Notes Hindbrain & Cranial Nerves, Specializations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cranial Nerve Palsy
Cranial Nerve Palsy What is a cranial nerve? Cranial nerves are nerves that lead directly from the brain to parts of our head, face, and trunk. There are 12 pairs of cranial nerves and some are involved in special senses (sight, smell, hearing, taste, feeling) while others control muscles and glands. Which cranial nerves pertain to the eyes? The second cranial nerve is called the optic nerve. It sends visual information from the eye to the brain. The third cranial nerve is called the oculomotor nerve. It is involved with eye movement, eyelid movement, and the function of the pupil and lens inside the eye. The fourth cranial nerve is called the trochlear nerve and the sixth cranial nerve is called the abducens nerve. They each innervate an eye muscle involved in eye movement. The fifth cranial nerve is called the trigeminal nerve. It provides facial touch sensation (including sensation on the eye). What is a cranial nerve palsy? A palsy is a lack of function of a nerve. A cranial nerve palsy may cause a complete or partial weakness or paralysis of the areas served by the affected nerve. In the case of a cranial nerve that has multiple functions (such as the oculomotor nerve), it is possible for a palsy to affect all of the various functions or only some of the functions of that nerve. What are some causes of a cranial nerve palsy? A cranial nerve palsy can occur due to a variety of causes. It can be congenital (present at birth), traumatic, or due to blood vessel disease (hypertension, diabetes, strokes, aneurysms, etc). -
Telovelar Approach to the Fourth Ventricle: Microsurgical Anatomy
J Neurosurg 92:812–823, 2000 Telovelar approach to the fourth ventricle: microsurgical anatomy ANTONIO C. M. MUSSI, M.D., AND ALBERT L. RHOTON, JR., M.D. Department of Neurological Surgery, University of Florida, Gainesville, Florida Object. In the past, access to the fourth ventricle was obtained by splitting the vermis or removing part of the cere- bellum. The purpose of this study was to examine the access to the fourth ventricle achieved by opening the tela cho- roidea and inferior medullary velum, the two thin sheets of tissue that form the lower half of the roof of the fourth ven- tricle, without incising or removing part of the cerebellum. Methods. Fifty formalin-fixed specimens, in which the arteries were perfused with red silicone and the veins with blue silicone, provided the material for this study. The dissections were performed in a stepwise manner to simulate the exposure that can be obtained by retracting the cerebellar tonsils and opening the tela choroidea and inferior medullary velum. Conclusions. Gently displacing the tonsils laterally exposes both the tela choroidea and the inferior medullary velum. Opening the tela provides access to the floor and body of the ventricle from the aqueduct to the obex. The additional opening of the velum provides access to the superior half of the roof of the ventricle, the fastigium, and the superolater- al recess. Elevating the tonsillar surface away from the posterolateral medulla exposes the tela, which covers the later- al recess, and opening this tela exposes the structure forming -
Cranial Nerve VIII
Cranial Nerve VIII Color Code Important (The Vestibulo-Cochlear Nerve) Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, the students should be able to: ✓ List the nuclei related to vestibular and cochlear nerves in the brain stem. ✓ Describe the type and site of each nucleus. ✓ Describe the vestibular pathways and its main connections. ✓ Describe the auditory pathway and its main connections. Due to the difference of arrangement of the lecture between the girls and boys slides we will stick to the girls slides then summarize the pathway according to the boys slides. Ponto-medullary Sulcus (cerebello- pontine angle) Recall: both cranial nerves 8 and 7 emerge from the ventral surface of the brainstem at the ponto- medullary sulcus (cerebello-pontine angle) Brain – Ventral Surface Vestibulo-Cochlear (VIII) 8th Cranial Nerve o Type: Special sensory (SSA) o Conveys impulses from inner ear to nervous system. o Components: • Vestibular part: conveys impulses associated with body posture ,balance and coordination of head & eye movements. • Cochlear part: conveys impulses associated with hearing. o Vestibular & cochlear parts leave the ventral surface* of brain stem through the pontomedullary sulcus ‘at cerebellopontine angle*’ (lateral to facial nerve), run laterally in posterior cranial fossa and enter the internal acoustic meatus along with 7th (facial) nerve. *see the previous slide Auditory Pathway Only on the girls’ slides 04:14 Characteristics: o It is a multisynaptic pathway o There are several locations between medulla and the thalamus where axons may synapse and not all the fibers behave in the same manner. -
