Decomposability of Tensors

Total Page:16

File Type:pdf, Size:1020Kb

Decomposability of Tensors Decomposability of Tensors Edited by Luca Chiantini Printed Edition of the Special Issue Published in Mathematics www.mdpi.com/journal/mathematics Decomposability of Tensors Decomposability of Tensors Special Issue Editor Luca Chiantini MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Luca Chiantini Universita` degli Studi di Siena Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Mathematics (ISSN 2227-7390) in 2018 (available at: https://www.mdpi.com/journal/mathematics/ special issues/Mathematics Tensor Decomposition) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-590-8 (Pbk) ISBN 978-3-03897-591-5 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Preface to ”Decomposability of Tensors” ................................ ix Yang Qi A Very Brief Introduction to Nonnegative Tensors from the Geometric Viewpoint Reprinted from: Mathematics 2018, 6, 230, doi:10.3390/math6110230 ................. 1 Edoardo Ballico Set Evincing the Ranks with Respect to an Embedded Variety (Symmetric Tensor Rank and Tensor Rank Reprinted from: Mathematics 2018, 6, 140, doi:10.3390/math6080140 ................. 20 Alex Casarotti, Alex Massarenti and Massimiliano Mella On Comon’s and Strassen’s Conjectures Reprinted from: Mathematics 2018, 6, 217, doi:10.3390/math6110217 ................. 29 Alessandro De Paris Seeking for the Maximum Symmetric Rank Reprinted from: Mathematics 2018, 6, 247, doi:10.3390/math6110247 ................. 42 Alessandra Bernardi, Enrico Carlini, Maria Virginia Catalisano, Alessandro Gimigliano and Alessandro Oneto The Hitchhiker Guide to: Secant Varieties and Tensor Decomposition Reprinted from: Mathematics 2018, 6, 314, doi:10.3390/math6120314 ................. 63 v About the Special Issue Editor Luca Chiantini was born in 1957 and received his degree in Mathematics in 1979. He is Full Professor of Geometry at the University of Siena, Department of Information Engineering and Mathematical Sciences. He has published more than 90 research papers in Algebraic Geometry and Commutative Algebra, and he has edited books and conference proceedings on these topics. He has been a member of the scientific committee of several international meetings, including the joint meeting of the Unione Matematica Italiana and the real Sociedad Matematica Espanola. He participated in the editorial board of several Italian mathematical journals. Actually, he is a member of the editorial board of the Bolletino dell’Unione Matematica Italiana, and he is a member of the panel of the Scuola Matematica Interuniversitaria. His recent research interests focus on the geometry of special projective varieties, like Veronese and Segre varieties, and their applications in tensor analysis and algebraic statistics. vii Preface to ”Decomposability of Tensors” The Special Issue “tensor decomposition” is devoted to collecting papers on a subject that is rapidly developing in recent years, with (unexpected) connections between different areas of mathematics. Though tensor analysis is a topic that, for a long time, has been considered a chapter of multilinear algebra with a view towards numerical analysis, it turned out recently that methods of projective geometry, often arising from a classical point of view, have a strong connection with the theory of tensors and can produce advances that are also valuable in applicative domains. In particular, the study of tensor rank, i.e., the complexity of a tensor, was invigorated by the introduction of techniques based on the background of projective geometry. If one considers elementary tensors as a tensor product of vectors, then the computation of the rank corresponds to finding the minimum k, such that a tensor belongs to the k-secant variety of a product variety. In projective terms, the main notions of tensor analysis can be defined modulo scalar products, so most problems can be translated in terms of points in projective spaces, and product varieties become Segre embeddings of products of projective spaces (or Veronese embeddings of projective spaces, in the symmetric setting). In this circle of ideas, a decomposition of a tensor T corresponds to a set Z of projective points, such that T belongs to the linear span of Z. Thus, the geometry of secant varieties to Segre and Veronese varieties provides basic tools for understanding the decomposition of a given tensor. Notions like the uniqueness and minimality of a given decomposition found a natural formulation in terms of projective geometry. Also, special decompositions can be described in terms of proprieties of secant spaces. Altogether, the initial features of these new perspectives were described in