Unravelling the Mystery of Protein Folding

Total Page:16

File Type:pdf, Size:1020Kb

Unravelling the Mystery of Protein Folding A series of articles for general audiences Unraveling the Mystery of Protein Folding by W. A. (Bill) Thomasson This series of essays was that allow our muscles to con- developed as part of FASEB’s tract, and the collagen that makes efforts to educate the general up our tendons and ligaments public, and the legislators whom (and even much of our bones)all it elects, about the benefits of are proteins. fundamental biomedical To make proteins, machines research—particularly how known as ribosomes string to- investment in such research gether amino acids into long, leads to scientific progress, linear chains. Like shoelaces, improved health, and economic these chains loop about each other well-being. in a variety of ways (i.e., they fold). But, as with a shoelace, Alzheimers disease. Cystic fibro- only one of these many ways sis. Mad Cow disease. An inher- allows the protein to function ited form of emphysema. Even properly. Yet lack of function is many cancers. Recent discoveries not always the worst scenario. show that all these apparently For just as a hopelessly knotted unrelated diseases result from shoelace could be worse than one protein folding gone wrong. As that wont stay tied, too much of a though that werent enough, many misfolded protein could be worse of the unexpected difficulties than too little of a normally folded biotechnology companies encoun- one. This is because a misfolded ter when trying to produce human protein can actually poison the proteins in bacteria also result cells around it. from something amiss when Early Studies proteins fold. What exactly is this phenom- The importance of protein folding enon? We all learned that pro- has been recognized for many teins are fundamental compo- years. Almost a half-century ago, nents of all living cells: our own, Linus Pauling discovered two quite the bacteria that infect us, the plants and animals we eat. The W. A. (Bill) Thomasson, Ph.D., is a science and medical writer based in Oak Park, IL. hemoglobin that carries oxygen to Jonathan A. King served as science writer. our tissues, the insulin that sig- This series is available on FASEBs Public nals our bodies to store excess Policy Home Page at sugar, the antibodies that fight http://www.faseb.org/opa/ or as reprints from FASEBs Office of Public Affairs, 9650 infection, the actin and myosin Rockville Pike, Bethesda, MD 20814. simple, regular arrangements of egg cools, the proteins dont re- amino acidsthe α-helix and the turn to their original shapes. β-sheet (see the box, Fundamental Instead, they form a solid, in- Patterns of Protein Structure) soluble (but tasty) mass. This is that are found in almost every misfolding. Similarly, biochemists protein. And in the early 1960s, have always cursed the tendency Christian Anfinsen showed that of some proteins to form the in- the proteins actually tie them- soluble lumps in the bottom of selves: If proteins become un- their test tubes. We now know folded, they fold back into proper that these, too, were proteins shape of their own accord; no folded into the wrong shapes. shaper or folder is needed. Until recently, biochemists Of course, neither Pauling nor lacked the tools to study these Anfinsen nor the committees that insoluble lumps. Nor did they awarded them their respective expect such masses would be Nobel prizes knew at the time particularly interesting. The that these discoveries would be so prevailing view at the time was important for understanding that the lumps were just hope- Alzheimers disease or cystic lessly tangled and completely fibrosis. And when Pauling, at amorphous masses of protein least, was doing his breakthrough fibers (aggregation). Researchers studies, he could hardly have eventually discovered that these imagined the enormity of todays aggregates of incorrect folding biotechnology industry. What could be highly structured, but scientists did know is that any before this crucial insight and process that was so fundamental before proper investigative tools to life as protein folding would were developed, biochemists have to be of the utmost practical simply threw their fouled test importance. tubes away. But research did not stop with Gunking Up’ Tissues Pauling and Anfinsen. Indeed, we now know that Anfinsens conclu- As far back as the start of this sions needed expansion: Some- century, physicians have been times a protein will fold into a noticing that certain diseases are wrong shape. And some proteins, characterized by extensive pro- aptly named chaperones, keep tein deposits in certain tissues. their target proteins from getting Most of these diseases are rare, off the right folding path (see the but Alzheimers is not. It was box, Molecular Chaperones). Alois Alzheimer himself who These two small but important noted the presence of neurofibril- additions to Anfinsens theory lary tangles and neuritic plaque hold the keys to protein folding in certain regions of his patients diseases. brain. Tangles