FUNCTIONAL HUMAN ANATOMY LAB #3 Brain, Spinal Cord and Cranial Nerves

Total Page:16

File Type:pdf, Size:1020Kb

FUNCTIONAL HUMAN ANATOMY LAB #3 Brain, Spinal Cord and Cranial Nerves Lab 3 FUNCTIONAL HUMAN ANATOMY LAB #3 Brain, Spinal Cord and Cranial Nerves BRAIN: Frontal lobes Temporal lobes Correspond to the flat bones of the skull that cover the parts of the Parietal lobes cerebrum Occipital lobes Cerebellum Pons Medulla Oblongata (typically where the brain is severed during dissection) Corpus Callosum (where the cerebral hemispheres join; can be seen within the longitudinal cerebral fissure) Meninges and spaces: (superficial to deep - can be seen in both the brain and spinal cord) Epidural space (potential space in the cranium; actual space in the vertebral canal) Dura matter (very thick, easily palpable, opaque) Sub-dural space Arachnoid matter (very thin, transparent, easier to probe in the brain) Sub-arachnoid space (contains CSF fluid and much vasculature) Pia matter (non-dissectable) 12 CRANIAL NERVES: (know general innervations/functions) (CN I) Olfactory Sensory only - smell; courses on the inferior side of the frontal lobes and parallel to the cribriform plate; nerves go through the perforations in the plate to access the nasal cavity (CN II) Optic Sensory only - vision; processes light information and turns it into a picture that your brain can recognize (CN III) Oculomotor Motor and sensory function for the eyes; motor to all muscles except superior oblique m. and lateral rectus m.; controls ciliary muscle (lens) and sphincter muscle (iris); sensory - proprioception (CN IV) Trochlear Motor and sensory function for the eyes; motor to superior oblique muscle; sensory - proprioception (CN VI) Abducens Motor and sensory function for the eyes; motor to lateral rectus m.; sensory - proprioception (CN V) Trigeminal Motor and sensory; motor to the muscles of mastication; sensory - teeth, skin of face 1 Lab 3 Motor and sensory; motor to the muscles of mastication; sensory - teeth, skin of face (CN VII) Facial Motor and sensory; motor to the muscles of facial expression; sensory - proprioception, taste anterior 2/3 of tongue (CN VIII) Vestibulocochlear Sensory only - hearing and equillibrium (CN IX) Glossopharyngeal Motor and sensory; motor to upper pharyngeal muscles and parotid gland; sensory - taste posterior 1/3 of tongue, tonsil, middle ear (CN X) Vagus Motor and sensory; motor to muscles of pharynx and larynx; parasympathetic to heart, lungs, larynx, trachea, bronchi and GI tract (CN XI) Spinal Accessory Motor only; motor to Sternocleidomastiod m. and Trapezius m. (CN XII) Hypoglossal Motor only; motor to tongue Salivary Glands: Parotid gland/Parotid duct Submandibular gland (we will not be able to indentify the duct) Sublingual gland (we will not be able to identify the gland or duct) Anterior Neck Structures: called the "floating bone" because it has no direct bony attachments; located superior to Hyoid Bone the Thyroid cartilage the Laryngeal prominence (adam's apple) is easily palpable (the vocal ligaments (cords) Thyroid cartilage are attached to this point); it is much larger on the male due to secondary growth during puberty; landmarks the area of the Larynx Crichoid cartilage located inferior to the Thyroid cartilage; landmarks the beginning of the Trachea Thyroid glands cups around the bottom and sides of the Crichoid and Thyroid cartilages 2.
Recommended publications
  • Cranial Nerve Palsy
    Cranial Nerve Palsy What is a cranial nerve? Cranial nerves are nerves that lead directly from the brain to parts of our head, face, and trunk. There are 12 pairs of cranial nerves and some are involved in special senses (sight, smell, hearing, taste, feeling) while others control muscles and glands. Which cranial nerves pertain to the eyes? The second cranial nerve is called the optic nerve. It sends visual information from the eye to the brain. The third cranial nerve is called the oculomotor nerve. It is involved with eye movement, eyelid movement, and the function of the pupil and lens inside the eye. The fourth cranial nerve is called the trochlear nerve and the sixth cranial nerve is called the abducens nerve. They each innervate an eye muscle involved in eye movement. The fifth cranial nerve is called the trigeminal nerve. It provides facial touch sensation (including sensation on the eye). What is a cranial nerve palsy? A palsy is a lack of function of a nerve. A cranial nerve palsy may cause a complete or partial weakness or paralysis of the areas served by the affected nerve. In the case of a cranial nerve that has multiple functions (such as the oculomotor nerve), it is possible for a palsy to affect all of the various functions or only some of the functions of that nerve. What are some causes of a cranial nerve palsy? A cranial nerve palsy can occur due to a variety of causes. It can be congenital (present at birth), traumatic, or due to blood vessel disease (hypertension, diabetes, strokes, aneurysms, etc).