The Brain and Cranial Nerves
14 The Brain and Cranial Nerves PowerPoint® Lecture Presentations prepared by Jason LaPres Lone Star College—North Harris © 2012 Pearson Education, Inc. An Introduction to the Brain and Cranial Nerves • Learning Outcomes • 14-1 Name the major brain regions, vesicles, and ventricles, and describe the locations and functions of each. • 14-2 Explain how the brain is protected and supported, and discuss the formation, circulation, and function of cerebrospinal fluid. • 14-3 Describe the anatomical differences between the medulla oblongata and the spinal cord, and identify the main components and functions of the medulla oblongata. © 2012 Pearson Education, Inc. An Introduction to the Brain and Cranial Nerves • Learning Outcomes • 14-4 List the main components of the pons, and specify the functions of each. • 14-5 List the main components of the cerebellum, and specify the functions of each. • 14-6 List the main components of the midbrain, and specify the functions of each. • 14-7 List the main components of the diencephalon, and specify the functions of each. © 2012 Pearson Education, Inc. An Introduction to the Brain and Cranial Nerves • Learning Outcomes • 14-8 Identify the main components of the limbic system, and specify the locations and functions of each. • 14-9 Identify the major anatomical subdivisions and functions of the cerebrum, and discuss the origin and significance of the major types of brain waves seen in an electroencephalogram. • 14-10 Describe representative examples of cranial reflexes that produce somatic responses or visceral responses to specific stimuli. © 2012 Pearson Education, Inc. • In the pre-synaptic neuron, an Synapse electrical signal comes in, opens up to voltage-gated channels, and signals the vesicles containing neurotransmitters (chemical signal) to be released into the synaptic cleft. -
Morphometric Assesment of the External Anatomy of Fourth Ventricle and Dorsal Brainstem in Fresh Cadavers
DOI: 10.5137/1019-5149.JTN.24942-18.1 Turk Neurosurg 29(3):445-450, 2019 Received: 26.09.2018 / Accepted: 20.11.2018 Published Online: 19.12.2018 Original Investigation Morphometric Assesment of the External Anatomy of Fourth Ventricle and Dorsal Brainstem in Fresh Cadavers Veysel ANTAR1, Okan TURK1, Salim KATAR2, Mahmut OZDEN3, Balkan SAHIN4, Sahin YUCELI5, Erdogan KARA6, Ayse YURTSEVEN6 1Istanbul Training and Research Hospital, Department of Neurosurgery, Istanbul, Turkey 2Selahattin Eyyubi City Hospital, Department of Neurosurgery, Diyarbakir, Turkey 3Bahcesehir University, Department of Neurosurgery, Istanbul, Turkey 4Sultan Abdulhamit Han Training and Research Hospital, Department of Neurosurgery, Istanbul, Turkey 5Erzincan Neon Hospital, Department of Neurosurgery, Erzincan, Turkey 6Ministry of Justice, Council of Forensic Medicine, Istanbul, Turkey Corresponding author: Veysel ANTAR [email protected] ABSTRACT AIM: To investigate the external anatomy of the fourth ventricle and dorsal brainstem using morphometric data, which could be useful for preoperative surgical planning. MATERIAL and METHODS: Between January 2017 and December 2017, 42 fresh adult cadavers were investigated for the measurements of the cadaver brainstems and fourth ventricle, and they were recorded by photography. Measurements were evaluated according to body mass indexes (BMIs) of the patients. We also investigate the visualization of facial colliculus and stria medullaris on brainstem. RESULTS: A total of 42 fresh cadavers with a mean age of 45.38 ± 16.41 years old were included in this research. We found no statistically significant difference between measurements and BMIs. Facial colliculus was visualized in 92.9% (n=39), but it could not visualized in 7.1% (n=3) of the subjects. -
Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves
Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves Paul Rea AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA First published 2014 Copyright r 2014 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. -
The Vestibulocochlear Nerve (VIII)
Diagnostic and Interventional Imaging (2013) 94, 1043—1050 . CONTINUING EDUCATION PROGRAM: FOCUS . The vestibulocochlear nerve (VIII) a,∗ b a F. Benoudiba , F. Toulgoat , J.