a series of books and papers. Yet, as the theory develops quickly, it is useful to make frequent reports on the status of the art. This book collects papers that contain both surveys on the actual main achievements on some classical problems on the decomposition of tensors, like the best-known bounds on the rank of symmetric tensors, together with results on special decompositions and extensions to the generalized study of decompositions with respect to any subvarieties. We hope that the content of this book will provide a helpful collection of geometric perspectives on tensor analysis and tensor decomposition, which are necessary both to create a solid starting point for future developments and to establish a background of geometric methods for people who arrived to work in the subject coming from different points of view. Luca Chiantini Special Issue Editor ix mathematics Review A Very Brief Introduction to Nonnegative Tensors from the Geometric Viewpoint Yang Qi Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, USA; [email protected] Received: 27 September 2018; Accepted: 24 October 2018; Published: 30 October 2018 Abstract: This note is a short survey of nonnegative tensors, primarily from the geometric point of view. In addition to basic definitions, we discuss properties of and questions about nonnegative tensors, which may be of interest to geometers. Keywords: nonnegative tensors; low-rank approximations; uniqueness and identifiability; spectral theory; EM algorithm; semialgebraic geometry 1. Introduction Tensors are ubiquitous in mathematics and sciences. In the study of complex and real tensors, algebraic geometry has demonstrated its power [1,2]. On the other hand, tensor computations also help people understand classical algebraic varieties, such as the secant varieties of Segre varieties and Veronese varieties, and raise interesting and challenging questions in algebraic geometry [3,4]. Traditionally, geometers tend to study tensors in a coordinate-free way. However, in applications, practitioners must work with coordinates. Among those tensors widely used in practice, a large number of them are nonnegative tensors, i.e., tensors with nonnegative entries. In this case, most powerful geometric tools developed for complex tensors can not be applied directly due to the fact that the Euclidean closure of tensors with rank no greater than a fixed integer is no longer a variety, but a semialgebraic set. This forces us to investigate the semialgebraic geometry of nonnegative tensors. In this note, we will review some important properties of nonnegative tensors obtained by studying the semialgebraic geometry, and propose several open problems which are pivotal in understanding nonnegative tensors and also may be interesting to geometers. 2. Definitions Nonnegative tensors arise naturally in many areas, such as hyperspectral imaging, statistics, spectroscopy, computer vision, phylogenetics, and so on. See [5–8] and the references therein. Before further investigations, let us recall basic definitions of tensors. K V = ⊗···⊗ Definition 1. Let V1, ..., Vd be vector spaces over a field . The tensor product V1 Vd is the free ×···× linear space spanned by V1 Vd quotient by the equivalence relation: ( α + β ) ∼ α( )+β( ) v1,..., vi vi,...,vd v1,...,vi,...,vd v1,...,vi,...,vd (1) ∈ α β ∈ K = ⊗···⊗ for every vi, vi Vi, i, i , and i 1, . , d. An element of V1 Vd is called a tensor. ⊗···⊗ Equivalently, V1 Vd is the vector space of multilinear functions: ∗ ×···× ∗ → K V1 Vd , Mathematics 2018, 6, 230; doi:10.3390/math61102301 www.mdpi.com/journal/mathematics Mathematics 2018, 6, 230 ∗ = ( ) where Vi is the dual space of Vi for i 1, ..., d. A representative of the equivalence class of v1, ..., vd ⊗···⊗ is called a decomposable tensor and denoted by v1 vd. ∈ ⊗···⊗ The rank of a given tensor T V1 Vd is the minimum integer r such that T is a sum of r decomposable tensors, i.e., r = ⊗···⊗ T ∑ v1,i vd,i, (2) i=1 ∈ = = where vj,i Vj for j 1, ..., d and i 1, ..., r. Such a decomposition is called a rank decomposition (or canonical polyadic decomposition or CP decomposition). K = R Now we focus on the case , and for each Vi we fix a basis, which enables us to work with coordinates. Let R+ be the semiring of nonnegative real numbers. A nonnegative tensor in ⊗···⊗ + V1 Vd is a tensor whose coordinates are nonnegative. Let Vi denote the set of nonnegative = V+ V vectors in Vi for each i 1, . , d, and denote the set of nonnegative tensors in . + Definition 2. For T ∈ V , the nonnegative rank of T is the minimum integer r so that there exist nonnegative ∈ + = = vectors vi,j Vi for i 1, . , d and j 1, . , r making Equation (2) holds. + + It is clear that rank+(T) ≥ rank(T) for every T ∈ V .