    [Show full text]
  • The Development of the Epidural Space in Human Embryos
    Folia Morphol. Vol. 63, No. 3, pp. 273–279 Copyright © 2004 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl The development of the epidural space in human embryos Magdalena Patelska-Banaszewska, Witold Woźniak Department of Anatomy, University School of Medical Sciences, Poznań, Poland [Received 25 April 2004; Accepted 25 June 2004] The epidural space is seen in embryos at stage 17 (41 days) on the periphery of the primary meninx. During stage 18 (44 days) the dura mater proper appears and the epidural space is located between this meninx and the perichondrium and contains blood vessels. During the last week of the embryonic period (stages 20–23) the epidural space is evident around the circumference of the spinal cord. On the posterior surface it is found between the dura mater and the me- soderm of the dorsal body wall. Key words: human neuroembryology, primary meninx, epidural space INTRODUCTION horizontal, frontal, and sagittal planes and stained The epidural space lies between the spinal dura according to various methods (chiefly Mallory, hae- mater and the periosteum of the vertebral canal. This matoxylin and eosin and with silver salts). In some periosteum is formed by the outer endosteal layer embryos graphic reconstructions were prepared at of the dura mater. The epidural space contains loose each of the stages investigated. connective tissue, venous plexuses and adipose tis- sue, which is particularly evident in the lumbar re- RESULTS gion [8]. There is some evidence that it is only a po- The primordium of the epidural space appears in tential space [2].
    [Show full text]
  • CHAPTER 8 Face, Scalp, Skull, Cranial Cavity, and Orbit
    228 CHAPTER 8 Face, Scalp, Skull, Cranial Cavity, and Orbit MUSCLES OF FACIAL EXPRESSION Dural Venous Sinuses Not in the Subendocranial Occipitofrontalis Space More About the Epicranial Aponeurosis and the Cerebral Veins Subcutaneous Layer of the Scalp Emissary Veins Orbicularis Oculi CLINICAL SIGNIFICANCE OF EMISSARY VEINS Zygomaticus Major CAVERNOUS SINUS THROMBOSIS Orbicularis Oris Cranial Arachnoid and Pia Mentalis Vertebral Artery Within the Cranial Cavity Buccinator Internal Carotid Artery Within the Cranial Cavity Platysma Circle of Willis The Absence of Veins Accompanying the PAROTID GLAND Intracranial Parts of the Vertebral and Internal Carotid Arteries FACIAL ARTERY THE INTRACRANIAL PORTION OF THE TRANSVERSE FACIAL ARTERY TRIGEMINAL NERVE ( C.N. V) AND FACIAL VEIN MECKEL’S CAVE (CAVUM TRIGEMINALE) FACIAL NERVE ORBITAL CAVITY AND EYE EYELIDS Bony Orbit Conjunctival Sac Extraocular Fat and Fascia Eyelashes Anulus Tendineus and Compartmentalization of The Fibrous "Skeleton" of an Eyelid -- Composed the Superior Orbital Fissure of a Tarsus and an Orbital Septum Periorbita THE SKULL Muscles of the Oculomotor, Trochlear, and Development of the Neurocranium Abducens Somitomeres Cartilaginous Portion of the Neurocranium--the The Lateral, Superior, Inferior, and Medial Recti Cranial Base of the Eye Membranous Portion of the Neurocranium--Sides Superior Oblique and Top of the Braincase Levator Palpebrae Superioris SUTURAL FUSION, BOTH NORMAL AND OTHERWISE Inferior Oblique Development of the Face Actions and Functions of Extraocular Muscles Growth of Two Special Skull Structures--the Levator Palpebrae Superioris Mastoid Process and the Tympanic Bone Movements of the Eyeball Functions of the Recti and Obliques TEETH Ophthalmic Artery Ophthalmic Veins CRANIAL CAVITY Oculomotor Nerve – C.N. III Posterior Cranial Fossa CLINICAL CONSIDERATIONS Middle Cranial Fossa Trochlear Nerve – C.N.
