-dependent density functional theory Soutenue le 29 Septembre 2003 devant le jury compos´ede : M. Friedhelm BECHSTEDT Rapporteur M. George BERTSCH M. Xavier BLASE Rapporteur M. Fabio FINOCCHI M.me Lucia REINING Directeur M. Jean-Claude TOLEDANO Directeur Laboratoire des Solides Irradi´esUMR 7642 CNRS-CEA/DSM, Ecole´ POLYTECHNIQUE, F-91128 Palaiseau, France Francesco Sottile [email protected] Response functions of semiconductors and insulators: from the Bethe-Salpeter equation to time-dependent density functional theory Pdf file available at the page http://theory.polytechnique.fr/people/sottile/Tesi dot.pdf 2003 This manuscript has been conceived only using free software: LATEX, Ghostscript, Kile. Figures and graphs were created with Xfig, The Gimp, Grace, PStoEdit and GNUPlot. Acknowledgments Le Laboratoire des Solides Irradi´esde l’Ecole´ Polytechnique, dirig´epar Guillaume Petite, m’a accueilli avec la plus grande sympathie et je tiens `aleur exprimer `atous ma reconnaissance. I would like to express my profound gratitude to my supervisor, Lucia Reining, for supporting, guiding, and working very closely with me for the last three years. In par- ticular, I will never forget our discussions at 7.30 in the morning. This thesis owes its existence to Lucia. I am very grateful to Prof. Toledano who agreed to be my supervisor. He left me free to work as I preferred, and was always available to help me. I would like to thank all those who I have collaborated with: first of all, Valerio Ole- vano, for providing the computational codes I worked on, and for the endless discussions on kernels, fortran, latex and home-cinema; Angel Rubio, who worked with me at the very beginning of the thesis, on finite systems; Giovanni Onida, Andrea Marini and Rodolfo Del Sole, for useful discussions about kernels; Ferdi Aryasetiawan and Krister Karlsson, for a fruitful work on model kernels we have been carrying out together. I acknowledge my gratitude also to the NANOPHASE Network, to which I have had the privilege to belong. My scientific background also originated from the several meetings we have had in these years. Let me take this opportunity to thank the European Community, but also the three organisms which the laboratory depends on (CNRS, CEA, Polytechnique), for covering living and travel expenses in many occasions, and also Marie Madeleine Lemartinel and Catherine Julien for helping me to get along with all these administrative things. Je tiens `aremercier chaleureusement toute l’´equipe th´eorique du laboratoire, pour toutes nos discussions et pour le temps pass´eensemble : Silvana Botti, Apostolos Ma- rinopoulos, Nathalie Vast, Fabien Bruneval, Andrea Cucca, Louise Dash and Virginie Quequet ; Marc Hayoun et Olivier Hardouin Duparc pour avoir ´ecout´emes expos´eset m’avoir ´egalement aid´eavec le fran¸cais ; en particulier Olivier, avec qui j’ai partag´ele bureau dans une tr`esbonne ambiance. I’m deeply indebted to my university supervisor, Prof. Pietro Ballone, who taught me a lot, and introduced me into the Palaiseau group. My gratitude goes to the Rapporteurs, Friedhelm Bechstedt and Xavier Blase, who accepted the work of examining and reporting; I’m also grateful to the Examinateurs, George Bertsch for chairing the jury and Fabio Finocchi, who also gave me the possibility to teach in a DEA for the first time. Un grazie sincero a tutti gli amici “parigini”, per aver trascorso bei momenti di svago insieme, molti dei quali a tavola. Ai miei genitori, Nuccia e Gianni, devo tutta la mia gratitudine, per tutto l’aiuto e l’incoraggiamento avuto da parte loro, non importa quanto lontano stiano. Finally my deepest gratitude to my girlfriend, Daniella, for her understanding and love. Her support and encouragement has made this work possible. Francesco Contents List of abbreviations, acronyms and symbols iii Jungle of Polarizabilities iv Introduction 1 I Background 5 1 Dielectric and optical properties in solids 7 1.1 Complex dielectric function and complex conductivity . 