Recommended publications
  • Tensor Manipulation in GPL Maxima
    Tensor Manipulation in GPL Maxima Viktor Toth http://www.vttoth.com/ February 1, 2008 Abstract GPL Maxima is an open-source computer algebra system based on DOE-MACSYMA. GPL Maxima included two tensor manipulation packages from DOE-MACSYMA, but these were in various states of disrepair. One of the two packages, CTENSOR, implemented component-based tensor manipulation; the other, ITENSOR, treated tensor symbols as opaque, manipulating them based on their index properties. The present paper describes the state in which these packages were found, the steps that were needed to make the packages fully functional again, and the new functionality that was implemented to make them more versatile. A third package, ATENSOR, was also implemented; fully compatible with the identically named package in the commercial version of MACSYMA, ATENSOR implements abstract tensor algebras. 1 Introduction GPL Maxima (GPL stands for the GNU Public License, the most widely used open source license construct) is the descendant of one of the world’s first comprehensive computer algebra systems (CAS), DOE-MACSYMA, developed by the United States Department of Energy in the 1960s and the 1970s. It is currently maintained by 18 volunteer developers, and can be obtained in source or object code form from http://maxima.sourceforge.net/. Like other computer algebra systems, Maxima has tensor manipulation capability. This capability was developed in the late 1970s. Documentation is scarce regarding these packages’ origins, but a select collection of e-mail messages by various authors survives, dating back to 1979-1982, when these packages were actively maintained at M.I.T. When this author first came across GPL Maxima, the tensor packages were effectively non-functional.
    [Show full text]
  • 28. Exterior Powers
    28. Exterior powers 28.1 Desiderata 28.2 Definitions, uniqueness, existence 28.3 Some elementary facts 28.4 Exterior powers Vif of maps 28.5 Exterior powers of free modules 28.6 Determinants revisited 28.7 Minors of matrices 28.8 Uniqueness in the structure theorem 28.9 Cartan's lemma 28.10 Cayley-Hamilton Theorem 28.11 Worked examples While many of the arguments here have analogues for tensor products, it is worthwhile to repeat these arguments with the relevant variations, both for practice, and to be sensitive to the differences. 1. Desiderata Again, we review missing items in our development of linear algebra. We are missing a development of determinants of matrices whose entries may be in commutative rings, rather than fields. We would like an intrinsic definition of determinants of endomorphisms, rather than one that depends upon a choice of coordinates, even if we eventually prove that the determinant is independent of the coordinates. We anticipate that Artin's axiomatization of determinants of matrices should be mirrored in much of what we do here. We want a direct and natural proof of the Cayley-Hamilton theorem. Linear algebra over fields is insufficient, since the introduction of the indeterminate x in the definition of the characteristic polynomial takes us outside the class of vector spaces over fields. We want to give a conceptual proof for the uniqueness part of the structure theorem for finitely-generated modules over principal ideal domains. Multi-linear algebra over fields is surely insufficient for this. 417 418 Exterior powers 2. Definitions, uniqueness, existence Let R be a commutative ring with 1.
