Committee Approval Form.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Committee Approval Form.Indd UNIVERSITY OF CINCINNATI Date:___________________November 19, 2008 Trevor I. Stamper I, _______________________________________________________________, hereby submit this work as part of the requirements for the degree of: Doctor of Philosophy in: Biological Science It is entitled: Improving the Accuracy of Postmortem Interval Estimations Using Carrion Flies (Diptera: Sarcophagidae, Calliphoridae and Muscidae) This work and its defense approved by: Chair: _______________________________Ronald W. DeBry _______________________________Theresa Culley _______________________________George Uetz _______________________________Gregory Dahlem _______________________________Anthony Perzigian Improving the Accuracy of Postmortem Interval Estimations Using Carrion Flies (Diptera: Sarcophagidae, Calliphoridae and Muscidae) A dissertation submitted to the Graduate School Of the University of Cincinnati In partial fulfillment of the requirements for the degree of Doctor of Philosophy In the Department of Biological Sciences Of the McMicken College of Arts and Sciences By Trevor I. Stamper M.A., Anthropology, New Mexico State University at Las Cruces, January 2002 B.A., Anthropology, New Mexico State University at Las Cruces, May 1997 Committee chair: Ronald W. DeBry Abstract The use of flies in forensic entomology in postmortem interval estimations is hindered by lack of information. For accurate postmortem interval estimations using flies, the single most important information is the species identity of the immature flies found upon a corpse. One of the three major groups that associate with carrion, the fleshflies (Diptera: Sarcophagidae), are difficult to identify in almost all life stages, especially in the larval stages commonly found upon carrion sources. Additionally, behavioral information on nocturnal oviposition activity amongst carrion flies in general is needed to resolve a time window of up to twelve hours in postmortem interval estimations. The two major goals of this study are: 1) to resolve the phylogenetic relationships of several major genera within the sub-family Sarcophaginae and 2) to investigate the behavioral patterns of nocturnal oviposition for carrion flies. Relationships of one of the major lineages of Sarcophagidae, the Sarcophaginae, remain unresolved. Most forensically important fleshfly species fall within the Sarcophaginae and so resolving this group can help identify unknown forensically important specimens. I analyzed the complete cytochrome oxidase I (COI) and cytochrome oxidase II (COII) mtDNA genes, along with portions of the dehydrogenase subunit four (ND4) mtDNA gene and elongation factor one-alpha nDNA gene from 21 species of fleshfly representing 11 genera, and four representatives from other closely related dipteran families. I confirm the monophyly of the family Sarcophagidae and the generic-level organization within the Sarcophaginae of those genera supported by multiple exemplars included in this study (Helicobia, Sarcophaga, Ravinia, Peckia and Boettcheria). The behavioral patterns of nocturnal oviposition represent a window of time that potentially has a large impact on postmortem interval estimations. I investigated the behavioral patterns of carrions flies at night by exposing euthanized rats between sunset and sunrise to see if carrion flies oviposited upon the carrion over three subsequent summers. I encountered significant methodological problems that I corrected. I also investigated urban and rural locations, in both lit and unlit conditions. In the end, I found that nocturnal ovipositing did not occur in the Cincinnati metropolitan area. ii iii Acknowledgements The molecular portion of this work was supported by Grant No. 2005-DA-BX-K102 awarded by the National Institute of Justice, Office of Justice Programs, US Department of Justice to Ronald W. DeBry. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Department of Justice. The behavioral portion of this work was funded by multiple Wiemenn/Wendel/Benedict Summer Fellowships to Trevor Stamper and from the kind donations of previously euthanized rodents from Dr. Rebecca German and the Genome Research Institute. I have been blessed to have a wonderful committee to work with while developing my ideas and testing them. I thank my advisor, Ronald W. DeBry, for his support and trust that eventually, I would produce something to justify his time. Ron allowed an errant Anthropologist to come into his lab with precious little Biology experience, but a whole lot of interest in dead people and molecules. Without Ron’s unfailing support, my life would be very different than it is today. Much to his credit, he didn’t even complain when I started breeding flies in odd corners of the lab, kept asking for equipment that no self-respecting molecular biologist should need (who needs dress zippers?), or decided that hand sewing an outrageous number of