8 1.2 Complex refraction index and absorption coefficient . 10 1.3 Electron Energy Loss . 13 1.3.1 Fundamental relations . 13 1.3.2 Energy loss by a fast charged particle . 15 1.4 Microscopic-Macroscopic connection . 17 1.5 Electronic Spectra . 18 1.5.1 Alternative formulation for the spectra . 19 2 Density Functional Theory 21 2.1 The many-body problem . 21 2.1.1 The Born-Oppenheimer approximation . 22 2.1.2 The electronic problem . 24 2.2 The Hohenberg and Kohn theorem . 25 2.3 The Kohn Sham method . 29 2.4 Local Density Approximation (LDA) . 32 2.5 Beyond LDA . 33 2.6 Excited States in DFT . 34 2.6.1 ∆SCF . 35 2.7 Electronic Spectra in KS-DFT . 36 i Contents 2.8 DFT in solids . 39 2.9 Technical details of the ground state calculations in this thesis . 40 3 Green functions approach 41 3.1 Quasi-particle formulation . 42 3.1.1 Green functions . 43 3.1.2 Hedin’s pentagon . 47 3.1.3 Real calculations and GWA . 49 3.2 Response functions . 52 3.3 Bethe-Salpeter Equation . 55 3.3.1 Effective two-particle equations . 56 3.3.2 Ingredients and approximations . 60 4 Time Dependent DFT 65 4.1 The problem . 65 4.2 TD Density Response Functional Theory . 67 4.3 Adiabatic Local Density Approximation . 69 4.4 Excited States in TDDFT . 69 4.5 Electronic Spectra in TDDFT - Application to solids . 71 4.6 Electronic Spectra in TDDFT - Finite systems . 74 5 BSE & TDDFT: 77 II Developments and Applications 81 6 Role of the Coulomb interaction v 83 6.1 The local fields:v ¯ ................................ 84 6.2 Absorption and EELS - Towards finite systems . 86 6.2.1 A simple model: “one-pole model” . 89 6.2.2 Importance of the limit q → 0..................... 90 6.3 Absorption versus EELS: Numerical analysis . 91 6.3.1 Case of silicon: an “adiabatic connection” . 93 6.4 Concluding remarks . 95 7 role of Ξ 97 7.1 Introduction . 98 7.2 The contact exciton . 99 7.2.1 Technical details of the calculation of the spectra . 99 7.2.2 BSE for variable interaction strength and radius: results . 100 7.3 Links between the Bethe-Salpeter equation and TDDFT . 103 7.3.1 The contact exciton and the TDDFT kernel . 103 ii Contents 7.3.2 Continuum excitons: numerical results for different TDDFT kernels 105 7.3.3 The TDDFT kernel and bound excitons . 105 7.4 Concluding remarks . 109 8 TDDFT: parameter-free exchange-correlation kernel from the BSE 111 8.1 The theory . 112 8.1.1 When the assumption is wrong... 116 8.1.2 ...and when it is, instead, straightforward . 117 8.2 Technical analysis . 118 8.2.1 The term T1 ...............................118 8.2.2 The term T2 ...............................120 8.2.3 The (¿useless?) kernel fxc . 120 8.3 The problems of χ0, cautions and tricks. 126 9 Absorption spectrum of semiconductors 129 9.1 Absorption spectra of Silicon ... 130 9.2 ... and of Silicon Carbide . 132 9.3 Concluding remarks . 134 10 Bound excitons in TDDFT 137 10.1 BSE result for solid argon . 137 10.1.1 k-points sampling . 139 10.2 TDDFT description of Argon . 141 10.2.1 Diagonal contribution of T2: a problem. 144 10.2.2 Comparison with experiment . 147 10.3 Results of other groups . 149 10.4 Concluding remarks . 149 Conclusions 151 Appendices 155 A Linear Response Theory 157 A.1 The full polarizability . 158 A.2 The independent-particle polarizability . 159 B Dyson-like equation for the macroscopic dielectric function εM 161 C EELS versus Abs: LFE included 163 iii Contents D Size effects in finite systems 165 E Technical details 167 E.1 Linear system solver . 167 E.2 The k sampling of the Brillouin zone . 