    [Show full text]
  • CLIFFORD ALGEBRAS Property, Then There Is a Unique Isomorphism (V ) (V ) Intertwining the Two Inclusions of V
    CHAPTER 2 Clifford algebras 1. Exterior algebras 1.1. Definition. For any vector space V over a field K, let T (V ) = k k k Z T (V ) be the tensor algebra, with T (V ) = V V the k-fold tensor∈ product. The quotient of T (V ) by the two-sided⊗···⊗ ideal (V ) generated byL all v w + w v is the exterior algebra, denoted (V ).I The product in (V ) is usually⊗ denoted⊗ α α , although we will frequently∧ omit the wedge ∧ 1 ∧ 2 sign and just write α1α2. Since (V ) is a graded ideal, the exterior algebra inherits a grading I (V )= k(V ) ∧ ∧ k Z M∈ where k(V ) is the image of T k(V ) under the quotient map. Clearly, 0(V )∧ = K and 1(V ) = V so that we can think of V as a subspace of ∧(V ). We may thus∧ think of (V ) as the associative algebra linearly gener- ated∧ by V , subject to the relations∧ vw + wv = 0. We will write φ = k if φ k(V ). The exterior algebra is commutative | | ∈∧ (in the graded sense). That is, for φ k1 (V ) and φ k2 (V ), 1 ∈∧ 2 ∈∧ [φ , φ ] := φ φ + ( 1)k1k2 φ φ = 0. 1 2 1 2 − 2 1 k If V has finite dimension, with basis e1,...,en, the space (V ) has basis ∧ e = e e I i1 · · · ik for all ordered subsets I = i1,...,ik of 1,...,n . (If k = 0, we put { } k { n } e = 1.) In particular, we see that dim (V )= k , and ∅ ∧ n n dim (V )= = 2n.
    [Show full text]
  • Mathematics 552 Algebra II Spring 2017 the Exterior Algebra of K
    Mathematics 552 Algebra II Spring 2017 The exterior algebra of K-modules and the Cauchy-Binet formula Let K be a commutative ring, and let M be a K-module. Recall that the tensor ⊗i algebra T (M) = ⊕i=0M is an associative K-algebra and that if M is free of finite rank ⊗k m with basis v1; : : : ; vm then T (M) is a graded free K module with basis for M given ⊗k by the collection of vi1 ⊗ vi2 ⊗ · · · vik for 1 ≤ it ≤ m. Hence M is a free K-module of rank mk. We checked in class that the tensor algebra was functorial, in that when f : M ! N is a K-module homomorphism, then the induced map f ⊗i : M ⊗i ! N ⊗i gives a homomorphism of K-algebras T (f): T (M) ! T (N) and that this gives a functor from K-modules to K-algebras. The ideal I ⊂ T (M) generated by elements of the form x ⊗ x for x 2 M enables us to construct an algebra Λ(M) = T (M)=I. Since (v+w)⊗(v+w) = v⊗v+v⊗w+w⊗v+w⊗w we have that (modulo I) v ⊗ w = −w ⊗ v. The image of M ⊗i in Λ(M) is denoted Λi(M), the i-th exterior power of M. The product in Λ(M) derived from the product on T (M) is usually called the wedge product : v ^ w is the image of v ⊗ w in T (M)=I. Since making tensor algebra of modules is functorial, so is making the exterior algebra.
    [Show full text]
  • Electromagnetic Fields from Contact- and Symplectic Geometry
    ELECTROMAGNETIC FIELDS FROM CONTACT- AND SYMPLECTIC GEOMETRY MATIAS F. DAHL Abstract. We give two constructions that give a solution to the sourceless Maxwell's equations from a contact form on a 3-manifold. In both construc- tions the solutions are standing waves. Here, contact geometry can be seen as a differential geometry where the fundamental quantity (that is, the con- tact form) shows a constantly rotational behaviour due to a non-integrability condition. Using these constructions we obtain two main results. With the 3 first construction we obtain a solution to Maxwell's equations on R with an arbitrary prescribed and time independent energy profile. With the second construction we obtain solutions in a medium with a skewon part for which the energy density is time independent. The latter result is unexpected since usually the skewon part of a medium is associated with dissipative effects, that is, energy losses. Lastly, we describe two ways to construct a solution from symplectic structures on a 4-manifold. One difference between acoustics and electromagnetics is that in acoustics the wave is described by a scalar quantity whereas an electromagnetics, the wave is described by vectorial quantities. In electromagnetics, this vectorial nature gives rise to polar- isation, that is, in anisotropic medium differently polarised waves can have different propagation and scattering properties. To understand propagation in electromag- netism one therefore needs to take into account the role of polarisation. Classically, polarisation is defined as a property of plane waves, but generalising this concept to an arbitrary electromagnetic wave seems to be difficult. To understand propaga- tion in inhomogeneous medium, there are various mathematical approaches: using Gaussian beams (see [Dah06, Kac04, Kac05, Pop02, Ral82]), using Hadamard's method of a propagating discontinuity (see [HO03]) and using microlocal analysis (see [Den92]).
