CONCRETE BASICS a Guide to Concrete Practice Guide CCAA OFFICES
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guide to Concrete Floor
GUIDE TO CONCRETE FLOOR Our know-how for your applications Guide to Concrete Floor Applications 2 Guide to Concrete Floor Applications Contents Concrete ........................................................ 4 Concrete Vibration ....................................... 6 Floors of Concrete ........................................ 9 Preliminary Planning ................................. 11 Laying Floors ............................................... 12 Sideforms and Screed Guides ............................................ 13 Track Rail System ....................................... 23 Fixed Rail Supports .................................... 24 Floors on Floors Structures Cast in Situ .................................................. 25 Cleaning, pre-moistening, etc. ................. 27 Conversion Tables ...................................... 41 Glossary ....................................................... 42 3 Guide to Concrete Floor Applications Concrete Concrete is a mixture of water, cement, sand and stone. The cement content affects concrete properties. A high Water content divided with cement gives w/c-ratio. The cement content gives a high strength whereas shrinkage water/cement-ratio is a theoretical average value and it unfortunately also will increase. may change during transport or vibration. What does concrete consist of? Cement W/C ratio Concrete is a mixture of water, cement, Cement and water are two important com- Water/cement-ratio means the ratio relation sand and stone. These four components ponents. water (kg) per cubic meter of concrete can be varied to a great extent and the Cement content means the amount of divided by cement content. It can be any- characteristics of the mix and the hard, cement by weight per cubic meter concrete thing from 0.80 to 0.30 at the mixing plant hydrated product itself can thereby be and can vary from 500 down to 250 kg per or in truck mixer. changed to a great extent. cubic meter. Many architects and engineers think that it is the only factor you have to worry about when you want quality concrete. -
Influence of Constituents' Properties on the Fracture Properties of High Strength Concrete
Influence of Constituents' Properties on the Fracture Properties of High Strength Concrete by Jeffrey Ramzi Karam B.S.C.E., Washington University in St. Louis (1995) SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE MASTER OF SCIENCE IN CIVIL AND ENVIRONMENTAL ENGINEERING at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY January, 1997 © 1997 Massachusetts Institute of Technology. All rights reserved. Signature of Author Depart/cht ofCivil and Environmental Engineering ;ember, 1996 Certified by 3iuyiik6ztrk -pervisor Certified by Joseph M. Sussman Chairman, Departmental Committee on Graduate Students C) 2 I Influence of Constituents' Properties on the Fracture Properties of High Strength Concrete by Jeffrey Ramzi Karam Submitted to the Department of Civil and Environmental Engineering January, 1997 in partial fulfillment of the requirements for the degree of Master of Science in Civil and Environmental Engineering Abstract The mechanical properties of concrete are known to be highly dependent on the characteristics of the interfacial region. Through the use of admixtures the properties of the interfacial region have been altered such that concretes of exceptional strength are now achievable. As with most engineering materials, the improved strength comes at the expense of ductility. The objective of this research was to ascertain how the properties of the basic constituents of concrete affect the ductility. An interface fracture energy methodology was used to study the influence of various internal parameters. The parameters investigated for normal and high strength mortars were: aggregate size, aggregate volume fraction, and aggregate type. Additionally, a novel code-like equation was developed in order to predict the fracture energy of a cementitious composite based on the material properties of the constituents. -
Strength Properties of Meta Kaolin & Fly Ash Plane
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072 STRENGTH PROPERTIES OF META KAOLIN & FLY ASH PLANE CEMENT CONCRETE Dr. Rajamanya V. S.1, Kulkarni N. K.2 1 Professor & HOD, Department of Civil Engineering, MBES College of Engineering, Ambajogai, Maharashtra,India 2 Asst. Professor, Department of Civil Engineering, MBES College of Engineering, Ambajogai, Maharashtra,India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - The present report deals with the effects of the use of Natural Pozzolans like Meta kaolin as a possible mineral admixtures, by partial replacement of cement, partial replacement for cement. Amongst the various in terms of improved performance on compressive and methods used to improve the durability of concrete, and to flexural strengths.Experimental work was carried out achieve high performance concrete, the use of Meta kaolin to investigate