Étude Des Mécanismes De Refroidissement Du Manteau Terrestre Simulés Par Des Systèmes Multi-Agents Manuel Combes

Total Page:16

File Type:pdf, Size:1020Kb

Étude Des Mécanismes De Refroidissement Du Manteau Terrestre Simulés Par Des Systèmes Multi-Agents Manuel Combes Étude des mécanismes de refroidissement du manteau terrestre simulés par des systèmes multi-agents Manuel Combes To cite this version: Manuel Combes. Étude des mécanismes de refroidissement du manteau terrestre simulés par des systèmes multi-agents. Géophysique [physics.geo-ph]. Université de Bretagne occidentale - Brest, 2011. Français. tel-00874975 HAL Id: tel-00874975 https://tel.archives-ouvertes.fr/tel-00874975 Submitted on 20 Oct 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universite´ Europeenne´ de Bretagne — M´emoire de th`ese — Sp´ecialit´e: Physique Etude´ des m´ecanismes de refroidissement du manteau terrestre simul´es par des syst`emes multi-agents Manuel Combes Soutenue le 10 novembre 2011 devant la commission d’examen : Rapporteurs Ga¨el Choblet Charg´ede Recherche `al’Universit´ede Nantes St´ephane Labrosse Professeur `al’ENS de Lyon Examinateurs Claude Jaupart Professeur `al’Institut de Physique du Globe Marc Parenthoen¨ Maitre de Conf´erences `al’ENI de Brest Yanick Ricard Directeur de Recherche `al’Universit´ede Lyon 1 Jacques Tisseau Professeur `al’ENI de Brest Etude´ des m´ecanismes de refroidissement du manteau terrestre simul´es par des syst`emes multi-agents M´emoire de th`ese Manuel Combes — novembre 2011 — M´emoire de th`ese Laboratoire d’Informatique des SYst`emes Complexes EA 3883 UBO-ENIB Manuel Combes e-mail : [email protected] tel : +33 (0)2 98 05 89 77 Ecole´ Normale Sup´erieure de Cachan D´epartement de Physique 61, avenue du Pr´esident Wilson 94230 Cachan (http://www.ens-cachan.fr/) Centre Europ´een de R´ealit´eVirtuelle (CERV) Technopˆole Brest-Iroise 25, rue Claude Chappe BP 38 F-29280 Plouzan´e (http://www.cerv.fr) ii Manuel Combes Remerciements Je remercie sinc`erement St´ephane Labrosse et Ga¨el Choblet d’avoir accept´e d’ˆetre rapporteurs de cette th`ese, ainsi que Yanick Ricard et Claude Jaupart qui m’ont fait l’honneur d’accepter de faire partie du jury. Toute ma gratitude va `aC´ecile Grign´e, Laurent Husson et Marc Parentho¨en, qui m’ont consacr´ebeaucoup de temps et qui ont toujours su me mettre `al’aise et r´epondre `ames questions de b´eotien. J’ai pass´eavec eux de nombreuses heures de r´eflexion qui furent parmi les plus stimulantes de ma th`ese. Merci aussi `aClint Conrad, dont les nuits sont aussi courtes que les miennes, mais les id´ees beaucoup moins! Je tiens aussi `aremercier l’ensemble des personnes qui ont contribu´e`ala r´eussite de cette th`ese, sur le plan acad´emique mais aussi sur la plan affectif, car je n’ai pas men´ecette barque seul. J’adresse donc un grand merci : A` Mireille Tadjeddine, Jean-Fran¸cois Roch et Emmanuelle Deleporte pour m’avoir accueilli avec bienveillance dans une formation de grande qualit´e`a l’Ecole´ Normale Sup´erieure de Cachan. Je dois aussi `al’ENS l’attribution de l’allocation coupl´ee qui a financ´ecette th`ese. A` Yvon Le Gall, Laurent Beau et Claire Maissiat, avec qui j’ai eu un plaisir immense `a travailler en classes pr´eparatoires `aBrest. Leurs conseils furent pr´ecieux... et fructueux ! A` Christian Brosseau, directeur de l’´ecole doctorale SICMA, qui m’a permis par deux fois d’ouvrir mes horizons de recherche, ainsi qu’`aMich`ele Kerleroux, dont la bonne humeur a su ´egayer mon parcours `al’UBO. A` Jacques Tisseau, qui a accompagn´ece travail de bout en bout, avec une exigence bienveillante et une libert´erare. La r´eussite de cette th`ese lui doit beaucoup. Je remercie l’ensemble