-L. Sarrazin a Department of neuroradiology, Kremlin-Bicêtre university hospital, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre, France b Diagnostic and interventional neuroradiology, Laennec hospital, Nantes university hospitals, boulevard Jacques-Monod, Saint-Herblain, 44093 Nantes cedex 1, France KEYWORDS Abstract The vestibulocochlear nerve (8th cranial nerve) is a sensory nerve. It is made up of Cranial nerves; two nerves, the cochlear, which transmits sound and the vestibular which controls balance. It is Pathology; an intracranial nerve which runs from the sensory receptors in the internal ear to the brain stem Vestibulocochlear nuclei and finally to the auditory areas: the post-central gyrus and superior temporal auditory nerve (VIII) cortex. The most common lesions responsible for damage to VIII are vestibular Schwannomas. This report reviews the anatomy and various investigations of the nerve. © 2013 Published by Elsevier Masson SAS on behalf of the Éditions françaises de radiologie. The cochlear nerve Review of anatomy [1] The cochlear nerve has a peripheral sensory origin and follows a centripetal path. It ori- ginates in the cochlear membrane sensory canal, forming the spiral organ (the organ of Corti) and lies on the basilar membrane (Fig. 1). The neuronal fibers of the protoneu- ron connect to the ciliated cells on the spiral lamina (Fig. 2). The axons are grouped together along the axis of the cochlea (modiolus), forming the cochlear nerve which then enters the internal auditory meatus (IAM). Within the internal auditory meatus, the nerve joins the vestibular nerve to form the vestibulocochlear nerve which crosses the cere- bellopontine angle (Figs. -
The Nuclear Pattern of the Nok-Tectal Portions of the Midbrain and Isthmus in the Opossum
THE NUCLEAR PATTERN OF THE NOK-TECTAL PORTIONS OF THE MIDBRAIN AND ISTHMUS IN THE OPOSSUM RUSSELL T. WOODBURNE Department of Anatomy, Uniwersity of Yichigan SIX PLATES (TWELVE FIGURES) INTRODUCTION It is logical that the present series of descriptions of the nuclear pattern of the midbrain tegmentum in mammals should begin with the account of this region in marsupials, since the American opossum presents a simplified and generalized type of mammalian midbrain. The material employed in the present study consists of toluidin blue series, cut in various planes, of the brain of the American opossum, Didelphis virginiana. These preparations are a part of the Huber Neurological Collection of the Department of Anatomy of the University of Michigan. The literature particularly pertinent to specific nuclear de- scriptions will be discussed in connection with such descrip- tions and the general literature dealing with other than marsupial forms is dealt with in other sections of this series of papers and complete reference made in the comprehensive bibliography. There are, however, certain papers of which some mention should be made. The series of papers by Castaldi ('23, '24, '26) gave the basis for the nomenclature and the general pattern of subdivision followed here. Tsai's ('25) account of portions of the marsupial midbrain, although con- cerned primarily with tectal and pretectal areas, gave some aid in orientation. Certain of the pretectal regions were con- sidered in the light of earlier accounts of Chu ( '32) and Bodian ('40). The text of Ariens Kappers, Huber and Crosby ('36) was used for general orientation and comparative information. -
Lecture 6: Cranial Nerves
Lecture 6: Cranial Nerves Objective: To understand the organization of cranial nerves with respect to their nuclei within the brain, their course through and exit from the brain, and their functional roles. Olfactory Eye Muscles 3, 4 &6 Cranial Nerves 1-7 I overview Table, Page 49 II Lecture notes Cranial Nerves and their Functions V Trigeminal VII Facial VIII IX X XII XI Cranial Nerves 8-12 Overview sternocephalic I. Factors Responsible for the Complex Internal Organization of the Brain Stem-> leads to altered location of cranial nerve nuclei in adult brain stem 1. Development of the Fourth Ventricle a. Medulla and Pons develop ventral to the 4th ventricle cerebellum b. Alar plate is displaced lateral to basal plate 4 Medulla Developing Neural Tube 2. Cranial nerve nuclei form discontinuous columns Rostral 12 SE Page 48 Notes 3. Some cranial nerve nuclei migrate from their primitive embryonic positions (e.g., nuclei of V and VII) Facial N. Factors responsible for the complex internal organization of the brainstem: 4) Special senses develop in association with the brain stem. Nuclei of special senses 5) Development of the cerebellum and its connections Cerebellum II. Cranial Nerve Nuclei: Nucleus = column of neuron cell bodies. Efferent nuclei are composed of cell bodies of alpha or gamma motor neurons (SE) or preganglionic parasympathetic neurons (VE). III. Motor Efferent Nuclei (Basal Plate Derivatives): 1. SE (Somatic Efferent) Nuclei: SE neurons form two longitudinally oriented but discontinuous columns of cell bodies in the brain stem. Neurons that comprise these columns are responsible for innervating all of the skeletal musculature of the head. -
Is Composed from Spinal Cord and Brain