168 List of publications 169 References and Literature 171 Index 185 iv List of abbreviations, acronyms and symbols Eq.(s) equation(s) Tab. table Fig. figure Ref.(s) reference(s) Par. paragraph exp. experiment BZ Brillouin zone (TD)DFT (time dependent) density functional theory BSE Bethe-Salpeter equation MBPT many-body perturbation theory SCF self-consistent field RPA random phase approximation (A)LDA (adiabatic) local density approximation HK Hohenberg-Kohn HF Hartree-Fock KS Kohn-Sham GWA GW approximation for the self-energy GW-RPA RPA polarizability with (GW) corrected eigenvalues x − c exchange-correlation e − h electron-hole i one-particle eigenvalues Ei quasi-particle eigenvalues φ one-particle wavefunctions Ψ quasi-particle wavefunctions ϕ many-body wave function v ¯ χ χ ¯ v v ˜ ˜ χ χ + + ˜ ˜ χ χ = = ¯ χ χ ) ω ( R A) cts RP (TD)DFT effe in ox. retarded x-c (13) (appr no (irreducible) (reducible) P = ¯  0 ↓ ˜   Â; (1133) ⇒ L ctions e ¾ ¡ } ) orr ω c } reducible ( ) irreducible Σ ω T ( T ={ no | ω ω | <{ ˜ = = 0 GW   function } } t v v  ) ) ω ω oin ( ( + ¡ R R 1 1 2-p <{ ={ to = = ½ 1 ⇐ − R R " " reduction (42) G ˜ P P (13) v A) v olarizabilities iG (2) + ¡ = G P 1 1 0 cts − L GW-RP 0 = = L effe 1 ) of ox. e-h) = ω − T T ( e-h t " " L T (irreducible) (appr (reducible) no enden ¯ 0 P MBPT ˜ ↓ ; P P in P vi (indep (irreducible) (reducible) time-ordered Jungle " ¯ ¯ P P L 0 ¯ v v ˜ L ˜ ˜ L P P L; + + ˜ ˜ P P ¯ = = L L ¯ ¯ v v function P P ˜ ˜ L L + + ˜ ˜ L L = = ¯ L L dielectric the tities tities in quan quan t t oin oin 2-p 4-p Introduction ¨î¡´ ¬îââ´¤ ¬¤¥´ from West Gate of Moria Inscription Electronic excitations, caused for example by irradiation with electrons, light or mod- ern photon sources (synchrotron, ultra-fast lasers), are key quantities for the study of materials, ranging from solids to atoms, from surface to nanoscale systems.
Recommended publications
  • Technical Proposal for Onsite Destruction of Stored Waste on Vertac Site
    ichnicol Proposal to Arkansas Department of dilution Control and Ecology )rthe )N-SITE DESTRUCTION OF STORED VASTE ON TNE VERTAC SITE IN ACKSONVILLE, ARKANSAS ugust13,1987 ^ WESTINGHOUSE ELECTRIC CORPORATION Environmental Technology Division iZTECH INC. Westinghouse Power Systems Box 286 Electric Corporation Business Unit Madison Pennsylvania 15663-0286 E P Rahe Jr General Manager Environmental Technology Division •August 13. 1987 ^ \ A ^ Mr. Paul Mean Director Arkansas Department of Pollution Control and Ecology 8001 National Drive P.O. Box 9583 Little Rock, AR 72209 Subject: Technical Proposal for Destruction of Stored Waste on the Vertac Site in Jacksonville, Arkansas Dear Mr. Mean: Vestinghouse Electric Corporation and HAZTECH, Inc. are pleased to submit the attached technical proposal for the on-site destruction of the stored waste on the Vertac site in Jacksonville, Arkansas. The proposal addresses three options for the handling and destruction of all materials stored above ground on the site. Vestinghouse will be the project manager for all work on site. The recommended option is to destroy the liquid or crystalline material using the Vestinghouse Pyroplasma process which is a thermal treatment technology. The system uses a plasma torch which produces Cemperatures between 5000°C and 15,000°C. The most important advantages of this process, relative to combustion processes, are very low emissions, very high destruction efficiencies, and low PIC (product of incomplete combustion) formation. In addition, this system is truly mobile. All of the process equipment is contained in one 48-foot trailer and can be sec up on site within one week. Ve believe that the Pyroplasaa destruction process is very well suited for your specific waste material.