des gens que j’ai cˆotoy´es au CERV, qui est un lieu incroyable pour faire sa th`ese. En particulier, merci `aPascal et Delphine, qui m’ont t´emoign´ependant ces trois ann´ees un optimisme sans faille et une joie de vivre tr`es contagieuse. Ma plus plate gratitude va bien sˆur `aGobito et Fabriceps, qui m’ont enseign´ela po´esie du Dr Kuntz et transmis leur goˆut pour la moustache d’halt´erophile. Et bravo `aKaren pour son assiduit´e. A` David et Sophie, pour leur amiti´esinc`ere et pour nos moments simples. Pour le monde que nous avons si souvent refait et qui s’en porte certainement mieux. A` Fr´ed´eric Massias pour ses innombrables coups de main et pour sa sympathie. Les d´ejeuners de la Butte aux Cailles sont un plaisir chaque fois renouvel´e. Merci `aClaude Jaupart pour le temps d´eraisonnable qu’il m’a consacr´eavant que je ne choisisse d’´etudier le refroidissement de la Terre, et pour ses pr´ecieux conseils de lecture. Nos discussions m’ont Manuscrit de these` iii Remerciements ouvert les yeux sur la richesse du paysage g´eophysique et sur la n´ecessit´ed’en ˆetre conscient afin de poser une question utile. A` Nicolas Tancrez pour ses ´eclairages p´edagogiques et thermodynamiques, `aNicolas Sator qui reste pour moi un exemple de simplicit´e et d’engagement trop rare dans le monde universitaire. Merci `aMady Elias´ pour son temps et son amiti´e. Un grand merci `aBernhard Steinberger, Arnaud Heuret, Claude Guennou, Yann Boucher et bien sˆur Jacques Deverch`ere pour leurs r´eponses cisel´ees `ames questions mal pos´ees. Toute ma reconnaissance va naturellement `ames relecteurs assidus : C´ecile, Pascal, Yann, Jacques, Marc, Chantal et Jacques. Merci aussi `aM´elane la foudre rousse, pour ses conseils de lecture, son enthousiasme et son inalt´erable curiosit´e. Et bien sˆur merci aux Melonais, qui me ram`enent les pieds sur Terre quand j’oublie le goˆut des brennig. Mon parcours d´ecoule tr`es largement du goˆut que l’on a su me donner pour les ´etudes et pour l’esprit critique qu’elles requi`erent. C’est `ames parents que je dois ce plaisir-l`a. Leur compr´ehension et leur soutien ind´efectible me sont des atouts au quotidien ! Durant cette th`ese, j’ai pris beaucoup de plaisir `ame creuser la tˆete, `a´elaborer des argumentations ´eph´em`eres, `afaire cent fois le tour d’une question mal pos´ee. Ce plaisir me vient des innombrables peleas et autres joutes avec mon excellent fr`ere, dont l’opinion passe pour moi toujours avant celle des autres, mˆeme s’il feint de l’ignorer. Je tiens enfin `aremercier ceux qui m’ont ´eveill´e`ades choses sans doute plus profondes et certainement plus importantes que la physique : merci `aSophie et Isabelle, pour m’avoir si souvent pris sous leur aile, et un immense merci `amon grand Jojo que j’admire pour sa science comme pour sa conscience. Je dois enfin beaucoup `aMichel, qui fut le premier `afaire de moi un physicien en herbe et qui m’a appris `ar´efl´echir dans le bon sens, mˆeme quand la barque tangue. J’ai une pens´ee toute particuli`ere pour toi en ´ecrivant ces lignes. Je voudrais enfin dire `aDani`ele combien elle me manque, mˆeme si elle m’aurait dit en riant de bon cœur : ”Allons mon petit, ne t’embˆete pas avec ¸ca...” Plus qu’`atout autre, je veux dire ma reconnaissance `aDulcinea, pour la patience d´eraisonnable dont elle fait preuve avec moi. Je te promets que d´esormais je ne planterai plus d’arbres fruitiers en pleine nuit, et que nous irons pˆecher en kayak avec des pimoussitos aux pieds nus. Enfin, je souhaite beaucoup de bonheur `ala petite Suzie, qui vient de d´ebouler ! iv Manuel Combes Avant-propos Ce manuscrit de th`ese s’adresse `adeux types de lecteur : le g´eophysicien et le