    [Show full text]
  • Automated Operation Minimization of Tensor Contraction Expressions in Electronic Structure Calculations
    Automated Operation Minimization of Tensor Contraction Expressions in Electronic Structure Calculations Albert Hartono,1 Alexander Sibiryakov,1 Marcel Nooijen,3 Gerald Baumgartner,4 David E. Bernholdt,6 So Hirata,7 Chi-Chung Lam,1 Russell M. Pitzer,2 J. Ramanujam,5 and P. Sadayappan1 1 Dept. of Computer Science and Engineering 2 Dept. of Chemistry The Ohio State University, Columbus, OH, 43210 USA 3 Dept. of Chemistry, University of Waterloo, Waterloo, Ontario N2L BG1, Canada 4 Dept. of Computer Science 5 Dept. of Electrical and Computer Engineering Louisiana State University, Baton Rouge, LA 70803 USA 6 Computer Sci. & Math. Div., Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA 7 Quantum Theory Project, University of Florida, Gainesville, FL 32611 USA Abstract. Complex tensor contraction expressions arise in accurate electronic struc- ture models in quantum chemistry, such as the Coupled Cluster method. Transfor- mations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evalua- tion of these expressions, but the optimization problem is NP-hard. Operation mini- mization is an important optimization step for the Tensor Contraction Engine, a tool being developed for the automatic transformation of high-level tensor contraction expressions into efficient programs. In this paper, we develop an effective heuristic approach to the operation minimization problem, and demonstrate its effectiveness on tensor contraction expressions for coupled cluster equations. 1 Introduction Currently, manual development of accurate quantum chemistry models is very tedious and takes an expert several months to years to develop and debug. The Tensor Contrac- tion Engine (TCE) [2, 1] is a tool that is being developed to reduce the development time to hours/days, by having the chemist specify the computation in a high-level form, from which an efficient parallel program is automatically synthesized.
    [Show full text]
  • The Riemann Curvature Tensor
    The Riemann Curvature Tensor Jennifer Cox May 6, 2019 Project Advisor: Dr. Jonathan Walters Abstract A tensor is a mathematical object that has applications in areas including physics, psychology, and artificial intelligence. The Riemann curvature tensor is a tool used to describe the curvature of n-dimensional spaces such as Riemannian manifolds in the field of differential geometry. The Riemann tensor plays an important role in the theories of general relativity and gravity as well as the curvature of spacetime. This paper will provide an overview of tensors and tensor operations. In particular, properties of the Riemann tensor will be examined. Calculations of the Riemann tensor for several two and three dimensional surfaces such as that of the sphere and torus will be demonstrated. The relationship between the Riemann tensor for the 2-sphere and 3-sphere will be studied, and it will be shown that these tensors satisfy the general equation of the Riemann tensor for an n-dimensional sphere. The connection between the Gaussian curvature and the Riemann curvature tensor will also be shown using Gauss's Theorem Egregium. Keywords: tensor, tensors, Riemann tensor, Riemann curvature tensor, curvature 1 Introduction Coordinate systems are the basis of analytic geometry and are necessary to solve geomet- ric problems using algebraic methods. The introduction of coordinate systems allowed for the blending of algebraic and geometric methods that eventually led to the development of calculus. Reliance on coordinate systems, however, can result in a loss of geometric insight and an unnecessary increase in the complexity of relevant expressions. Tensor calculus is an effective framework that will avoid the cons of relying on coordinate systems.