    [Show full text]
  • Buffy & Angel Watching Order
    Start with: End with: BtVS 11 Welcome to the Hellmouth Angel 41 Deep Down BtVS 11 The Harvest Angel 41 Ground State BtVS 11 Witch Angel 41 The House Always Wins BtVS 11 Teacher's Pet Angel 41 Slouching Toward Bethlehem BtVS 12 Never Kill a Boy on the First Date Angel 42 Supersymmetry BtVS 12 The Pack Angel 42 Spin the Bottle BtVS 12 Angel Angel 42 Apocalypse, Nowish BtVS 12 I, Robot... You, Jane Angel 42 Habeas Corpses BtVS 13 The Puppet Show Angel 43 Long Day's Journey BtVS 13 Nightmares Angel 43 Awakening BtVS 13 Out of Mind, Out of Sight Angel 43 Soulless BtVS 13 Prophecy Girl Angel 44 Calvary Angel 44 Salvage BtVS 21 When She Was Bad Angel 44 Release BtVS 21 Some Assembly Required Angel 44 Orpheus BtVS 21 School Hard Angel 45 Players BtVS 21 Inca Mummy Girl Angel 45 Inside Out BtVS 22 Reptile Boy Angel 45 Shiny Happy People BtVS 22 Halloween Angel 45 The Magic Bullet BtVS 22 Lie to Me Angel 46 Sacrifice BtVS 22 The Dark Age Angel 46 Peace Out BtVS 23 What's My Line, Part One Angel 46 Home BtVS 23 What's My Line, Part Two BtVS 23 Ted BtVS 71 Lessons BtVS 23 Bad Eggs BtVS 71 Beneath You BtVS 24 Surprise BtVS 71 Same Time, Same Place BtVS 24 Innocence BtVS 71 Help BtVS 24 Phases BtVS 72 Selfless BtVS 24 Bewitched, Bothered and Bewildered BtVS 72 Him BtVS 25 Passion BtVS 72 Conversations with Dead People BtVS 25 Killed by Death BtVS 72 Sleeper BtVS 25 I Only Have Eyes for You BtVS 73 Never Leave Me BtVS 25 Go Fish BtVS 73 Bring on the Night BtVS 26 Becoming, Part One BtVS 73 Showtime BtVS 26 Becoming, Part Two BtVS 74 Potential BtVS 74
    [Show full text]
  • 5 Other-Legals CFP
    FRIDAY OCTOBER 3 6 PM 6:30 7 PM 7:30 8 PM 8:30 9 PM 9:30 10 PM 10:30 11 PM 11:30 KLBY/ABC News (N) Enter- Wife Swap Heene/ Supernanny Quinn 20/20 Portrait of a News (N) Nightline Jimmy Kimmel Live H h (CC) tainment Martell (N) (CC) Family (N) (CC) President (N) (CC) (CC) (N) (CC) Lucy Liu. (N) (CC) KSNK/NBC News (N) Wheel of America’s Deal or No Deal (N) Life Everything... All News (N) The Tonight Show Late L j Fortune Toughest Jobs (N) (CC) the Time (N) (CC) With Jay Leno (CC) Night KBSL/CBS News (N) Inside Ghost Whisperer The Ex List Pilot NUMB3RS High News (N) Late Show With Late FRIDAY1< NX (CC) Edition Firestarter (N) (CC) (Series Premiere) Exposure (N) (CC) (CC) OCTOBERDavid Letterman Late3 K15CG The NewsHour Wash. Kansas Market- NOW on Bill Moyers Journal World Score- New Red Tavis d With Jim Lehrer (N) Week Week Market PBS (N) (N) (CC) News board Green Smiley ESPN Baseball6 PM Football6:30 College7 PM Football7:30: Cincinnati8 PM at Marshall.8:30 (Live)9 (CC)PM 9:30 10SportsCenterPM 10:30 (Live) 11BaseballPM NFL11:30 Live O_ Tonight Live (CC) Tonight (N) (CC) KLBY/ABC News (N) Enter- Wife Swap Heene/ Supernanny Quinn 20/20 Portrait of a News (N) Nightline Jimmy Kimmel Live HUSAh (CC)Law & Order:tainment SVU MartellHouse (N)(CC) (CC) FamilyHouse (N) (CC) (CC) PresidentLaw & Order: (N) (CC) SVU (CC)House (CC)(N) (CC) LucyMovie: Liu. John (N) (CC) Grisham KSNK/NBCP^ News (N) Wheel of America’s Deal or No Deal (N) Life Everything..