are more or less Weve known since antiquity common in diseases that feature (but didnt know we knew) that extensive nerve cell death; plaque, protein folding can go wrong. however, is specific to Alzheimers. When we boil an egg, the proteins The major question, which has in the white unfold. But when the only recently been answered, is Fundamental Patterns of Protein Structure More than a half century ago, evidence began to accumulate that a major part of most proteins folded structure consists of two regular, highly periodic arrangements, designated α and β. In 1951 researchers worked out the precise nature of these arrangements. The key to both structures is the hydrogen bond. A hydrogen atom is nothing more than a proton with a surrounding electron cloud. When one of these atoms is chemically bonded to an electron-withdrawing atom such as nitrogen or oxygen, much of the electron cloud moves toward the nitrogen or oxygen. The proton is thus left almost bare, with its positive charge largely unshielded. If it comes close to another atom with a bit of ex- tra negative charge (typi- cally, an oxygen or nitrogen atom), the par- tial positive and negative charges will attract each other. It is this attraction that produces the hydrogen bond and stabilizes the α and β structures. The a struc- ture, nw called α-helix, is a right-hand spiral stabilized by hydrogen bonds (A) A model alpha-helix shows the hydrogen bonds (dotted lines) between oxygen and hydrogen atoms of the between each fourth amino acid up the chain. (B) beta-sheets are also held together by hydrogen bonds. The transparent amino acids ni- arrows show the direction of individual beta-strands. Chains running in the same direction (left pair) are trogen atom called parallel beta sheet; strands running in opposite directions (right pair) are said to be anti-parallel and the oxygen beta-sheet. The atom coloring is as follows: carbon = green, oxygen = red, nitrogen = blue, and white = atom of the hydrogen. (Courtesy: Stanley Krystek, Bristol-Myers Squibb, Pharmaceutical Research Institute) fourth one up the chain. This means that there are 3.6 amino acids for each turn of the helix. The main part of the amino acid (the side chain, designated R in the figure) sticks out from this spiral backbone like the bristles on a bottle brush. The β structure is now called β-sheet. It is essentially flat, with the side chains sticking out on alternate sides. β-sheet is also stabilized by hydrogen bonds between nitrogen and oxygen atoms. In this case, however, the hydrogen-bonded atoms belong to different amino acid chains running alongside each other. The sheets are parallel if all the chains run in the same direction and are antiparallel if alternate chains run in opposite directions. Antiparallel sheets are often, but not always, formed by a single chain looping back upon itself. When a single chain loops back on itself to form an antiparallel β-sheet, the one to three amino acids linking the two strands are known as a β-turn. Today, scientists recognize the β-turn as one of the funda- mental elements of protein structure. All other local arrangements of amino acids are described as ran- dom coil, although they are random only in the sense of not being periodic. whether plaque causes millions of potential folded states Alzheimers or, like tangles, is a to choose from, consistently found consequence of it. the correct oneand did so within Further investigation showed seconds to minutes. that neuritic plaque (unrelated to Could there be specific, critical the plaque that clogs atheroscle- intermediates (partially folded rotic blood vessels and causes chains) in the folding process? heart attacks) is composed almost This turned out to be a difficult entirely of a single protein. De- question to answer. Partially posits of large amounts of a folded chains dont stay that way single, insoluble protein around very long; they become fully the degenerating nerve cells of folded chains in a fraction of a Alzheimers disease eventually second. Nevertheless, by the provided a key to understanding early 1980s researchers had not the disorder. only found clear evidence for the It was development of the bio- existence of partially folded pro- technology industry that unex- teins, but also realized the key pectedly spurred interest in in- role these played in the folding soluble protein gunk. This indus- process. try can produce proteins (often One study involved the diffi- otherwise difficult-to-obtain hu- culty in getting bovine growth man proteins) quickly and eco- hormone to fold properly. Al- nomically in bacteria. To their though the unfolded proteins were surprise, however, scientists who not sticky, and the fully folded worked for biotech companies proteins were not sticky, the often found two things: protein partially folded molecules stuck to that was supposed to be soluble each othera first clue as to the instead precipitated as insoluble origins of misfolded lumps (at inclusion bodies within the bacte- least for purified proteins in test ria and proteins that were sup- tubes).