the effect of Meta kaolin and Fly ash by is a relatively new approach. Meta kaolin, or heat-treated partial replacing cement and keeping same water clay, may be used as a Supplementary Cementations cement ratio to ordinary concrete & meta kaolin and fly Material in concrete to reduce cement consumption, to ash. In this program we are going to construct 48 cube increase strength. Meta kaolin reduces the porosity of samples of size 150mmx150mmx150mm for different concrete. Plain concrete possesses a very low tensile percentages of Meta kaolin and Fly ash with partial strength, limited ductility and little resistance to cracking. replacement of cement will casted and tested. The Concrete is one of the most common materials used in the concrete mixes had 0%,5%,10%,15% of Fly ash and construction industry. -
The Effects of Alkali-Silica Reaction on the Mechanical Properties of Concretes with Three Different Types of Reactive Aggregate
Technical Paper Okpin Na* DOI: 10.1002/suco.201400062 Yunping Xi Edward Ou Victor E. Saouma The effects of alkali-silica reaction on the mechanical properties of concretes with three different types of reactive aggregate This paper investigates the degradation of the mechanical prop- environment, the product of ASR is expansive, which is erties of concretes made with three types of aggregate affected detrimental to concrete structures [1, 2]. by alkali-silica reaction (ASR). Three standard testing methods ASR is a chemical reaction between the reactive – ASTM C289, JASS 5N T-603 and ASTM C1260 – were used to silica in the aggregate and the alkalis (Na2O and K2O) in identify the reactivity of ASR of the three aggregates selected. Portland cement. This chemical reaction produces alkali- The test results show that all three aggregates are potentially silica gel swelling with the absorption of the moisture deleterious. A new acceleration method based on JASS 5N T-603 from the surrounding cement paste. The expansive gel and ASTM C1260 was proposed for concrete specimens. In the can cause cracking in the concrete. Therefore, the neces- acceleration method, cylindrical concrete specimens were used, sary conditions for the expansive ASR gel to form in the additional alkali material was added to the concrete mixture and concrete are a sufficiently high alkali concentration in the the specimens were stored under conditions similar to ASTM cement, high moisture content in the concrete and reac- C1260. The preconditioned concrete specimens were then used tive aggregates. for evaluating the mechanical properties of the ASR-affected In order to control or prevent the occurrence of concrete in terms of strength and stiffness. -
On the Structure of the Roman Pantheon 25
College Art Association http://www.jstor.org/stable/3050861 . Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=caa. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. College Art Association is collaborating with JSTOR to digitize, preserve and extend access to The Art Bulletin. http://www.jstor.org On the Structureof the Roman Pantheon Robert Mark and Paul Hutchinson Since the time of its construction, the bold, brilliantly simple schema of Hadrian's Pantheon has inspired much emulation, commendation, and even fear. Modern commentators tend to view the building as a high point in an "architectural rev- olution" brought about mainly through the Roman development of a superior poz- zolana concrete that lent itself to the forming of unitary, three-dimensional struc- tures. -
Slab on Grade Reinforcing Design
PDHonline Course S132 (1 PDH) Slab on Grade Reinforcing Design Instructor: D. Matthew Stuart, P.E., S.E., F.ASCE, F.SEI, SECB, MgtEng 2013 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com www.PDHonline.org Materials: The most common reinforcement associated with slabs-on-grade is welded wire fabric. However, this is not the only means of reinforcing slabs. In some cases deformed bars are used in order to assure that the reinforcement is placed at the correct depth within the slab and not damaged during placement. In either case when using deformed bars or welded wire fabric, it is essential that adequate support of the steel is provided. Source: eHow.com Welded Wire Fabric: When using welded wire fabric, prefabricated sheets should be used in lieu of rolled fabric in order to help assure proper location of the steel within the concrete. In either case a minimum of one chair per 25 square feet of mesh should be used to adequately support the reinforcement above the sub-grade. The table provided in this slide lists common styles of welded wire fabric, including the “old” and "new" designations. Although the "new" designations are more than 20 years old, many engineers find this cross-reference helpful. Common Styles of Welded Wire Fabric Steel Area Style Designation Sq. in. per ft. Weight Lbs. per New Designation Old Designation Longitudinal Transverse 100 SF (by W-number) (by steel wire gauge) ROLLS 6x6-W1.4xW1.4 6x6-10x10 .028 .028 21 6x6-W2.0xW2.0 6x6-8x8* .040 .040 29 6x6-W2.9xW2.9 6x6-6x6 .058 .058 42 6x6-W4.0xW4.0 6x6-4x4 .080 .080 58 4x4-W1.4xW1.4 4x4-10x10 .042 .042 31 4x4-W2.0xW2.0 4x4-8x8* .060 .060 43 4x4-W2.9xW2.9 4x4-6x6 .087 .087 62 4x4-W4.0xW4.0 4x4-4x4 .120 .120 85 SHEETS 6x6-W2.9xW2.9 6x6-6x6 .058 .058 42 6x6-W4.0xW4.0 6x6-4x4 .080 .080 58 6x6-W5.5xW5.5 6x6-2x2** .110 .110 80 4x4-W4.0xW4.0 4x4-4x4 .120 .120 85 * Exact W-Number size for 8 gauge is W2.1. -