collapsible traps was not that bad of an idea, especially since we couldn’t find a trap to do what I wanted mine to do. Ron has tried his best to keep me focused and it worked sometimes. I am also deeply indebted to Dr. Gregory Dahlem, who spent an awful lot of time teaching me about flies and how they shouldn’t all be ground up for DNA. We don’t see eye-to-eye that ALL flies should be preserved carefully, but I grind up far fewer than I used to, and have even dedicated a portion of my (as of yet unfinished) house to their proper storage and preservation! Greg went out of his way to help me learn about teaching in academics, mentoring me through the PFF program and providing me with opportunities to teach when our interests aligned. I owe special thanks to Dr. Theresa Culley, who listened to and talked me through organizing large portions of the projects detailed herein and many that are not. Theresa spent countless hours editing manuscripts for me, often with little notice and was always available to listen to my latest crazy idea on how to use biology in postmortem interval estimations. She is a dedicated educator who is always willing to listen to a student and has really good insights. I am a better researcher and teacher for knowing and learning from her. Dr. George Uetz was willing to step iv outside the life of spiders for a while to help me investigate fly behavior (or lack thereof) on carcasses at night, and his insight into insect behavior was often dead-on despite my protests. Dr. Anthony Perzigian kindly agreed to come over from Anthropology and lend his insight into Jurisprudence and Forensic Anthropology to my work. While our time discussing these topics was necessarily limited by his busy schedule, his understanding of how science and the justice system work hand-in-hand was invaluable. I would also like to thank the other members of the department who have proved so helpful. Specifically, Dr. Carl Huether, who directed the Preparing Future Faculty program until recently, helped me navigate that program’s requirements in addition to my normal lab commitments. Finally, to the office staff: without you, this department wouldn’t function. Thanks a lot for helping me navigate the esoteric byways of the University of Cincinnati graduate system. I am indebted to my colleagues in the DeBry lab. First, there is Dr. Hector Miranda, who helped me get going on molecular biology and patiently explained many of the common mistakes I routinely made. Second, to Mr. David Hauber, who retired from the crime lab system in Kentucky to escape forensics only to find himself in a lab with someone who wanted to talk about nothing but forensics (and dead people). David has been a nearly constant companion my many years in the DeBry lab, and his advice and expertise in many things, professional and personal, has always been helpful. Finally, to Dr. Alicia Timm, who came into the lab late in the game, but nevertheless helped me with the final push to finish sequencing a seemingly endless number of species and who saved my bacon with a few problematic specimens. Several undergraduate students came into the DeBry lab during my tenure who have helped with these projects. Colin White studied under me while learning molecular lab techniques. Colin helped characterize some of the PCR settings used in the molecular portion of my work, and helped me cut out net trap templates during 2004. Paula Davis came into the lab under the auspices of the WISE program and helped with both some of the last of the molecular work and spent a summer driving around Cincinnati dropping off and picking up dead rodents. Without Paula’s help, running four sites at the same time for nocturnal ovipositing would have never happened! Outside of the obvious influences from work, others have helped me with this research. I would like to thank Mathew Klooster, Brian and Laura Gilkison, Christine and Brian Moskalik, Colin White and v my wife, Christina, all of whom let me place dead rats in their yards just after sunset for several years, in the name of science. This is a sacrifice not common to most people, who get a bit squimish around dead rats. Thank-you all, and I hope I didn’t wake anyone up when I came to collect the poor little dead rats before dawn! I extend special thanks to me friends and family, almost all of whom have had to deal with my little obsession for collecting “forensically important” flies using decomposing chicken in mason jars for the past half decade, and many of whom have had to mail pupae back to me because my stay was too short to accommodate the fly maturation process and those poor fly maggots just needed “a few more days” eating the bacteria rotting chicken to grow up big and strong. Special attention needs to be paid to the following debts in preparing this manuscript. Michael P. Cosentino spent many hours editing drafts of various portions of this work (and others). There is passive voice left in these chapters, and it is my fault, not his.