mod´elisateur de syst`emes physiques complexes. Le premier trouvera dans ces pages une m´ethode originale d’´etude des m´ecanismes de refroidissement du manteau terrestre, et le second pourra ´etudier dans le d´etail la mise en œuvre d’une m´ethode de mod´elisation multi- agents de deux ph´enom`enes physiques complexes. Dans un souci de clart´eet d’accessibilit´e de ce manuscrit pour un lecteur qui n’est pas familier avec la convection mantellique ou la th´eorie cin´etique des gaz, nous exposerons en premier lieu les concepts g´en´eraux utiles `ala compr´ehension de ce travail de recherche, dans des termes que nous voulons simples. Ce manuscrit contient par ailleurs un glossaire qui propose au lecteur une explicitation des concepts sp´ecifiques aux domaines de la g´eophysique, de la thermodynamique et des outils informatiques mis en œuvre. Les m´ethodes d´evelopp´ees au cours de cette th`ese ont vocation `a ˆetre appliqu´ees `a des domaines vari´es de la physique au sens large, mˆeme si nous nous focaliserons dans ce manuscrit sur les m´ecanismes de refroidissement du manteau terrestre. A` titre d’exemple, les m´ethodes informatiques utilis´ees dans notre ´etude g´eophysique ont fait l’objet d’une application pr´ealable `ala thermodynamique des gaz, qui est un sujet dont la robustesse th´eorique nous a permis de valider l’approche multi-agents que nous proposons pour l’´etude des syst`emes complexes. Cette ´etude pr´eliminaire a pris fin en mai 2010 avec la pr´esentation de nos r´esultats `ala communaut´ede simulation num´erique des ph´enom`enes physiques `a Amsterdam (Simulation of Multiphysics Multiscale Systems, International Conference of Computational Science, Combes et al.
Recommended publications
  • 0 Master's Thesis the Department of Geosciences And
    Master’s thesis The Department of Geosciences and Geography Physical Geography South American subduction zone processes: Visualizing the spatial relation of earthquakes and volcanism at the subduction zone Nelli Metiäinen May 2019 Thesis instructors: David Whipp Janne Soininen HELSINGIN YLIOPISTO MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA GEOTIETEIDEN JA MAANTIETEEN LAITOS MAANTIEDE PL 64 (Gustaf Hällströmin katu 2) 00014 Helsingin yliopisto 0 Tiedekunta/Osasto – Fakultet/Sektion – Faculty Laitos – Institution – Department Faculty of Science The Department of Geosciences and Geography Tekijä – Författare – Author Nelli Metiäinen Työn nimi – Arbetets titel – Title South American subduction zone processes: Visualizing the spatial relation of earthquakes and volcanism at the subduction zone Oppiaine – Läroämne – Subject Physical Geography Työn laji – Arbetets art – Level Aika – Datum – Month and year Sivumäärä – Sidoantal – Number of pages Master’s thesis May 2019 82 + appencides Tiivistelmä – Referat – Abstract The South American subduction zone is the best example of an ocean-continent convergent plate margin. It is divided into segments that display different styles of subduction, varying from normal subduction to flat-slab subduction. This difference also effects the distribution of active volcanism. Visualizations are a fast way of transferring large amounts of information to an audience, often in an interest-provoking and easily understandable form. Sharing information as visualizations on the internet and on social media plays a significant role in the transfer of information in modern society. That is why in this study the focus is on producing visualizations of the South American subduction zone and the seismic events and volcanic activities occurring there. By examining the South American subduction zone it may be possible to get new insights about subduction zone processes.