    [Show full text]
  • Cranial Nerve VIII
    Cranial Nerve VIII Color Code Important (The Vestibulo-Cochlear Nerve) Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, the students should be able to: ✓ List the nuclei related to vestibular and cochlear nerves in the brain stem. ✓ Describe the type and site of each nucleus. ✓ Describe the vestibular pathways and its main connections. ✓ Describe the auditory pathway and its main connections. Due to the difference of arrangement of the lecture between the girls and boys slides we will stick to the girls slides then summarize the pathway according to the boys slides. Ponto-medullary Sulcus (cerebello- pontine angle) Recall: both cranial nerves 8 and 7 emerge from the ventral surface of the brainstem at the ponto- medullary sulcus (cerebello-pontine angle) Brain – Ventral Surface Vestibulo-Cochlear (VIII) 8th Cranial Nerve o Type: Special sensory (SSA) o Conveys impulses from inner ear to nervous system. o Components: • Vestibular part: conveys impulses associated with body posture ,balance and coordination of head & eye movements. • Cochlear part: conveys impulses associated with hearing. o Vestibular & cochlear parts leave the ventral surface* of brain stem through the pontomedullary sulcus ‘at cerebellopontine angle*’ (lateral to facial nerve), run laterally in posterior cranial fossa and enter the internal acoustic meatus along with 7th (facial) nerve. *see the previous slide Auditory Pathway Only on the girls’ slides 04:14 Characteristics: o It is a multisynaptic pathway o There are several locations between medulla and the thalamus where axons may synapse and not all the fibers behave in the same manner.
    [Show full text]
  • Spinal Meninges Neuroscience Fundamentals > Regional Neuroscience > Regional Neuroscience
    Spinal Meninges Neuroscience Fundamentals > Regional Neuroscience > Regional Neuroscience SPINAL MENINGES GENERAL ANATOMY Meningeal Layers From outside to inside • Dura mater • Arachnoid mater • Pia mater Meningeal spaces From outside to inside • Epidural (above the dura) - See: epidural hematoma and spinal cord compression from epidural abscess • Subdural (below the dura) - See: subdural hematoma • Subarachnoid (below the arachnoid mater) - See: subarachnoid hemorrhage Spinal canal Key Anatomy • Vertebral body (anteriorly) • Vertebral arch (posteriorly). • Vertebral foramen within the vertebral arch. MENINGEAL LAYERS 1 / 4 • Dura mater forms a thick ring within the spinal canal. • The dural root sheath (aka dural root sleeve) is the dural investment that follows nerve roots into the intervertebral foramen. • The arachnoid mater runs underneath the dura (we lose sight of it under the dural root sheath). • The pia mater directly adheres to the spinal cord and nerve roots, and so it takes the shape of those structures. MENINGEAL SPACES • The epidural space forms external to the dura mater, internal to the vertebral foramen. • The subdural space lies between the dura and arachnoid mater layers. • The subarachnoid space lies between the arachnoid and pia mater layers. CRANIAL VS SPINAL MENINGES  Cranial Meninges • Epidural is a potential space, so it's not a typical disease site unless in the setting of high pressure middle meningeal artery rupture or from traumatic defect. • Subdural is a potential space but bridging veins (those that pass from the subarachnoid space into the dural venous sinuses) can tear, so it is a common site of hematoma. • Subarachnoid space is an actual space and is a site of hemorrhage and infection, for example.
    [Show full text]
  • The Brain and Cranial Nerves
    14 The Brain and Cranial Nerves PowerPoint® Lecture Presentations prepared by Jason LaPres Lone Star College—North Harris © 2012 Pearson Education, Inc. An Introduction to the Brain and Cranial Nerves • Learning Outcomes • 14-1 Name the major brain regions, vesicles, and ventricles, and describe the locations and functions of each. • 14-2 Explain how the brain is protected and supported, and discuss the formation, circulation, and function of cerebrospinal fluid. • 14-3 Describe the anatomical differences between the medulla oblongata and the spinal cord, and identify the main components and functions of the medulla oblongata. © 2012 Pearson Education, Inc. An Introduction to the Brain and Cranial Nerves • Learning Outcomes • 14-4 List the main components of the pons, and specify the functions of each. • 14-5 List the main components of the cerebellum, and specify the functions of each. • 14-6 List the main components of the midbrain, and specify the functions of each. • 14-7 List the main components of the diencephalon, and specify the functions of each. © 2012 Pearson Education, Inc. An Introduction to the Brain and Cranial Nerves • Learning Outcomes • 14-8 Identify the main components of the limbic system, and specify the locations and functions of each. • 14-9 Identify the major anatomical subdivisions and functions of the cerebrum, and discuss the origin and significance of the major types of brain waves seen in an electroencephalogram. • 14-10 Describe representative examples of cranial reflexes that produce somatic responses or visceral responses to specific stimuli. © 2012 Pearson Education, Inc. • In the pre-synaptic neuron, an Synapse electrical signal comes in, opens up to voltage-gated channels, and signals the vesicles containing neurotransmitters (chemical signal) to be released into the synaptic cleft.