Recommended publications
  • Diptera: Calyptratae)
    Systematic Entomology (2020), DOI: 10.1111/syen.12443 Protein-encoding ultraconserved elements provide a new phylogenomic perspective of Oestroidea flies (Diptera: Calyptratae) ELIANA BUENAVENTURA1,2 , MICHAEL W. LLOYD2,3,JUAN MANUEL PERILLALÓPEZ4, VANESSA L. GONZÁLEZ2, ARIANNA THOMAS-CABIANCA5 andTORSTEN DIKOW2 1Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany, 2National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A., 3The Jackson Laboratory, Bar Harbor, ME, U.S.A., 4Department of Biological Sciences, Wright State University, Dayton, OH, U.S.A. and 5Department of Environmental Science and Natural Resources, University of Alicante, Alicante, Spain Abstract. The diverse superfamily Oestroidea with more than 15 000 known species includes among others blow flies, flesh flies, bot flies and the diverse tachinid flies. Oestroidea exhibit strikingly divergent morphological and ecological traits, but even with a variety of data sources and inferences there is no consensus on the relationships among major Oestroidea lineages. Phylogenomic inferences derived from targeted enrichment of ultraconserved elements or UCEs have emerged as a promising method for resolving difficult phylogenetic problems at varying timescales. To reconstruct phylogenetic relationships among families of Oestroidea, we obtained UCE loci exclusively derived from the transcribed portion of the genome, making them suitable for larger and more integrative phylogenomic studies using other genomic and transcriptomic resources. We analysed datasets containing 37–2077 UCE loci from 98 representatives of all oestroid families (except Ulurumyiidae and Mystacinobiidae) and seven calyptrate outgroups, with a total concatenated aligned length between 10 and 550 Mb. About 35% of the sampled taxa consisted of museum specimens (2–92 years old), of which 85% resulted in successful UCE enrichment.
    [Show full text]
  • Early Post-Mortem Changes and Stages of Decomposition in Exposed Cadavers
    Exp Appl Acarol (2009) 49:21–36 DOI 10.1007/s10493-009-9284-9 Early post-mortem changes and stages of decomposition in exposed cadavers M. Lee Goff Received: 1 June 2009 / Accepted: 4 June 2009 / Published online: 25 June 2009 Ó Springer Science+Business Media B.V. 2009 Abstract Decomposition of an exposed cadaver is a continuous process, beginning at the moment of death and ending when the body is reduced to a dried skeleton. Traditional estimates of the period of time since death or post-mortem interval have been based on a series of grossly observable changes to the body, including livor mortis, algor mortis, rigor mortis and similar phenomena. These changes will be described briefly and their relative significance discussed. More recently, insects, mites and other arthropods have been increasingly used by law enforcement to provide an estimate of the post-mortem interval. Although the process of decomposition is continuous, it is useful to divide this into a series of five stages: Fresh, Bloated, Decay, Postdecay and Skeletal. Here these stages are characterized by physical parameters and related assemblages of arthropods, to provide a framework for consideration of the decomposition process and acarine relationships to the body. Keywords Decomposition Á Forensic Á Acari Á Post-mortem changes Á Succession Introduction There are typically two known points at the beginning of the task of estimating a period of time since death: the last time the individual was reliably known to be alive and the time at which the body was discovered. The death occurred between these two points and the aim is to estimate when it most probably took place.
    [Show full text]
  • Microbiome Biomarkers- Post Mortem Interval by Maitri Solanki a Thesis
    Microbiome Biomarkers- Post Mortem Interval By Maitri Solanki A Thesis submitted in fulfillment of the requirements for the degree of Master of Forensic Science (Professional Practice) In The School of Veterinary and Life Sciences Murdoch University Academic Supervisor: Associate Professor James Speers Semester 1, 2019 Declaration I declare that this thesis does not contain any material submitted previously for the award of any other degree or diploma at any university or other tertiary institution. Furthermore, to the best of my knowledge, it does not contain any material previously published or written by another individual, except where due reference has been made in the text. Finally, I declare that all reported experimentations performed in this research were carried out by myself, except that any contribution by others, with whom I have worked is explicitly acknowledged. Signed: Maitri Solanki ii Acknowledgements First and foremost, I would like to thank Associate Professor James Speers for his support, guidance, mentorship, and constructive feedback offered throughout this process. I sincerely appreciate the generosity with which you have shared your time. I would also like to thank my family and friends for their constant support, guidance, patience, and encouragement. Your contributions throughout this process have been invaluable. iii Table of Contents Title Page…………………………………………………………………………………………………………i Declaration………………………………………………………………………………………………………ii Acknowledgements………………………………………………………………………………………....iii Table of Contents……………………………………………………………………………………………..iv