    [Show full text]
  • Dynamic Subsidence of Eastern Australia During the Cretaceous
    Gondwana Research 19 (2011) 372–383 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Dynamic subsidence of Eastern Australia during the Cretaceous Kara J. Matthews a,⁎, Alina J. Hale a, Michael Gurnis b, R. Dietmar Müller a, Lydia DiCaprio a,c a EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia b Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA c Now at: ExxonMobil Exploration Company, Houston, TX, USA article info abstract Article history: During the Early Cretaceous Australia's eastward passage over sinking subducted slabs induced widespread Received 16 February 2010 dynamic subsidence and formation of a large epeiric sea in the eastern interior. Despite evidence for Received in revised form 25 June 2010 convergence between Australia and the paleo-Pacific, the subduction zone location has been poorly Accepted 28 June 2010 constrained. Using coupled plate tectonic–mantle convection models, we test two end-member scenarios, Available online 13 July 2010 one with subduction directly east of Australia's reconstructed continental margin, and a second with subduction translated ~1000 km east, implying the existence of a back-arc basin. Our models incorporate a Keywords: Geodynamic modelling rheological model for the mantle and lithosphere, plate motions since 140 Ma and evolving plate boundaries. Subduction While mantle rheology affects the magnitude of surface vertical motions, timing of uplift and subsidence Australia depends on plate boundary geometries and kinematics. Computations with a proximal subduction zone Cretaceous result in accelerated basin subsidence occurring 20 Myr too early compared with tectonic subsidence Tectonic subsidence calculated from well data.
    [Show full text]
  • Co-Simulation Redondante D'échelles De Modélisation
    THÈSE / UNIVERSITÉ DE BRETAGNE OCCIDENTALE présentée par sous le sceau de l’Université Bretagne Loire Sébastien Le Yaouanq pour obtenir le titre de DOCTEUR DE L’UNIVERSITÉ DE BRETAGNE OCCIDENTALE préparée au Centre Européen de Réalité Virtuelle, Mention : Informatique Laboratoire CNRS Lab-STICC École Doctorale SICMA ! Thèse soutenue le 17 juin 2016 Co-simulation redondante d’échelles de devant le jury composé de : Samir Otmane (Rapporteur) modélisation hétérogènes pour une Professeur, Université d’Evry Val d’Essonne Éric Ramat (Rapporteur) approche phénoménologique. Professeur, Université du Littoral Côte d’Opale Vincent Chevrier (Examinateur) Professeur, Université de Lorraine Jacques Tisseau (Directeur de thèse) Professeur, ENI Brest Pascal Redou (Encadrant) Maître de Conférence, HDR, ENI Brest Christophe Le Gal (Encadrant) Directeur général, Docteur, CERVVAL Université Bretagne Loire — Mémoire de thèse — Spécialité : Informatique Co-simulation redondante d’échelles de modélisation hétérogènes pour une approche phénoménologique Sébastien Le Yaouanq Soutenue le 17 juin 2016 devant la commission d’examen : Rapporteurs Samir Otmane Professeur, Université d’Evry Val d’Essone Eric Ramat Professeur, Université du Littoral Côte d’Opale Examinateurs Vincent Chevrier Professeur, Université de Lorraine Pascal Redou Maître de conférences, HDR, ENI Brest Christophe Le Gal Directeur général, Docteur, CERVVAL Directeur Jacques Tisseau Professeur, ENI Brest Co-simulation redondante d’échelles de modélisation hétérogènes pour une approche phénoménologique
    [Show full text]
  • Environmental Geology Chapter 2 -‐ Plate Tectonics and Earth's Internal
    Environmental Geology Chapter 2 - Plate Tectonics and Earth’s Internal Structure • Earth’s internal structure - Earth’s layers are defined in two ways. 1. Layers defined By composition and density o Crust-Less dense rocks, similar to granite o Mantle-More dense rocks, similar to peridotite o Core-Very dense-mostly iron & nickel 2. Layers defined By physical properties (solid or liquid / weak or strong) o Lithosphere – (solid crust & upper rigid mantle) o Asthenosphere – “gooey”&hot - upper mantle o Mesosphere-solid & hotter-flows slowly over millions of years o Outer Core – a hot liquid-circulating o Inner Core – a solid-hottest of all-under great pressure • There are 2 types of crust ü Continental – typically thicker and less dense (aBout 2.8 g/cm3) ü Oceanic – typically thinner and denser (aBout 2.9 g/cm3) The Moho is a discontinuity that