Recommended publications
  • Scrapie and Tagging/Tattooing Your Goats and Sheep 2017 PRESENTATION for ASHTABULA COUNTY 4-H by STEPHANIE MAROUS What Is Scrapie?
    Scrapie and Tagging/Tattooing Your Goats and Sheep 2017 PRESENTATION FOR ASHTABULA COUNTY 4-H BY STEPHANIE MAROUS What is Scrapie? Scrapie is a fatal degenerative disease of the central nervous system of sheep and goats. (Basically it is the sheep and goat version of Mad Cow Disease) Scrapie is commonly spread from a female to her offspring. Other members of the herd can catch it through contact with the placenta or its fluids. Scrapie can only truly be tested after an animal is dead. This is done by testing the brain tissue and looking for the disease. SYMPTOMS Symptoms may take 2-5 years to appear Head and Neck Tremors Skin Itching (this is where the term scrapie comes from) Inability to control legs (remember this attacks the Nervous System) Good appetite accompanied by weight loss. Remember just because an animal exhibits these symptoms does not mean it has scrapie. Consult your Vet to rule out possible reasons for symptoms. Scrapie Eradication Program The National Scrapie Eradication Program, coordinated by the U.S. Department of Agriculture’s (USDA) Animal and Plant Health Inspection Service (APHIS), has reduced the prevalence of scrapie by over 85 percent. To find and eliminate the last few cases in the United States, the cooperation of sheep and goat producers throughout the country is needed. Producers are required to follow Federal and State regulations for officially identifying their sheep and goats. Producers must also keep herd records showing what new animals were added and what animals left the herd/flock Scrapie Eradication Program APHIS provides official plastic or metal eartags free of charge to producers.
    [Show full text]
  • Chronic Wasting Disease and Atypical Forms of Bovine Spongiform
    Journal of General Virology (2012), 93, 1624–1629 DOI 10.1099/vir.0.042507-0 Short Chronic wasting disease and atypical forms of Communication bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein Rona Wilson,1 Chris Plinston,1 Nora Hunter,1 Cristina Casalone,2 Cristiano Corona,2 Fabrizio Tagliavini,3 Silvia Suardi,3 Margherita Ruggerone,3 Fabio Moda,3 Silvia Graziano,4 Marco Sbriccoli,4 Franco Cardone,4 Maurizio Pocchiari,4 Loredana Ingrosso,4 Thierry Baron,5 Juergen Richt,63 Olivier Andreoletti,7 Marion Simmons,8 Richard Lockey,8 Jean C. Manson1 and Rona M. Barron1 Correspondence 1Neuropathogenesis Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Rona M. Barron Midlothian, UK [email protected] 2Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy 3IRCCS Foundation, ‘Carlo Besta’ Neurological Institute, Milan, Italy 4Department of Cell Biology and Neurosciences, Istituto Superiore di Sanita`, Viale Regina Elena 299, 00161 Rome, Italy 5Agence Nationale de Se´curite´ Sanitaire, Lyon, France 6USDA, ARS, National Animal Disease Center, PO Box 70, Ames, IA 50010, USA 7UMR 1225 Interactions Hoˆtes-Agents Pathoge`nes, INRA, Ecole Nationale Ve´te´rinaire, 23 chemin des Capelles, B.P. 87614, 31076 Toulouse Cedex 3, France 8Neuropathology Section, Department of Pathology and Host Susceptibility, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt–Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans.