    [Show full text]
  • Millichope Park and Estate Invertebrate Survey 2020
    Millichope Park and Estate Invertebrate survey 2020 (Coleoptera, Diptera and Aculeate Hymenoptera) Nigel Jones & Dr. Caroline Uff Shropshire Entomology Services CONTENTS Summary 3 Introduction ……………………………………………………….. 3 Methodology …………………………………………………….. 4 Results ………………………………………………………………. 5 Coleoptera – Beeetles 5 Method ……………………………………………………………. 6 Results ……………………………………………………………. 6 Analysis of saproxylic Coleoptera ……………………. 7 Conclusion ………………………………………………………. 8 Diptera and aculeate Hymenoptera – true flies, bees, wasps ants 8 Diptera 8 Method …………………………………………………………… 9 Results ……………………………………………………………. 9 Aculeate Hymenoptera 9 Method …………………………………………………………… 9 Results …………………………………………………………….. 9 Analysis of Diptera and aculeate Hymenoptera … 10 Conclusion Diptera and aculeate Hymenoptera .. 11 Other species ……………………………………………………. 12 Wetland fauna ………………………………………………….. 12 Table 2 Key Coleoptera species ………………………… 13 Table 3 Key Diptera species ……………………………… 18 Table 4 Key aculeate Hymenoptera species ……… 21 Bibliography and references 22 Appendix 1 Conservation designations …………….. 24 Appendix 2 ………………………………………………………… 25 2 SUMMARY During 2020, 811 invertebrate species (mainly beetles, true-flies, bees, wasps and ants) were recorded from Millichope Park and a small area of adjoining arable estate. The park’s saproxylic beetle fauna, associated with dead wood and veteran trees, can be considered as nationally important. True flies associated with decaying wood add further significant species to the site’s saproxylic fauna. There is also a strong
    [Show full text]
  • Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
    Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N.
    [Show full text]
  • Spore Dispersal Vectors
    Glime, J. M. 2017. Adaptive Strategies: Spore Dispersal Vectors. Chapt. 4-9. In: Glime, J. M. Bryophyte Ecology. Volume 1. 4-9-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 3 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 4-9 ADAPTIVE STRATEGIES: SPORE DISPERSAL VECTORS TABLE OF CONTENTS Dispersal Types ............................................................................................................................................ 4-9-2 Wind Dispersal ............................................................................................................................................. 4-9-2 Splachnaceae ......................................................................................................................................... 4-9-4 Liverworts ............................................................................................................................................. 4-9-5 Invasive Species .................................................................................................................................... 4-9-5 Decay Dispersal............................................................................................................................................ 4-9-6 Animal Dispersal .......................................................................................................................................... 4-9-9 Earthworms ..........................................................................................................................................
    [Show full text]
  • REVISTA Brasilelra DE ZOOLOGIA
    REVISTA BRASILElRA DE ZOOLOGIA Revta bras. Zool., S Paulo 3(3): 109-169 28.vi.l985 A REVISION OF THE NEW WORLD CHRYSOMYINI (DIPTERA: CALLIPHORIDAE) JAMES P. DEAR ABSTRACT The 24 New World species of Chrysomyini are revised. Keys are given to genera and species with illustrations of characters of diagnostic and syste­ matic importance. All taxa are fully described (except for the species of Chrysomya and Cochliomyia), and reference is made to their biology where is known. There are 20 endemic species (1 Chloroprocta, 3 Paralucilia, 6 He­ milucilia, 4 Cochliomyia, 6 Compsomyops), and 4 Chrysomya have been in­ troduced from the Old World. Four new species are described: Paralucilia adesposta, P. xantogeneiates, Hermilucilia melusina, Compsomyops melloi. The­ re are 2 new generic and 2 new specific synonymies. The types of previously described species have been examined wherever possible, and lectotypes de­ signated where appropriate. INTRODUCTION The Calliphorid tribe Chrysomyini is represented in the New World by 20 endemic species and four introduced species: the endemic species are in­ cluded in five genera (Chloroprocta, Paralucilia, Hemilucilia, Cochliomyia, Compsomyops) whilst the introduced species all belong to the Old World genus Chrysomya. Like their Old World relatives, the New World Chrysomyini are large, robust, metallic blowflies, but in their morphology they differ consi­ derably from these and, furthermore, each genus has one or more unusual (autapomorphic) characters. The following key will separate the New World subfamilies of Callipho­ ridae: I. Posterior spiracle with a long fringe of dense hairs which extend from the posterior margin along the lower margin to the anterior margin in a continuous fan.