separates lighter crustal rocks from denser mantle below • How do we know the Earth is layered? That knowledge comes primarily through the study of seismology: Study of earthquakes and seismic waves. We look at the paths and speeds of seismic waves. Earth’s interior boundaries are defined by sudden changes in the speed of seismic waves. And, certain types of waves will not go through liquids (e.g. outer core). • The face of Earth - What we see (Observations) Earth’s surface consists of continents and oceans, including mountain belts and “stable” interiors of continents. Beneath the ocean, there are continental shelfs & slopes, deep sea basins, seamounts, deep trenches and high mountain ridges. We also know that Earth is dynamic and earthquakes and volcanoes are concentrated in certain zones.
    [Show full text]
  • Plate Tectonics
    Plate tectonics tive motion determines the type of boundary; convergent, divergent, or transform. Earthquakes, volcanic activity, mountain-building, and oceanic trench formation occur along these plate boundaries. The lateral relative move- ment of the plates typically varies from zero to 100 mm annually.[2] Tectonic plates are composed of oceanic lithosphere and thicker continental lithosphere, each topped by its own kind of crust. Along convergent boundaries, subduction carries plates into the mantle; the material lost is roughly balanced by the formation of new (oceanic) crust along divergent margins by seafloor spreading. In this way, the total surface of the globe remains the same. This predic- The tectonic plates of the world were mapped in the second half of the 20th century. tion of plate tectonics is also referred to as the conveyor belt principle. Earlier theories (that still have some sup- porters) propose gradual shrinking (contraction) or grad- ual expansion of the globe.[3] Tectonic plates are able to move because the Earth’s lithosphere has greater strength than the underlying asthenosphere. Lateral density variations in the mantle result in convection. Plate movement is thought to be driven by a combination of the motion of the seafloor away from the spreading ridge (due to variations in topog- raphy and density of the crust, which result in differences in gravitational forces) and drag, with downward suction, at the subduction zones. Another explanation lies in the different forces generated by the rotation of the globe and the tidal forces of the Sun and Moon. The relative im- portance of each of these factors and their relationship to each other is unclear, and still the subject of much debate.
    [Show full text]
  • A Tracer-Based Algorithm for Automatic Generation of Seafloor
    A Tracer-Based Algorithm for Automatic Generation of Seafloor Age Grids from Plate Tectonic Reconstructions Krister S. Karlsen ([email protected]), Mathew Domeier, Carmen Gaina and Clinton P. Conrad Centre for Earth Evolution and Dynamics, University of Oslo, Norway Abstract The age of the ocean floor and its time-dependent age distribution control funda- mental features of the Earth, such as bathymetry, sea level and mantle heat loss. Recently, the development of increasingly sophisticated reconstructions of past plate motions has provided models for plate kinematics and plate boundary evolution back in geological time. These models implicitly include the information necessary to de- termine the age of ocean floor that has since been lost to subduction. However, due to the lack of an automated and efficient method for generating global seafloor age grids, many tectonic models, most notably those extending back into the Paleozoic, are published without an accompanying set of age models for oceanic lithosphere. Here we present an automatic, tracer-based algorithm that generates seafloor age grids from global plate tectonic reconstructions with defined plate boundaries. Our method enables us to produce the first seafloor age models for the Paleozoic’s lost ocean basins. Estimated changes in sea level based on bathymetry inferred from our new age grids show good agreement with sea level record estimations from proxies, providing a possible explanation for the peak in sea level during the assembly phase of Pangea. This demonstrates how our seafloor age models can be directly compared with observables from the geologic record that extend further back in time than the constraints from preserved seafloor.