    [Show full text]
  • An Overview of the Disease and the National Scrapie Eradication Program
    Scrapie An overview of the disease and the National Scrapie Eradication Program Prepared by the Scrapie Management Team USDA, APHIS, Veterinary Services September, 2012 An Introduction to the National Scrapie Eradication Program This overview provides Federal and State regulatory personnel with a basic introduction to scrapie and the National Scrapie Eradication Program (NSEP). Since the association between BSE in cattle and variant CJD in humans was made in the mid-1990s, a great deal of research on TSE diseases has been done. Recognizing the importance of eliminating TSE diseases from food animal populations, in the past decade many countries around the world – including the United States – have initiated aggressive eradication programs for scrapie. How to Use this Document This introduction to scrapie briefly describes the disease and outlines the major elements of the National Scrapie Eradication Program (NSEP). This document is part of the National Scrapie Reference Library. The Reference Library is a collection of the major documents and templates relevant to the NSEP. Whenever a topic that has been summarized has more extensive information available, the relevant documents in the National Scrapie Reference Library are be referenced so the reader can learn more on the subject. This document has bookmarks for each section and then subsection for easier navigation. If the bookmarks panel is not already activated, click on the bookmarks icon along the upper left-hand side of the screen to open it. The bookmarks icon looks like this: . 1 | Page An Introduction to the National Scrapie Eradication Program Contents Learning Objectives ................................................................................................................................ 4 Section One: History of Scrapie in the United States ............................................................................
    [Show full text]
  • Redalyc.Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil
    Acta Scientiae Veterinariae ISSN: 1678-0345 [email protected] Universidade Federal do Rio Grande do Sul Brasil Souza Leal, Juliano; Pinto de Andrade, Caroline; Laizola Frainer Correa, Gabriel; Silva Boos, Gisele; Viezzer Bianchi, Matheus; Ceroni da Silva, Sergio; Lopes, Rui Fernando Felix; Driemeier, David Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil Acta Scientiae Veterinariae, vol. 43, 2015, pp. 1-7 Universidade Federal do Rio Grande do Sul Porto Alegre, Brasil Available in: http://www.redalyc.org/articulo.oa?id=289039764014 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Acta Scientiae Veterinariae, 2015. 43(Suppl 1): 69. CASE REPORT ISSN 1679-9216 Pub. 69 Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil Juliano Souza Leal1,2, Caroline Pinto de Andrade2, Gabriel Laizola Frainer Correa2, Gisele Silva Boos2, Matheus Viezzer Bianchi2, Sergio Ceroni da Silva2, Rui Fernando Felix Lopes3 & David Driemeier2 ABSTRACT Background: Scrapie is a transmissible spongiform encephalopathy (TSE) that affects sheep flocks and goat herds. The transfer of animals or groups of these between sheep farms is associated with increased numbers of infected animals and with the susceptibility or the resistance to natural or classical scrapie form. Although several aspects linked to the etiology of the natural form of this infection remain unclarified, the role of an important genetic control in scrapie incidence has been proposed. Polymorphisms of the PrP gene (prion protein, or simply prion), mainly in codons 136, 154, and 171, have been associated with the risk of scrapie.
    [Show full text]
  • Genetic Variation in the Prion Protein Gene (PRNP) of Two Tunisian Goat Populations
    animals Article Genetic Variation in the Prion Protein Gene (PRNP) of Two Tunisian Goat Populations Samia Kdidi 1,* , Mohamed Habib Yahyaoui 1, Michela Conte 2, Barbara Chiappini 2, Mohamed Hammadi 1, Touhami Khorchani 1 and Gabriele Vaccari 2 1 Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route. El Djorf, Km 22.5, Medenine 4119, Tunisia; [email protected] (M.H.Y.); [email protected] (M.H.); [email protected] (T.K.) 2 Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; [email protected] (M.C.); [email protected] (B.C.); [email protected] (G.V.) * Correspondence: [email protected] or [email protected] Simple Summary: Goat production is contributing to the economic and social development of rural areas in arid lands, within harsh conditions of Southern Tunisia. In this geographic zone, there are two caprine populations: the native goat population and the crossed goat population. Genotyping goats for the prion protein gene (PRNP) allows us to estimate their level of genetic susceptibility to scrapie disease. In the present work, the Sanger sequencing method of the entire PRNP coding sequence was used to determine the different PRNP genotypes and haplotypes in two populations (116 animals). This study represents the first investigation on goats’ PRNP genetic variability in Tunisia, and the results are useful in the design of national breeding programs. Citation: Kdidi, S.; Yahyaoui, M.H.; Conte, M.; Chiappini, B.; Hammadi, Abstract: Scrapie is a fatal prion disease. It belongs to transmissible spongiform encephalopathies M.; Khorchani, T.; Vaccari, G.