    [Show full text]
  • Appendix a Relations Between Covariant and Contravariant Bases
    Appendix A Relations Between Covariant and Contravariant Bases The contravariant basis vector gk of the curvilinear coordinate of uk at the point P is perpendicular to the covariant bases gi and gj, as shown in Fig. A.1.This contravariant basis gk can be defined as or or a gk g  g ¼  ðA:1Þ i j oui ou j where a is the scalar factor; gk is the contravariant basis of the curvilinear coordinate of uk. Multiplying Eq. (A.1) by the covariant basis gk, the scalar factor a results in k k ðgi  gjÞ: gk ¼ aðg : gkÞ¼ad ¼ a ÂÃk ðA:2Þ ) a ¼ðgi  gjÞ : gk gi; gj; gk The scalar triple product of the covariant bases can be written as pffiffiffi a ¼ ½¼ðg1; g2; g3 g1  g2Þ : g3 ¼ g ¼ J ðA:3Þ where Jacobian J is the determinant of the covariant basis tensor G. The direction of the cross product vector in Eq. (A.1) is opposite if the dummy indices are interchanged with each other in Einstein summation convention. Therefore, the Levi-Civita permutation symbols (pseudo-tensor components) can be used in expression of the contravariant basis. ffiffiffi p k k g g ¼ J g ¼ðgi  gjÞ¼Àðgj  giÞ eijkðgi  gjÞ eijkðgi  gjÞ ðA:4Þ ) gk ¼ pffiffiffi ¼ g J where the Levi-Civita permutation symbols are defined by 8 <> þ1ifði; j; kÞ is an even permutation; eijk ¼ > À1ifði; j; kÞ is an odd permutation; : A:5 0ifi ¼ j; or i ¼ k; or j ¼ k ð Þ 1 , e ¼ ði À jÞÁðj À kÞÁðk À iÞ for i; j; k ¼ 1; 2; 3 ijk 2 H.
    [Show full text]
  • Tensor, Exterior and Symmetric Algebras
    Tensor, Exterior and Symmetric Algebras Daniel Murfet May 16, 2006 Throughout this note R is a commutative ring, all modules are left R-modules. If we say a ring is noncommutative, we mean it is not necessarily commutative. Unless otherwise specified, all rings are noncommutative (except for R). If A is a ring then the center of A is the set of all x ∈ A with xy = yx for all y ∈ A. Contents 1 Definitions 1 2 The Tensor Algebra 5 3 The Exterior Algebra 6 3.1 Dimension of the Exterior Powers ............................ 11 3.2 Bilinear Forms ...................................... 14 3.3 Other Properties ..................................... 18 3.3.1 The determinant formula ............................ 18 4 The Symmetric Algebra 19 1 Definitions Definition 1. A R-algebra is a ring morphism φ : R −→ A where A is a ring and the image of φ is contained in the center of A. This is equivalent to A being an R-module and a ring, with r · (ab) = (r · a)b = a(r · b), via the identification of r · 1 and φ(r). A morphism of R-algebras is a ring morphism making the appropriate diagram commute, or equivalently a ring morphism which is also an R-module morphism. In this section RnAlg will denote the category of these R-algebras. We use RAlg to denote the category of commutative R-algebras. A graded ring is a ring A together with a set of subgroups Ad, d ≥ 0 such that A = ⊕d≥0Ad as an abelian group, and st ∈ Ad+e for all s ∈ Ad, t ∈ Ae.