    [Show full text]
  • Sarcophagidae De Interés Forense En El Parque
    SARCOPHAGIDAE DE INTERÉS FORENSE EN EL PARQUE NACIONAL SOBERANÍA, PROVINCIA DE PANAMÁ SARCOPHAGIDAE OF FORENSIC INTEREST IN THE SOBERANIA NATIONAL PARQUE, PROVINCE OF PANAMA Garcés, Percis A.; Arias, Lia N.; Medina, Meybis Percis A. Garcés Resumen: Se estudiaron las Sarcophagidae en dos áreas: una [email protected] boscosa y en otra no boscosa, con el propósito de conocer las Universidad de Panamá,, Panamá especies que pudieran tener importancia forense en nuestro país. Litza N. Arias Esta familia contiene algunas especies que han sido registradas [email protected] como insectos forenses importantes, debido a que son uno de Ministerio de Educación, Panamá los primero que detecta y encuentra un cadáver fresco. Por lo que, resultan importantes en las investigaciones criminales, Meybis Medina principalmente en la estimación del intervalo postmortem (IPM). Ministerio de Educación, Panamá En el presente estudio se colectaron 169 ejemplares que fueron agrupados en nueve géneros y 11 especies. Las especies más frecuentemente capturadas fueron, Pekia (Pantonella) Tecnociencia intermutans, Sarcodexia sp, Boettcheria sp, Pekia sp, Helicobia sp Universidad de Panamá, Panamá . En cuanto a la preferencia de las áreas, en ISSN: 1609-8102 y Sarcofahrtiopsis sp2 ISSN-e: 2415-0940 nuestro estudio, las moscas mostraron mayor preferencia por el Periodicidad: Semestral área boscosa que por el área no boscosa y, por el corazón que por vol. 22, núm. 2, 2020 el hígado. [email protected] Recepción: 21 Febrero 2020 Palabras clave: Sarcophagidae, área boscosa, área no boscosa, Aprobación: 23 Marzo 2020 Pekia (Pantonella) intermutans, Sarcodexia sp, Boettcheria sp. URL: http://portal.amelica.org/ameli/ Abstract: Sarcophagidae were studied in two areas: wooded jatsRepo/224/2241149007/index.html and non-wooded with the purpose to learn about species that could have forensic importance in our country.
    [Show full text]
  • Hairy Maggot Blow Fly, Chrysomya Rufifacies (Macquart)1 J
    EENY-023 Hairy Maggot Blow Fly, Chrysomya rufifacies (Macquart)1 J. H. Byrd2 Introduction hardened shell which looks similar to a rat dropping or a cockroach egg case. Insects in the family Calliphoridae are generally referred to as blow flies or bottle flies. Blow flies can be found in almost every terrestrial habitat and are found in association Life Cycle with humans throughout the world. In 1980 the immigrant species Chrysomya rufifacies was first recovered in the continental United States. This species is expected to increase its range in the United States. Distribution This species is now established in southern California, Arizona, Texas, Louisiana, and Florida. It is also found throughout Central America, Japan, India, and the remain- der of the Old World. Description Adults (Figure 1) are robust flies metallic green in color Figure 1. Adult hairy maggot blow fly, Chrysomya rufifacies (Macquart) with a distinct blue hue when viewed under bright sunlit Credits: James Castner, University of Florida conditions. The posterior margins of the abdominal tergites are a brilliant blue. The fly life cycle includes four life stages: egg, larva, pupa, and adult. The eggs are approximately 1 mm long and are The larvae are known as hairy maggots. They received laid in a loose mass of 50 to 200 eggs. Group oviposition this name because each body segment possesses a median by several females results in masses of thousands of eggs row of fleshy tubercles that give the fly a slightly hairy that may completely cover a decomposing carcass. The appearance although it does not possess any true hairs.