    [Show full text]
  • The Temporal Evolution of Plate Driving Forces: Importance of Slab Suction
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B10407, doi:10.1029/2004JB002991, 2004 The temporal evolution of plate driving forces: Importance of ‘‘slab suction’’ versus ‘‘slab pull’’ during the Cenozoic Clinton P. Conrad and Carolina Lithgow-Bertelloni Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan, USA Received 23 January 2004; revised 27 June 2004; accepted 30 July 2004; published 16 October 2004. [1] Although mantle slabs ultimately drive plate motions, the mechanism by which they do so remains unclear. A detached slab descending through the mantle will excite mantle flow that exerts shear tractions on the base of the surface plates. This ‘‘slab suction’’ force drives subducting and overriding plates symmetrically toward subduction zones. Alternatively, cold, strong slabs may effectively transmit stresses to subducting surface plates, exerting a direct ‘‘slab pull’’ force on these plates, drawing them rapidly toward subduction zones. This motion induces mantle flow that pushes overriding plates away from subduction zones. We constrain the relative importance of slab suction and slab pull by comparing Cenozoic plate motions to model predictions that include viscous mantle flow and a proxy for slab strength. We find that slab pull from upper mantle slabs combined with slab suction from lower mantle slabs explains the observation that subducting plates currently move 4 times faster than nonsubducting plates. This implies that upper mantle slabs are strong enough to support their own weight. Slab suction and slab pull presently account for about 40 and 60% of the forces on plates, but slab suction only 30% if a low-viscosity asthenosphere decouples plates from mantle flow.
    [Show full text]
  • On the Role of Slab Pull in the Cenozoic Motion of the Pacific Plate Claudio Faccenna, Thorsten W
    On the role of slab pull in the Cenozoic motion of the Pacific plate Claudio Faccenna, Thorsten W. Becker, Serge Lallemand, Bernhard Steinberger To cite this version: Claudio Faccenna, Thorsten W. Becker, Serge Lallemand, Bernhard Steinberger. On the role of slab pull in the Cenozoic motion of the Pacific plate. Geophysical Research Letters, American Geophysical Union, 2012, 39, pp.L03305. 10.1029/2011GL050155. hal-00682150 HAL Id: hal-00682150 https://hal.archives-ouvertes.fr/hal-00682150 Submitted on 25 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L03305, doi:10.1029/2011GL050155, 2012 On the role of slab pull in the Cenozoic motion of the Pacific plate Claudio Faccenna,1,2 Thorsten W. Becker,3 Serge Lallemand,4 and Bernhard Steinberger5,6 Received 27 October 2011; revised 29 December 2011; accepted 3 January 2012; published 8 February 2012. [1] We analyze the role of slab pull acting on the Pacific plate using plate reconstructions [e.g., Lithgow-Bertelloni and plate during its early Tertiary change in motion. Slab pull Richards, 1998; Conrad and Lithgow-Bertelloni, 2002, 2004]. forces are estimated by integrating the negative buoyancy [3] The Pacific plate represents a key site to analyze of a 700 km long slab along a revised subduction boundary the different force contributions as it is the fastest plate on model adopting the Müller et al.