    [Show full text]
  • Scrapie Fact Sheet
    SCRAPIE FACT SHEET WHAT IS SCRAPIE? Scrapie is a fatal, degenerative disease that affects the central nervous system of sheep and goats. It is among a number of diseases classified as transmissible spongiform encephalopothies (TSE). There is no cure for scrapie. Scrapie is not a human health concern, but it is a reportable disease according to the Texas Administrative Code. Veterinarians, veterinary diagnostic laboratories or a person having care, custody or control of an animal must report scrapie to the Texas Animal Health Commission (TAHC) determine if a sheep or goat has scrapie require within 24 hours of diagnosis by calling 1-800-550- brain or lymphoid tissue (lymph nodes, tonsil, 8242. third eyelid, or rectoanal lymphoid tissue). Brain or lymphoid tissues may be collected from dead It is not completely understood how scrapie is animals or through a biopsy of live animals. passed from one animal to the next and apparently healthy sheep infected with scrapie can spread WHAT IF SCRAPIE IS DETECTED IN MY FLOCK? the disease. Sheep and goats are typically infected If scrapie is detected in your flock or your animals as young lambs or kids, though adult sheep and have been exposed to the disease, a TAHC or a goats can become infected. United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) SIGNS AND SYMPTOMS regulatory veterinarian will work closely with you Signs of scrapie develop slowly in sheep and goats. to consider all options for disease eradication It usually appears between two and five years using a customized plan to determine the status after infection; therefore, infected animals rarely of your flock, eradicate the disease if it is present, show clinical signs of infection before the age of and develop a monitoring schedule.
    [Show full text]
  • National Scrapie Surveillance Plan
    National Scrapie Surveillance Plan United States Department of Agriculture Animal and Plant Health Inspection Service Veterinary Services Centers for Epidemiology and Animal Health National Surveillance Unit Fort Collins, CO September 2010 Table of Contents Executive Summary ....................................................................................................................... 3 1. Disease Description ................................................................................................................... 5 2. Purpose and Rationale for Surveillance ................................................................................10 3. Surveillance Objectives ...........................................................................................................12 4. Expected Outcomes .................................................................................................................13 5. Stakeholders and Responsible Parties ..................................................................................13 6. Population Description and Characteristics .........................................................................14 7. Case Definition .........................................................................................................................16 8. U.S. Surveillance for Scrapie: National Scrapie Eradication Program (NSEP) .................18 9. Data Presentation and Reports ...............................................................................................29 10.
    [Show full text]
  • Scrapie Incidence and PRNP Polymorphisms
    Vitale et al. BMC Veterinary Research (2016) 12:141 DOI 10.1186/s12917-016-0766-9 RESEARCH ARTICLE Open Access Scrapie incidence and PRNP polymorphisms: rare small ruminant breeds of Sicily with TSE protecting genetic reservoirs Maria Vitale1*, Sergio Migliore1, Maria La Giglia1, Placido Alberti1, Vincenzo Di Marco Lo Presti1 and Jan P. M. Langeveld2 Abstract Background: Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative diseases of several mammalian species, including humans. In Italy, the active surveillance through rapid tests on brain stem from small ruminants started in 2002 on randomly selected samples of healthy slaughtered animals. Sampling number was proportionally related to the regional small ruminant population. Of the twenty Italian regions, Sicily has the second largest population of small ruminants which is mainly constituted by crossbreed animals (>70 %). Sicily contains also three native sheep breeds Pinzirita, Comisana and Valle del Belice. Native goat breeds are Girgentana, Messinese, Argentata dell’Etna, Maltese and Rossa Mediterranea. The polymorphisms of prion protein gene (PRNP) may influence disease susceptibility and breeding programs for genetic TSE resistance are being applied in sheep. Protective alleles have been recently reported for goats also. These differ from those in sheep and may allow breeding programs in the near future. In this paper the data of active surveillance for scrapie control in general population of small ruminants in Sicily are reported together with the analysis on the polymorphism of PRNP in a number of Sicilian autochthonous breeds. The evaluation of the frequency of protective alleles is fundamental for the implementation of a TSE resistance breeding program. Results: TSE surveillance in small ruminants in Sicily showed a of total fifty seven scrapie outbreaks from 1997 to 2014 involving mainly crossbreed animals.