    [Show full text]
  • Download Author Version (PDF)
    PCCP Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/pccp Page 1 of 35 Physical Chemistry Chemical Physics submitted to Phys. Chem. Chem. Phys. Mechanisms and Energetics for N-Glycosidic Bond Cleavage of Protonated 2'-Deoxyguanosine and Guanosine R. R. Wu, Yu Chen, and M. T. Rodgers* Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States Abstract Experimental and theoretical investigations suggest that hydrolysis of N-glycosidic bonds Manuscript generally involves a concerted S N2 or a stepwise S N1 mechanism. While theoretical investigations have provided estimates for the intrinsic activation energies associated with N- glycosidic bond cleavage reactions, experimental measurements to validate the theoretical studies remain elusive.
    [Show full text]
  • The Toric Code at Finite Temperature by Christian Daniel Freeman A
    The Toric Code at Finite Temperature by Christian Daniel Freeman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Birgitta Whaley, Co-chair Professor Joel Moore, Co-chair Professor Irfan Siddiqi Professor Martin Head-Gordon Summer 2018 The Toric Code at Finite Temperature Copyright 2018 by Christian Daniel Freeman 1 Abstract The Toric Code at Finite Temperature by Christian Daniel Freeman Doctor of Philosophy in Physics University of California, Berkeley Professor Birgitta Whaley, Co-chair Professor Joel Moore, Co-chair Alexei Kitaev's toric code is a rich model, that has birthed and stimulated the develop- ment of topological quantum computing, error correction, and field theory. It was also the first example of a quantum error correcting code that could resiliently store quantum infor- mation in certain types of noisy environments without the need for active error correction. Unfortunately, the toric code loses much of its power as a noise-resilient quantum memory at any finite temperature. Many of the problems with the toric code at finite temperature are likewise shared among its cousin stabilizer codes. These problems can be traced to the proliferation of stringlike \defects" in these codes at finite temperature. The aim of this thesis is then twofold. First, I characterize both numerically and theoretically the failure modes of the toric code at finite temperature with fairly modest bath assumptions. I achieve this by numerically sampling the nonequilibrium dynamics of the toric code using a continuous time monte carlo algorithm.