Guide to Concrete Repair Second Edition
ON r in the West August 2015 Guide to Concrete Repair Second Edition Prepared by: Kurt F. von Fay, Civil Engineer Concrete, Geotechnical, and Structural Laboratory U.S. Department of the Interior Bureau of Reclamation Technical Service Center August 2015 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Acknowledgments Acknowledgment is due the original author of this guide, W. Glenn Smoak, for all his efforts to prepare the first edition. For this edition, many people were involved in conducting research and field work, which provided valuable information for this update, and their contributions and hard work are greatly appreciated. They include Kurt D. Mitchell, Richard Pepin, Gregg Day, Jim Bowen, Dr. Alexander Vaysburd, Dr. Benoit Bissonnette, Maxim Morency, Brandon Poos, Westin Joy, David (Warren) Starbuck, Dr. Matthew Klein, and John (Bret) Robertson. Dr. William F. Kepler obtained much of the funding to prepare this updated guide. Nancy Arthur worked extensively on reviewing and editing the guide specifications sections and was a great help making sure they said what I meant to say. Teri Manross deserves recognition for the numerous hours she put into reviewing, editing and formatting this Guide. The assistance of these and numerous others is gratefully acknowledged. Contents PART I: RECLAMATION'S METHODOLOGY FOR CONCRETE MAINTENANCE AND REPAIR Page A. -
Guide to Safety Procedures for Vertical Concrete Formwork
F401 Guide to Safety Procedures for Vertical Concrete Formwork SCAFFOLDING, SHORING AND FORMING INSTITUTE, INC. 1300 SUMNER AVENUE, CLEVELAND, OHIO 44115 (216) 241-7333 F401 F O R E W O R D The “Guide to Safety Procedures for Vertical Concrete Formwork” has been prepared by the Forming Section Engineering Committee of the Scaffolding, Shoring & Forming Institute, Inc., 1300 Sumner Avenue, Cleveland, Ohio 44115. It is suggested that the reader also refer to other related publications available from the Scaffolding, Shoring & Forming Institute. The SSFI welcomes any comments or suggestions regarding this publication. Contact the Institute at the following address: Scaffolding, Shoring and Forming Institute, 1300 Sumner Ave., Cleveland, OH 44115. i F401 CONTENTS PAGE Introduction ........................................................................................ 1 Section 1 - General................................................................................ 2 Section 2 - Erection of Formwork......................................................... 2 Section 3 - Bracing................................................................................ 3 Section 4 - Walkways/Scaffold Brackets.............................................. 3 Section 5 - Special Applications........................................................... 4 Section 6 - Inspection............................................................................ 4 Section 7 - Concrete Placing................................................................. 5 Section -
SLAB FORMWORK DESIGN USING GENETIC ALGORITHM Formwork Design Using GA
SLAB FORMWORK DESIGN USING GENETIC ALGORITHM Formwork design using GA H AL-TABTABAI, A.P. ALEX and R JAMES Department of Civil Engineering, College of Engineering and Petroleum, University of Kuwait, Safat, Kuwait Durability of Building Materials and Components 8. (1999) Edited by M.A. Lacasse and D.J. Vanier. Institute for Research in Construction, Ottawa ON, K1A 0R6, Canada, pp. 2407-2418. Ó National Research Council Canada 1999 Abstract A method to design cost-optimum slab formwork components is proposed in this paper. Genetic Algorithms (GAs), a technique based on the principles of natural selection and evolution, is applied to solve the optimisation problem. GAs search from a population of possible solutions limited by a set of constraints. The cost of form components and labor involved, were considered for the formulation of the objective function of the optimisation problem. The bending moment, shear, maximum deflection, imposed ACI code provisions, etc., were used as constraints for the optimisation problem. Application of GA to the formwork design problem provides optimum design parameters such as the optimum cross section for form members, optimum spacing of form members, etc., while minimising the total cost. Formwork made either from wood, wood-metal composite or metal alone can be designed using the proposed technique. The paper presents the case of general formwork design, however, the method as a whole readily applies to the design of formwok for elevated slabs and high rise concrete elements. Keywords: Formwork design, genetic algorithm, optimisation, construction cost 1 Introduction Slab formwork holds and provides support for freshly placed concrete through a framework of sheathing, joists, stringers and shores (Fig. -