doc. MUDr. Adriana Boleková, PhD. MVDr. Natália Hvizdošová, PhD. CENTRAL NERVOUS SYSTEM – is composed from spinal cord and brain SPINAL CORD cranial border: foramen magnum, pyramidal decussation, exit of first pair of spinal nerves caudal border: level of L1 – L2 vertebrae medullary cone – filum terminale (S2) – cauda equina enlargements: cervical enlargement (C5 – Th1): origin of nerves for upper extremity – brachial plexus lumbosacral enlargement (L1 – S2): origin of nerves for lower extremity – lumbosacral plexus external features: anterior median fissure anterolateral sulcus – anterior roots of spinal nn. posterolateral sulcus – posterior roots of spinal nn. posterior median sulcus posterior intermediate sulcus internal features: White matter anterior funiculus (between anterior median fissure and anterolateral sulcus) lateral funiculus (between anterolateral and posterolateral sulci) posterior funiculus (between posterolateral sulcus and posterior median sulcus) fasciculus gracilis fasciculus cuneatus Gray matter anterior (ventral) horn – motor function: Rexed laminae I – VI lateral horn – serves to visceral function: Rexed lamina VII dorsal (posterior) horn – sensory information: Rexed laminae VIII – IX central grey matter – interneurons: around central canal Rexed lamina X Central canal cranially opens into IV. ventricle caudally expands into terminal ventricle vessels of spinal cord: Arteries: spinal brr. from surrounding arteries – anterior radicular aa., posterior radicular aa.: posterior spinal aa. (in posterolateral -
Cranial Nerves
Cranial Nerves Cranial nerve evaluation is an important part of a neurologic exam. There are some differences in the assessment of cranial nerves with different species, but the general principles are the same. You should know the names and basic functions of the 12 pairs of cranial nerves. This PowerPage reviews the cranial nerves and basic brain anatomy which may be seen on the VTNE. The 12 Cranial Nerves: CN I – Olfactory Nerve • Mediates the sense of smell, observed when the pet sniffs around its environment CN II – Optic Nerve Carries visual signals from retina to occipital lobe of brain, observed as the pet tracks an object with its eyes. It also causes pupil constriction. The Menace response is the waving of the hand at the dog’s eye to see if it blinks (this nerve provides the vision; the blink is due to cranial nerve VII) CN III – Oculomotor Nerve • Provides motor to most of the extraocular muscles (dorsal, ventral, and medial rectus) and for pupil constriction o Observing pupillary constriction in PLR CN IV – Trochlear Nerve • Provides motor function to the dorsal oblique extraocular muscle and rolls globe medially © 2018 VetTechPrep.com • All rights reserved. 1 Cranial Nerves CN V – Trigeminal Nerve – Maxillary, Mandibular, and Ophthalmic Branches • Provides motor to muscles of mastication (chewing muscles) and sensory to eyelids, cornea, tongue, nasal mucosa and mouth. CN VI- Abducens Nerve • Provides motor function to the lateral rectus extraocular muscle and retractor bulbi • Examined by touching the globe and observing for retraction (also tests V for sensory) Responsible for physiologic nystagmus when turning head (also involves III, IV, and VIII) CN VII – Facial Nerve • Provides motor to muscles of facial expression (eyelids, ears, lips) and sensory to medial pinna (ear flap). -
The Brain and Cranial Nerves Glioblastoma (Red), a Fast-Growing, Highly Invasive Brain Tumor (MRI) CHAPTER OUTLINE
Saladin: Anatomy & 14. The Brain and Cranial Text © The McGraw−Hill Physiology: The Unity of Nerves Companies, 2003 Form and Function, Third Edition CHAPTER 14 The Brain and Cranial Nerves Glioblastoma (red), a fast-growing, highly invasive brain tumor (MRI) CHAPTER OUTLINE Overview of the Brain 516 The Forebrain 529 • Directional Terms in Neuroanatomy 516 • The Diencephalon 530 INSIGHTS • Major Landmarks of the Brain 516 • The Cerebrum 531 • Gray and White Matter 516 14.1 Clinical Application: • Embryonic Development 517 Higher Brain Functions 536 Meningitis 521 • Brain Waves and Sleep 536 14.2 Medical History: The Accidental Meninges, Ventricles, Cerebrospinal Fluid, • Cognition 538 Lobotomy of Phineas Gage 538 and Blood Supply 519 • Memory 539 14.3 Clinical Application: Some Cranial • Meninges 519 • Emotion 539 Nerve Disorders 556 • Ventricles and Cerebrospinal Fluid 521 • Sensation 540 14.4 Clinical Application: Images of the • Blood Supply and the Brain Barrier • Motor Control 542 Mind 557 System 524 • Language 543 • Cerebral Lateralization 543 The Hindbrain and Midbrain 524 • The Medulla Oblongata 524 The Cranial Nerves 546 • The Pons and Cerebellum 526 • The Cranial Nerves—An Aid to Memory 547 • The Midbrain 526 • The Reticular Formation 528 Chapter Review 558 Brushing Up To understand this chapter, it is important that you understand or brush up on the following concepts: • Anatomy of the cranium (pp. 248–257) • Glial cells and their functions (pp. 450–451) • Tracts of the spinal cord (pp. 486–489) • Structure of nerves and ganglia (pp. 490–492) 515 Saladin: Anatomy & 14. The Brain and Cranial Text © The McGraw−Hill Physiology: The Unity of Nerves Companies, 2003 Form and Function, Third Edition 516 Part Three Integration and Control he mystique of the brain continues to intrigue modern biologists of its major landmarks (figs.