    [Show full text]
  • Excited States from Time-Dependent Density Functional Theory
    Excited states from time-dependent density functional theory Peter Elliott Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA Kieron Burke Department of Chemistry, University of California, Irvine, CA 92697, USA Filipp Furche Institut fur¨ Physikalische Chemie, Universit¨at Karlsruhe, Kaiserstraße 12, 76128 Karlsruhe, Germany (Dated: March 21, 2007) Time-dependent density functional theory (TDDFT) is presently enjoying enormous popularity in quantum chemistry, as a useful tool for extracting electronic excited state energies. This article explains what TDDFT is, and how it differs from ground-state DFT. We show the basic formalism, and illustrate with simple examples. We discuss its implementation and possible sources of error. We discuss many of the major successes and challenges of the theory, including weak fields, strong fields, continuum states, double excitations, charge transfer, high harmonic generation, multipho- ton ionization, electronic quantum control, van der Waals interactions, transport through single molecules, currents, quantum defects, and, elastic electron-atom scattering. Contents B. Testing TDDFT 20 C. Saving standard functionals 20 I. Introduction 2 D. Electron scattering 22 A. Overview 3 VII. Beyond standard functionals 22 II. Ground-state review 3 A. Double excitations 22 A. Formalism 3 B. Polymers 23 B. Approximate Functionals 5 C. Solids 23 C. Basis Sets 6 D. Charge transfer 23 III. Time-dependent theory 7 VIII. Other topics 23 A. Runge-Gross theorem 7 A. Ground-state XC energy 23 B. Kohn-Sham equations 8 B. Strong fields 24 C. Transport 25 C. Linear response 9 D. Approximations 10 IX. Summary 27 IV. Implementation and basis sets 11 References 27 A.
    [Show full text]
  • DECLARATION of Jane Sunderland in Support of Request For
    Columbia Pictures Industries Inc v. Bunnell Doc. 373 Att. 1 Exhibit 1 Twentieth Century Fox Film Corporation Motion Pictures 28 DAYS LATER 28 WEEKS LATER ALIEN 3 Alien vs. Predator ANASTASIA Anna And The King (1999) AQUAMARINE Banger Sisters, The Battle For The Planet Of The Apes Beach, The Beauty and the Geek BECAUSE OF WINN-DIXIE BEDAZZLED BEE SEASON BEHIND ENEMY LINES Bend It Like Beckham Beneath The Planet Of The Apes BIG MOMMA'S HOUSE BIG MOMMA'S HOUSE 2 BLACK KNIGHT Black Knight, The Brokedown Palace BROKEN ARROW Broken Arrow (1996) BROKEN LIZARD'S CLUB DREAD BROWN SUGAR BULWORTH CAST AWAY CATCH THAT KID CHAIN REACTION CHASING PAPI CHEAPER BY THE DOZEN CHEAPER BY THE DOZEN 2 Clearing, The CLEOPATRA COMEBACKS, THE Commando Conquest Of The Planet Of The Apes COURAGE UNDER FIRE DAREDEVIL DATE MOVIE 4 Dockets.Justia.com DAY AFTER TOMORROW, THE DECK THE HALLS Deep End, The DEVIL WEARS PRADA, THE DIE HARD DIE HARD 2 DIE HARD WITH A VENGEANCE DODGEBALL: A TRUE UNDERDOG STORY DOWN PERISCOPE DOWN WITH LOVE DRIVE ME CRAZY DRUMLINE DUDE, WHERE'S MY CAR? Edge, The EDWARD SCISSORHANDS ELEKTRA Entrapment EPIC MOVIE ERAGON Escape From The Planet Of The Apes Everyone's Hero Family Stone, The FANTASTIC FOUR FAST FOOD NATION FAT ALBERT FEVER PITCH Fight Club, The FIREHOUSE DOG First $20 Million, The FIRST DAUGHTER FLICKA Flight 93 Flight of the Phoenix, The Fly, The FROM HELL Full Monty, The Garage Days GARDEN STATE GARFIELD GARFIELD A TAIL OF TWO KITTIES GRANDMA'S BOY Great Expectations (1998) HERE ON EARTH HIDE AND SEEK HIGH CRIMES 5 HILLS HAVE
    [Show full text]
  • All-Electron Ground-State and Time-Dependent Density Functional Theory: Fast Algorithms and Better Approximations
    All-Electron Ground-State and Time-Dependent Density Functional Theory: Fast Algorithms and Better Approximations by Bikash Kanungo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering and Scientific Computing) in The University of Michigan 2019 Doctoral Committee: Associate Professor Vikram Gavini (Chair) Professor Krishna Garikipati Associate Professor Emanuel Gull Associate Professor Shravan Veerapaneni Associate Professor Paul M. Zimmerman Bikash Kanungo [email protected] ORCID iD: 0000-0002-3911-9354 c Bikash Kanungo 2019 Dedicated to Bou and Baba (mom and dad) ii ACKNOWLEDGEMENTS This work rests on the implicit and explicit support of many different people to whom I owe my deepest gratitude. First, to Vikram (Prof. Vikram Gavini) for being an immensely enterprising and exceedingly caring advisor, and for steadily and very patiently trying to make a mature researcher out of me. I can certainly vouch for the fact that he has lost as much sleep as me for some of the particularly challenging aspects of in this thesis. I thank all my committee members for the few yet valuable discussions. I thank Prof. Paul Zimmerman for some of the crucial data used in this thesis as well as for his contribution to one of the manuscripts. I thank Prof. Krishna Garikipati, Prof. Emanuel Gull and Prof. Shravan Veerapaneni for not only being generous committee members but also for being wonderful teachers in some of my graduate courses, which provided me with a sound understanding of the key subjects involved in this work. I thank all my current and former labmates|Ian, Nelson, Nathan, Paavai, Krish- nendu, Mrinal, Janakiraman, Bala|for the pleasure of an encouraging and joyous lab experience.