Effect of Formwork Removal Time Reduction on Construction
applied sciences Article Effect of Formwork Removal Time Reduction on Construction Productivity Improvement by Mix Design of Early Strength Concrete 1, 2, 3 3, 3 Taegyu Lee y , Jaehyun Lee y, Jinsung Kim , Hyeonggil Choi * and Dong-Eun Lee 1 Department of Fire and Disaster Prevention, Semyung University, 65 Semyung-ro, Jecheon-si, Chungbuk 27136, Korea; [email protected] 2 Department of Safety Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea; [email protected] 3 School of Architecture, Civil, Environment, and Energy Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea; [email protected] (J.K.); [email protected] (D.-E.L.) * Correspondence: [email protected]; Tel.: +82-53-950-5596 These authors contributed equally to this work. y Received: 4 September 2020; Accepted: 6 October 2020; Published: 11 October 2020 Abstract: In this study, we examined the effects of cement fineness, SO3 content, an accelerating agent, and chemical admixtures mixed with unit weights of cement on concrete early strength using concrete mixtures. C24 (characteristic value of concrete, 24 MPa) was used in the experiment conducted. Ordinary Portland cement (OPC), high fineness and SO3 OPC (HFS_OPC), and Early Portland cement (EPC) were selected as the study materials. The unit weights of cement were set to OPC 330, 350, and 380. Further, a concrete mixture was prepared with a triethanolamine (TEA)-based chemical admixture to HFS. A raw material analysis was conducted, and the compressive strength, temperature history, and maturity (D h) were examined. Then, the vertical formwork removal time was evaluated · according to the criterion of each country. -
Components of Concrete Desirable Properties of Concrete
Components of Concrete Concrete is made up of two components, aggregates and paste. Aggregates are generally classified into two groups, fine and coarse, and occupy about 60 to 80 percent of the volume of concrete. The paste is composed of cement, water, and entrained air and ordinarily constitutes 20 to 40 percent of the total volume. In properly made concrete, the aggregate should consist of particles having adequate strength and weather resistance and should not contain materials having injurious effects. A well graded aggregate with low void content is desired for efficient use of paste. Each aggregate particle is completely coated with paste, and the space between the aggregate particles is completely filled with paste. The quality of the concrete is greatly dependent upon the quality of paste, which in turn, is dependent upon the ratio of water to cement content used, and the extent of curing. The cement and water combine chemically in a reaction, called hydration, which takes place very rapidly at first and then more and more slowly for a long period of time in favorable moisture conditions. More water is used in mixing concrete than is required for complete hydration of the cement. This is required to make the concrete plastic and more workable; however, as the paste is thinned with water, its quality is lowered, it has less strength, and it is less resistant to weather. For quality concrete, a proper proportion of water to cement is essential. Desirable Properties of Concrete Durability: Ability of hardened concrete to resist -
Report No. REC-ERC-82-1. Fly Ash and Fly Ash Concrete
May 1984 Engineering and Research Center U. S. Department of the Interior Bureau of Reclamation Bureau ot Reclamation TECHNICAL REPORT STANDARD TITLE PAGE Fly Ash and Fly Ash Concrete May 1984 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(S)-. 8. PERFORMING ORGANIZATION Edwin R. Dunstan, Jr. REPORT NO. I REC-ERC-82-1 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. Bureau of Reclamation, Engineering and Research Center 11. CONTRACT OR GRANT NO. Denver, Colorado 80225 10781 V0195 13. TYPE OF REPORT AND PERIOD COVERED 2. SPONSORING AGENCY NAME AND ADDRESS Same 14. SPONSORING AGENCY CODE DlBR 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center. Denver. Colorado. Editor: RNW 16. ABSTRACT Fly ash is a residue that results from the combustion of ground or powdered coal. Historically, fly ash has been referred to as a ponolan and is used to reduce the amount of portland cement in concrete. However, in many Western States fly ashes have cementitious properties as well as pozzolanic properties, and they are capable of producing good strengths without portland cement. This study discusses test results of several ashes according to ASTM: C 6 18. Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete. Many changes are suggested. The replacement of 15 to 25 percent by mass of portland cement in concrete is examined. A few highly cementitious ashes were used to make concrete without portland cement. A new cement was developed that consists of over 90-percent fly ash and anhydrous CaS04.Test data for most concretes include: mix proportions, compressive strength, elasticity, drying shrinkage.