    [Show full text]
  • The Meninges and Common Pathology Understanding the Anatomy Can Lead to Prompt Identification of Serious Pathology
    education The meninges and common pathology Understanding the anatomy can lead to prompt identification of serious pathology The meninges are three membranous of the skull and extends into folds that arterial blood has sufficient pressure to layers that surround the structures of the compartmentalise the skull.1 2 The large separate the dura from the bare bone of central nervous system. They include the midline fold separates the two hemispheres the skull.4 The classic example of this is dura mater, the arachnoid mater, and and is called the falx.1 A smaller fold a severe blow to the temple that ruptures the pia mater. Together they cushion the separates the cerebral hemispheres from the middle meningeal artery, which brain and spinal cord with cerebrospinal the cerebellum and is known as the has part of its course between the skull fluid and support the associated vascular tentorium cerebelli usually abbreviated as and the dura at a weak point called the structures.1 2 Although they are usually “tentorium” (fig 1).1‑3 pterion.1 2 4 This creates an extradural mentioned as a trio, there are subtle but Where the edges of the falx and tentorium haematoma,2 a potentially lifethreatening important differences to the arrangement of meet the skull, the dura encloses large injury that classically presents with the meninges in the spine and cranium. The venous sinuses that are responsible for decreased consciousness and vomiting aim of this introduction to the meninges is draining venous blood from the brain.1 4 after a lucid interval (an initial period of to clarify the anatomy and link these details These are not to be confused with the air apparently normal consciousness).
    [Show full text]
  • Anatomical Aspects of Epidural and Spinal Analgesia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Via Medica Journals Review paper Grzegorz Jagla1, 2, Jerzy Walocha2, K. Rajda3, Jan Dobrogowski4, Jerzy Wordliczek1 1Department of Pain Treatment and Palliative Care Medical College, Jagiellonian University, Krakow, Poland 2Department of Anatomy Medical College, Jagiellonian University, Krakow, Poland 31st Department of Internal Medicine, J. Dietl Hospital, Krakow, Poland 4Department of Pain Research and Treatment, Medical College, Jagiellonian University, Krakow, Poland Anatomical aspects of epidural and spinal analgesia Abstract Regional anaesthesia seems to be the future of the anaesthesia in this century. The knowledge of the anatomy of the epidural and other spinal spaces seems to play the crucial role in success of regional anaesthesia. It's important in perioperative medicine and cancer pain treatment. Up to date there is not too many datas considering anatomy of these compartments. Many of the results obtained by research- ers in the past are still not mentioned in the clinical textbooks. This article is an attempt to resolve this problem. Key words: epidural anesthesia, spinal anesthesia, human anatomy, epidural space Adv. Pall. Med. 2009; 8, 4: 135–146 Introduction nal lamina of the dura mater, and the dural sac which consists of the internal lamina of dura mater Successful a hinges on successfully reaching neu- and arachnoid. Many fragments of this space are ral tissue. The sensation of pain traveling from noci- empty (they contain only air). It can be found in all ceptor to sensory cortex follows an elaborate and places where the dural sac reaches the vertebral complex path before being registered by our brains: pedicles, vertebral lamina or ligamentum flava.
    [Show full text]
  • Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves
    Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves Paul Rea AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA First published 2014 Copyright r 2014 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
    [Show full text]
  • The Vestibulocochlear Nerve (VIII)
    Diagnostic and Interventional Imaging (2013) 94, 1043—1050 . CONTINUING EDUCATION PROGRAM: FOCUS . The vestibulocochlear nerve (VIII) a,∗ b a F. Benoudiba , F. Toulgoat , J.-L. Sarrazin a Department of neuroradiology, Kremlin-Bicêtre university hospital, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre, France b Diagnostic and interventional neuroradiology, Laennec hospital, Nantes university hospitals, boulevard Jacques-Monod, Saint-Herblain, 44093 Nantes cedex 1, France KEYWORDS Abstract The vestibulocochlear nerve (8th cranial nerve) is a sensory nerve. It is made up of Cranial nerves; two nerves, the cochlear, which transmits sound and the vestibular which controls balance. It is Pathology; an intracranial nerve which runs from the sensory receptors in the internal ear to the brain stem Vestibulocochlear nuclei and finally to the auditory areas: the post-central gyrus and superior temporal auditory nerve (VIII) cortex. The most common lesions responsible for damage to VIII are vestibular Schwannomas. This report reviews the anatomy and various investigations of the nerve. © 2013 Published by Elsevier Masson SAS on behalf of the Éditions françaises de radiologie. The cochlear nerve Review of anatomy [1] The cochlear nerve has a peripheral sensory origin and follows a centripetal path. It ori- ginates in the cochlear membrane sensory canal, forming the spiral organ (the organ of Corti) and lies on the basilar membrane (Fig. 1). The neuronal fibers of the protoneu- ron connect to the ciliated cells on the spiral lamina (Fig. 2). The axons are grouped together along the axis of the cochlea (modiolus), forming the cochlear nerve which then enters the internal auditory meatus (IAM). Within the internal auditory meatus, the nerve joins the vestibular nerve to form the vestibulocochlear nerve which crosses the cere- bellopontine angle (Figs.