    [Show full text]
  • County Scenic & Historic Drive Tours
    HUDSON VALLEY REGION DutchessCOUNTYDutchess SCENIC & HISTORIC DRIVE TOURS DUTCHESS COUNTY • NEW YORK Welcome to Dutchess County Dutchess County was formed in 1683 as one of the original counties of New York, in a bold move by English Colonial Governor Thomas Dongan to cut off New England expansion and confirm control of the Northeast by the Stuart monarchy. Our name honors Maria Beatrice D’Este, the Dutchess (old spelling) of York. Her husband James, the Duke, as proprietor and future King, named everything he controlled for relatives and friends. The sole inhabitants then were the Wappinger Indians. Taconic Parkway By 1700 small settlements were growing where the Hudson and kills (Dutch for streams) met at Fishkill, Rhinebeck and European immigrants flocked to the area at the dawn of the Poughkeepsie, where the County seat was established in 1714. 19th c. and as personal fortunes grew, public institutions were The river and King’s Highway (Rt. 9) were main arteries of endowed. The Hudson River Valley was reflected in the works travel, with our position mid-way between New York and of painters, writers, architects and landscape architects; sloops, Albany a logical stopping place. Stage routes and commerce steamboats, trains and trolleys connected even the most remote increased with the advent of inns and small villages, and areas of the county. those roads became supply routes during the Revolution. First Fishkill and then Poughkeepsie were New York’s first capitals, During the 20th c. railroads surrendered to the family and it was on July 26, 1788 at the Poughkeepsie Courthouse car, and the trauma of the Great Depression gave way to that New York delegates chose to ratify the US Constitution.
    [Show full text]
  • Exact Maps in Density Functional Theory for Lattice Models
    Home Search Collections Journals About Contact us My IOPscience Exact maps in density functional theory for lattice models This content has been downloaded from IOPscience. Please scroll down to see the full text. 2016 New J. Phys. 18 083004 (http://iopscience.iop.org/1367-2630/18/8/083004) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 158.227.0.242 This content was downloaded on 07/09/2016 at 09:09 Please note that terms and conditions apply. You may also be interested in: The Hubbard dimer: a density functional case study of a many-body problem D J Carrascal, J Ferrer, J C Smith et al. Existence, uniqueness, and construction of the density-potential mapping in time-dependent density-functional theory Michael Ruggenthaler, Markus Penz and Robert van Leeuwen Subsystem density-functional theory as an effective tool for modeling ground and excited states, their dynamics and many-body interactions Alisa Krishtal, Debalina Sinha, Alessandro Genova et al. Wave-function inspired density functional applied to the H2/${{\rm{H}}}_{2}^{+}$ challenge Igor Ying Zhang, Patrick Rinke and Matthias Scheffler One-dimensional Fermi liquids J Voit Quantum phase transitions in the collective degrees of freedom: nuclei and other many-body systems Pavel Cejnar and Pavel Stránský New J. Phys. 18 (2016) 083004 doi:10.1088/1367-2630/18/8/083004 PAPER Exact maps in density functional theory for lattice models OPEN ACCESS Tanja Dimitrov1,2,4, Heiko Appel1,2, Johanna I Fuks3 and Angel Rubio1,2 RECEIVED 1 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin-Dahlem, Germany 23 March 2016 2 Max-Planck-Institut für Struktur und Dynamik der Materie, Luruper Chaussee 149, D-22761 Hamburg, Germany REVISED 3 Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, 24 June 2016 New York, NY 10065, USA ACCEPTED FOR PUBLICATION 4 Author to whom any correspondence should be addressed.