    [Show full text]
  • Scrapie Importance Scrapie Is a Neurodegenerative Disease, Caused by a Prion, That Affects Sheep, and Less Frequently, Goats
    Scrapie Importance Scrapie is a neurodegenerative disease, caused by a prion, that affects sheep, and less frequently, goats. Infected animals do not usually become ill for years; however, Tremblante de Mouton, the clinical signs are progressive and invariably fatal once they develop. Scrapie can Rida, be transmitted between animals, either directly or via the environment, and infected Traberkrankheit (trotting disease), premises are difficult to decontaminate. The presence of classical scrapie can result in Gnubberkrankheit (nibbling disease), trade sanctions, and many countries are conducting control or eradication programs. Prúrigo lumbar Breeding sheep for genetic resistance is an important tool in many of these programs; however, the understanding of resistance genes is still incomplete in goats. As a result of increased surveillance, atypical (Nor98) scrapie prions have been Last Updated: September 2016 detected in both sheep and goats. Atypical scrapie often occurs in sheep that are genetically resistant to classical scrapie. It has been reported in countries that do not have classical scrapie. Atypical/ Nor98 prions do not seem to be transmitted readily between animals in nature, and are rarely detected in more than one animal in a herd or flock. It is possible that they arise spontaneously in sheep, similarly to some genetic prion diseases in humans. Etiology Scrapie is a member of the transmissible spongiform encephalopathies (TSEs), a group of neurodegenerative disorders caused by prions, infectious proteins that seem to replicate by converting a normal cellular protein into copies of the prion. The cellular protein, which is called PrPc, is found on the surface of neurons. The pathogenic isoforms of PrPc found in animals with scrapie are designated PrPres (‘res’ refers to the proteinase K-resistant nature of prions, compared to normal PrPc).
    [Show full text]
  • Identification of a Novel Ovine Prp Polymorphism and Scrapie-Resistant Genotypes for St
    Cytogenet Genome Res 102:85–88 (2003) DOI: 10.1159/000075730 Identification of a novel ovine PrP polymorphism and scrapie-resistant genotypes for St. Croix White and a related composite breed C.M. Seabury and J.N. Derr Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station TX (USA) Abstract. Susceptibility to scrapie is primarily controlled by a region which exhibits extreme conservation across mammali- polymorphisms in the ovine prion protein gene (PRNP). Here, an taxa. The relatively high frequency (0.75) of resistant ARR we report a novel ovine exon three PRNP polymorphism (SNP alleles and the absence of ARQ alleles for the SCW ewes used as G346C; P116), its association with the ovine ARQ allele breeding stock for CMP resulted in significant genic differenti- (P116 A136 R154 Q171 ), and two new genotypes (PARQ/ARR; ation (P = 0.0123; S.E. = 0.00113). Additionally, the majority PARQ/ARQ) for the St. Croix White (SCW) breed and a relat- of the SCW (66.7%) and CMP (65.4%) sampled possessed ed composite (CMP) breed developed for meat production. genotypes considered resistant or nearly resistant to scrapie and The (P116 ) polymorphism occurs between the N-terminal cleav- experimental BSE (bovine spongiform encephalopathy. age site and the hydrophobic region of the ovine prion protein, Copyright © 2003 S. Karger AG, Basel Scrapie is an inevitably fatal transmissible spongiform en- A136 R154 R171 (hereafter ARR), ARQ, VRQ, AHQ, and ARH cephalopathy (TSE) affecting sheep and goats. Polymorphisms
    [Show full text]
  • Scrapie and Creutzfeldt-Jakob Disease Prion Proteins Share