    [Show full text]
  • Lecture 6: Cranial Nerves
    Lecture 6: Cranial Nerves Objective: To understand the organization of cranial nerves with respect to their nuclei within the brain, their course through and exit from the brain, and their functional roles. Olfactory Eye Muscles 3, 4 &6 Cranial Nerves 1-7 I overview Table, Page 49 II Lecture notes Cranial Nerves and their Functions V Trigeminal VII Facial VIII IX X XII XI Cranial Nerves 8-12 Overview sternocephalic I. Factors Responsible for the Complex Internal Organization of the Brain Stem-> leads to altered location of cranial nerve nuclei in adult brain stem 1. Development of the Fourth Ventricle a. Medulla and Pons develop ventral to the 4th ventricle cerebellum b. Alar plate is displaced lateral to basal plate 4 Medulla Developing Neural Tube 2. Cranial nerve nuclei form discontinuous columns Rostral 12 SE Page 48 Notes 3. Some cranial nerve nuclei migrate from their primitive embryonic positions (e.g., nuclei of V and VII) Facial N. Factors responsible for the complex internal organization of the brainstem: 4) Special senses develop in association with the brain stem. Nuclei of special senses 5) Development of the cerebellum and its connections Cerebellum II. Cranial Nerve Nuclei: Nucleus = column of neuron cell bodies. Efferent nuclei are composed of cell bodies of alpha or gamma motor neurons (SE) or preganglionic parasympathetic neurons (VE). III. Motor Efferent Nuclei (Basal Plate Derivatives): 1. SE (Somatic Efferent) Nuclei: SE neurons form two longitudinally oriented but discontinuous columns of cell bodies in the brain stem. Neurons that comprise these columns are responsible for innervating all of the skeletal musculature of the head.
    [Show full text]
  • Cranial Nerves
    Cranial Nerves Cranial nerve evaluation is an important part of a neurologic exam. There are some differences in the assessment of cranial nerves with different species, but the general principles are the same. You should know the names and basic functions of the 12 pairs of cranial nerves. This PowerPage reviews the cranial nerves and basic brain anatomy which may be seen on the VTNE. The 12 Cranial Nerves: CN I – Olfactory Nerve • Mediates the sense of smell, observed when the pet sniffs around its environment CN II – Optic Nerve Carries visual signals from retina to occipital lobe of brain, observed as the pet tracks an object with its eyes. It also causes pupil constriction. The Menace response is the waving of the hand at the dog’s eye to see if it blinks (this nerve provides the vision; the blink is due to cranial nerve VII) CN III – Oculomotor Nerve • Provides motor to most of the extraocular muscles (dorsal, ventral, and medial rectus) and for pupil constriction o Observing pupillary constriction in PLR CN IV – Trochlear Nerve • Provides motor function to the dorsal oblique extraocular muscle and rolls globe medially © 2018 VetTechPrep.com • All rights reserved. 1 Cranial Nerves CN V – Trigeminal Nerve – Maxillary, Mandibular, and Ophthalmic Branches • Provides motor to muscles of mastication (chewing muscles) and sensory to eyelids, cornea, tongue, nasal mucosa and mouth. CN VI- Abducens Nerve • Provides motor function to the lateral rectus extraocular muscle and retractor bulbi • Examined by touching the globe and observing for retraction (also tests V for sensory) Responsible for physiologic nystagmus when turning head (also involves III, IV, and VIII) CN VII – Facial Nerve • Provides motor to muscles of facial expression (eyelids, ears, lips) and sensory to medial pinna (ear flap).
    [Show full text]