    [Show full text]
  • Buffy and Angel
    buffy and angel PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Fri, 01 Jul 2011 03:42:14 UTC Contents Articles buffy and angel 1 Buffy the Vampire Slayer (film) 1 Buffy the Vampire Slayer (TV series) 5 Buffy the Vampire Slayer (season 1) 25 Buffy the Vampire Slayer (season 2) 30 Buffy the Vampire Slayer (season 3) 37 Angel (TV series) 42 Buffy the Vampire Slayer (season 4) 58 Angel (season 1) 65 Buffy the Vampire Slayer (season 5) 72 Angel (season 2) 78 Angel (season 3) 84 Buffy the Vampire Slayer (season 6) 90 Buffy the Vampire Slayer (season 7) 97 Angel (season 4) 103 Angel (season 5) 110 Buffy the Vampire Slayer Season Eight 118 References Article Sources and Contributors 131 Image Sources, Licenses and Contributors 133 Article Licenses License 134 1 buffy and angel Buffy the Vampire Slayer (film) Buffy the Vampire Slayer Theatrical release poster Directed by Fran Rubel Kuzui Produced by Howard Rosenman Written by Joss Whedon Starring Kristy Swanson Donald Sutherland Paul Reubens Rutger Hauer Luke Perry Music by Carter Burwell Cinematography James Hayman Editing by Jill Savitt Distributed by 20th Century Fox Release date(s) July 31, 1992 Running time 86 minutes Country United States Language English Budget $7 million Gross revenue $16,624,456 Buffy the Vampire Slayer is a 1992 American action/comedy/horror film about a Valley girl cheerleader named Buffy (Kristy Swanson) who learns that it is her fate to hunt vampires. The original script for the film was written by Joss Whedon, who later created the darker and more acclaimed TV series of the same name starring Sarah Michelle Gellar as Buffy.
    [Show full text]
  • Thesis Mehdi Uploaded to Nan
    UNIVERSIDAD DEL PAIS VASCO Density-Potential Mapping in the Standard and Quantum Electrodynamical Time-Dependent Density Functional Theory by Mehdi Farzanehpour Supervisors: Prof. Ilya Tokatly Prof. Angel Rubio A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in the Faculty of Physics, Chemistry and Materials Science Department of Materials Physics December 2015 \Questioning is the shortest path to learning!" To be proven in the future. Abstract This thesis is devoted to the formulation and implications of the time-dependent density functional theory (TDDFT). The work is divided into two main parts. In the first part we develop rigorous theorems for the density-potential mapping in quantum many-body systems on a lattice. We prove the uniqueness of the TDDFT map and demonstrate that a given density is v-representable if both the initial many-body state and the den- sity satisfy certain well-defined conditions. In particular, we show that for a system evolving from its ground state, any density with a continuous second time derivative is v-representable . Then the lattice TDDFT formulation is extended to cover a system of interacting lattice electrons strongly coupled to cavity photons. We prove that under some mathematical conditions the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate. Then we further generalize the ground state v-representability theorem to include the ground state of a general lattice electron-photon Hamiltonian. The second part of this thesis is focused on the applications of the analytic density- potential maps in TDDFT and the current-potential map in the time-dependent current density functional theory (TDCDFT).
    [Show full text]