    Proc. Natl. Acad. Sci. USA Vol. 82; pp. 997-1001, February 1985 Biochemistry Scrapie and Creutzfeldt-Jakob disease prion proteins share physical properties and antigenic determinants (slow infections/prion diseases/immunoblots/subviral pathogens/protease-resistant proteins) PAUL E. BENDHEIM*, JEFFREY M. BOCKMANt*, MICHAEL P. MCKINLEY*, DAVID T. KINGSBURYtt§, AND STANLEY B. PRUSINER*t¶ Departments of *Neurology and of ¶Biochemistry and Biophysics, University of California, San Francisco, CA 94143; tDepartment of Biomedical and Environmental Sciences, School of Public Health, and tNaval Biosciences Laboratory, University of California, Berkeley, CA 94720 Communicated by Heinz Fraenkel-Conrat, October 9, 1984 ABSTRACT Scrapie of sheep and goats as well as Creutz- though the degree of each of these changes varies from spe- feldt-Jakob disease (CJD) of humans are neurologic disorders cies to species and only astrocytic proliferation is a constant caused by slow infectious pathogens. The novel molecular feature (15, 17). Recent studies suggest that genetic control properties of the pathogen causing scrapie have prompted in- of the incubation period in mice for scrapie and CJD may troduction of the term "prion" tQ denote a small proteinaceous occur through the same genetic locus (18). infectious particle that resists inactivation by nucleic acid- Studies on the molecular properties of the CJD agent have modifying procedures. Antiserum to the major hamster scra- shown striking similarities to those reported for scrapie pie prion protein (PrP 27-30) was found to cross-react with prions. Both infectious pathogens exhibit extreme resistance murine CJD proteins. The CJD proteins had molecular to inactivation by ionizing irradiation (19-21). The apparent weights similar to those observed for scrapie prion groteins as size of the CJD agent seems to bq similar to that of the scra- determined by NaDodSO4 gel electrophoresis.
    [Show full text]
  • Feline Spongiform Encephalopathy (FSE) Is a Neurodegenerative Disease, Caused by Encephalopathy a Prion, That Affects Members of the Cat Family
    Feline Spongiform Importance Feline spongiform encephalopathy (FSE) is a neurodegenerative disease, caused by Encephalopathy a prion, that affects members of the cat family. Once the clinical signs appear, this disease is invariably fatal. FSE is caused by the same agent that is responsible for bovine spongiform encephalopathy (BSE) in cattle. BSE was first reported in the 1980s, when it caused an explosive epidemic among cattle in the U.K. This disease eventually Last Updated: August 2016 spread to many other countries. FSE was first reported in 1990, and was apparently transmitted to individual cats in BSE-contaminated food. As the BSE epidemic has declined, and controls have been placed on feeding high-risk bovine tissues to animals, FSE has become increasingly rare. However, this disease has a long incubation period and occasional cases may still occur in housecats and zoo animals. Etiology FSE is a member of the transmissible spongiform encephalopathies (TSEs), a group of neurodegenerative disorders caused by prions, infectious proteins that appear to replicate by converting a normal cellular protein into copies of the prion. The cellular protein, which is called PrPc, is found on the surface of neurons. Pathogenic isoforms of PrPc are designated PrPres (The ‘res’ refers to the proteinase K-resistant nature of prions, compared to normal PrPc). PrPSc or PrPTSE are other names for this protein. Prions that cause different diseases (e.g., FSE or scrapie) are considered to be different strains of PrPres. FSE is caused by the same agent that is responsible for BSE in cattle. One TSE in a housecat, reported in 1998, was caused by a prion that was distinct from BSE.
    [Show full text]