    [Show full text]
  • (Diptera: Calliphoridae, Oestridae, Rhinophoridae, Sarcophagidae) De Colombia
    Biota Colombiana 5 (2) 201 - 208, 2004 Los califóridos, éstridos, rinofóridos y sarcofágidos (Diptera: Calliphoridae, Oestridae, Rhinophoridae, Sarcophagidae) de Colombia Thomas Pape1, Marta Wolff2 y Eduardo C. Amat3 1 Swedish Museum of Natural History, PO Box 50007 SE-10405 Stockholm, Sweden [email protected] 2 Instituto de Biología, Universidad de Antioquia, AA1226 Medellín [email protected] 3 Instituto de Investigación de recursos Biológicos Alexander von Humboldt, [email protected] Palabras Clave: Califóridos, Éstridos, Rinofóridos, Sarcofágidos, Lista de Especies, Colombia Califóridos, éstridos, rinofóridos y sarcofágidos ovis y una o dos especies del género Gasterophilus. Apa- conforman junto con los Taquínidos la superfamilia rentemente las especies cosmopolitas Hypoderma bovis y Oestroidea (Mc Alpine 1989). Hypoderma lineatum no se han establecido en Suramérica ecuatorial (Guimarães & Papavero 1999), pero es posible Según datos morfológicos la familia Calliphoridae es un que puedan ser introducidas por medio del ganado impor- clado parafilético o aun, polifilético (Rognes 1997). Las de- tado. El último catálogo de la familia para la región más familias al parecer exhiben una monofilia bien corrobo- Neotropical fue escrito por Guimarães & Papavero (1999). rada (Rognes 1997; Pape & Arnaud 2001). La familia Rhinophoridae es comparable en tamaño con Calliphoridae consta de aproximadamente 1000 especies en Oestridae; consta de 142 especies en 23 géneros. La biolo- el mundo, de las cuales solo 126 se encuentran en el gía de este grupo es conocida para algunas especies euro- Neotrópico (Amorin et al. 2002). La biología de los califóridos peas y afrotropicales, todas parásitas de isópodos. La mor- es muy variada: generalmente necrófagos, también los hay fología de la larva sugiere que las especies neotropicales predadores y parasitoides de caracoles y lombrices de tie- pueden presentar una biología similar (Pape & Arnaud 2001).
    [Show full text]
  • And Chrysomya Rufifacies (Diptera: Calliphoridae) Author(S): Sonja Lise Swiger, Jerome A
    Laboratory Colonization of the Blow Flies, Chrysomya Megacephala (Diptera: Calliphoridae) and Chrysomya rufifacies (Diptera: Calliphoridae) Author(s): Sonja Lise Swiger, Jerome A. Hogsette, and Jerry F. Butler Source: Journal of Economic Entomology, 107(5):1780-1784. 2014. Published By: Entomological Society of America URL: http://www.bioone.org/doi/full/10.1603/EC14146 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. ECOLOGY AND BEHAVIOR Laboratory Colonization of the Blow Flies, Chrysomya megacephala (Diptera: Calliphoridae) and Chrysomya rufifacies (Diptera: Calliphoridae) 1,2,3 4 1 SONJA LISE SWIGER, JEROME A. HOGSETTE, AND JERRY F. BUTLER J. Econ. Entomol. 107(5): 1780Ð1784 (2014); DOI: http://dx.doi.org/10.1603/EC14146 ABSTRACT Chrysomya megacephala (F.) and Chrysomya rufifacies (Macquart) were colonized so that larval growth rates could be compared. Colonies were also established to provide insight into the protein needs of adult C.
    [Show full text]
  • Diptera: Sarcophagidae) of Southern South America
    Zootaxa 3933 (1): 001–088 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3933.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:00C6A73B-7821-4A31-A0CA-49E14AC05397 ZOOTAXA 3933 The Sarcophaginae (Diptera: Sarcophagidae) of Southern South America. I. The species of Microcerella Macquart from the Patagonian Region PABLO RICARDO MULIERI1, JUAN CARLOS MARILUIS1, LUCIANO DAMIÁN PATITUCCI1 & MARÍA SOFÍA OLEA1 1Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina. Museo Argentino de Ciencias Naturales, Buenos Aires, MACN. E-mails: [email protected]; [email protected]; [email protected]; [email protected] Magnolia Press Auckland, New Zealand Accepted by J. O'Hara: 19 Jan. 2015; published: 17 Mar. 2015 PABLO RICARDO MULIERI, JUAN CARLOS MARILUIS, LUCIANO DAMIÁN PATITUCCI & MARÍA SOFÍA OLEA The Sarcophaginae (Diptera: Sarcophagidae) of Southern South America. I. The species of Microcerella Macquart from the Patagonian Region (Zootaxa 3933) 88 pp.; 30 cm. 17 Mar. 2015 ISBN 978-1-77557-661-7 (paperback) ISBN 978-1-77557-662-4 (Online edition) FIRST PUBLISHED IN 2015 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2015 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.
    [Show full text]