    [Show full text]
  • Gicheru3012018jamcs43211.Pdf
    Journal of Advances in Mathematics and Computer Science 30(1): 1-15, 2019; Article no.JAMCS.43211 ISSN: 2456-9968 (Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) Decomposition of Riemannian Curvature Tensor Field and Its Properties James Gathungu Gicheru1* and Cyrus Gitonga Ngari2 1Department of Mathematics, Ngiriambu Girls High School, P.O.Box 46-10100, Kianyaga, Kenya. 2Department of Mathematics, Computing and Information Technology, School of Pure and Applied Sciences, University of Embu, P.O.Box 6-60100, Embu, Kenya. Authors’ contributions This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/JAMCS/2019/43211 Editor(s): (1) Dr. Dragos-Patru Covei, Professor, Department of Applied Mathematics, The Bucharest University of Economic Studies, Piata Romana, Romania. (2) Dr. Sheng Zhang, Professor, Department of Mathematics, Bohai University, Jinzhou, China. Reviewers: (1) Bilal Eftal Acet, Adıyaman University, Turkey. (2) Çiğdem Dinçkal, Çankaya University, Turkey. (3) Alexandre Casassola Gonçalves, Universidade de São Paulo, Brazil. Complete Peer review History: http://www.sciencedomain.org/review-history/27899 Received: 07 July 2018 Accepted: 22 November 2018 Original Research Article Published: 21 December 2018 _______________________________________________________________________________ Abstract Decomposition of recurrent curvature tensor fields of R-th order in Finsler manifolds has been studied by B. B. Sinha and G. Singh [1] in the publications del’ institute mathematique, nouvelleserie, tome 33 (47), 1983 pg 217-220. Also Surendra Pratap Singh [2] in Kyungpook Math. J. volume 15, number 2 December, 1975 studied decomposition of recurrent curvature tensor fields in generalised Finsler spaces.
    [Show full text]
  • Differential Forms As Spinors Annales De L’I
    ANNALES DE L’I. H. P., SECTION A WOLFGANG GRAF Differential forms as spinors Annales de l’I. H. P., section A, tome 29, no 1 (1978), p. 85-109 <http://www.numdam.org/item?id=AIHPA_1978__29_1_85_0> © Gauthier-Villars, 1978, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincare, Section A : Vol. XXIX. n° L 1978. p. 85 Physique’ théorique.’ Differential forms as spinors Wolfgang GRAF Fachbereich Physik der Universitat, D-7750Konstanz. Germany ABSTRACT. 2014 An alternative notion of spinor fields for spin 1/2 on a pseudoriemannian manifold is proposed. Use is made of an algebra which allows the interpretation of spinors as elements of a global minimal Clifford- ideal of differential forms. The minimal coupling to an electromagnetic field is introduced by means of an « U(1 )-gauging ». Although local Lorentz transformations play only a secondary role and the usual two-valuedness is completely absent, all results of Dirac’s equation in flat space-time with electromagnetic coupling can be regained. 1. INTRODUCTION It is well known that in a riemannian manifold the laplacian D := - (d~ + ~d) operating on differential forms admits as « square root » the first-order operator ~ 2014 ~ ~ being the exterior derivative and e) the generalized divergence.
    [Show full text]
  • The Exterior Algebra and Central Notions in Mathematics
    The Exterior Algebra and Central Notions in Mathematics Gunnar Fløystad Dedicated to Stein Arild Strømme (1951–2014) The neglect of the exterior algebra is the mathematical tragedy of our century. —Gian-Carlo Rota, Indiscrete Thoughts (1997) his note surveys how the exterior algebra the somewhat lesser-known regressive product on and deformations or quotients of it the exterior algebra, which intuitively corresponds capture essences of five domains in to intersection of linear spaces. It relates this to mathematics: geometry and it also shows how analysis may T be extended to functions of extensive quantities. • Combinatorics •Mathematical physics Only in the last two decades of the 1800s did • Topology •Algebraic geometry publications inspired by Grassmann’s work achieve • Lie theory a certain mass. It may have been with some regret The exterior algebra originated in the work that Grassmann in his second version had an of Hermann Grassmann (1809–1877) in his book exclusively mathematical form, since he in the Ausdehnungslehre from 1844, and the thoroughly foreword says “[extension theory] is not simply one revised 1862 version, which now exists in an English among the other branches of mathematics, such translation [20] from 2000. Grassmann worked as algebra, combination theory or function theory, as a professor at the gymnasium in Stettin, then bur rather surpasses them, in that all fundamental Germany. Partly because Grassmann was an original elements are unified under this branch, which thinker and maybe partly because his education thus as it were forms the keystone of the entire had not focused much on mathematics, the first structure of mathematics.” edition of his book had a more philosophical The present note indicates that he was not quite than mathematical form and therefore gained little off the mark here.
    [Show full text]