    [Show full text]
  • RESEARCH Ridge-Push Force and the State of Stress
    RESEARCH Ridge-push force and the state of stress in the Nubia- Somalia plate system Rezene Mahatsente1 and David Coblentz2 1DEPARTMENT OF GEOLOGICAL SCIENCES, UNIVERSITY OF ALABAMA, TUSCALOOSA, ALABAMA 35487, USA 2EARTH AND ENVIRONMENTAL SCIENCES DIVISION, LOS ALAMOS NATIONAL LABORATORY, LOS ALAMOS, NEW MEXICO 87545, USA ABSTRACT We assessed the relative contribution of ridge-push forces to the stress state of the Nubia-Somalia plate system by comparing ridge-push forces with lithospheric strength in the oceanic part of the plate, based on estimates from plate cooling and rheological models. The ridge- push forces were derived from the thermal state of the oceanic lithosphere, seafloor depth, and crustal age data. The results of the compari- son show that the magnitude of the ridge-push forces is less than the integrated strength of the oceanic part of the plate. This implies that the oceanic part of the plate is very little deformed; thus, the ridge-push forces may be compensated by significant strain rates outside the oceanic parts of the plate. We used an elastic finite element analysis of geoid gradients of the upper mantle to evaluate stresses associated with the gravitational potential energy of the surrounding ridges and show that these stresses may be transmitted through the oceanic part of the plate, with little modulation in magnitude, before reaching the continental regions. We therefore conclude that the present-day stress fields in continental Africa can be viewed as the product of the gravitational potential energy of the ridge ensemble surrounding the plate in conjunction with lateral variations in lithospheric structure within the continent regions.
    [Show full text]
  • On the Dynamics of Plate Tectonics: Multiple Solutions, the Influence of Water, and Thermal Evolution
    On the Dynamics of Plate Tectonics: Multiple Solutions, the Influence of Water, and Thermal Evolution The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Crowley, John. 2012. On the Dynamics of Plate Tectonics: Multiple Solutions, the Influence of Water, and Thermal Evolution. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:9385631 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA c 2012 John W. Crowley ! All rights reserved. Dissertation Advisor: Professor Richard J. O’Connell John W. Crowley On the Dynamics of Plate Tectonics: Multiple Solutions, the Influence of Water, and Thermal Evolution Abstract An analytic boundary layer model for thermal convection with a finite-strength plate and depth-dependent viscosity is developed. The model includes a specific energy balance for the lithosphere and accounts for coupling between the plate and underlying mantle. Mul- tiple solutions are possible with three solution branches representing three distinct modes of thermal convection. One branch corresponds to the classic boundary layer solution for active lid plate tectonics while two new branches represent solutions for sluggish lid convec- tion. The model is compared to numerical simulations with highly temperature dependent viscosity and is able to predict both the type of convection (active, sluggish, or stagnant lid) as well as the presence of single and multiple solution regimes.
    [Show full text]
  • Farallon Plate Subduction and the Laramide Orogeny by Sibiao
    Flattening the slab: Farallon plate subduction and the Laramide orogeny by Sibiao Liu A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geophysics Department of Physics University of Alberta © Sibiao Liu, 2014 ii Abstract The Laramide orogeny (~80-50 Ma) was an anomalous period of mountain-building in the western United States that took place >1000 km inboard of the Farallon Plate subduction margin. The orogeny was preceded by the development of the Western Interior Seaway and eastward migration of the volcanic arc. Thus, it is believed that this marked a time of flat (subhorizontal) subduction. However, the factors that caused the Farallon Plate geometry to evolve from a steep geometry to flat subduction are not well- understood. Three mechanisms have been proposed: (1) a westward (trenchward) increase in North America plate motion, (2) an increased slab suction force owing to the presence of thick Colorado Plateau lithosphere, and (3) subduction of a buoyant oceanic plateau. This study uses 2D upper-mantle-scale numerical models to investigate these mechanisms. The models show that trenchward continental motion provides the primary control on subduction geometry, with decreasing slab dip as velocity increases. However, this can only create low-angle subduction, as the Farallon Plate was old (>100 Ma) and therefore much denser than the mantle. A transition to flat subduction requires: (1) subduction of a buoyant oceanic plateau which does not undergo eclogitization, and (2) a slab break-off at the landward side of the plateau. The break-off removes the dense frontal slab, and flat subduction develops as the oceanic plateau pulls the slab upward to a subhorizontal trajectory.
    [Show full text]
  • How Mantle Slabs Drive Plate Tectonics
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/11093558 How Mantle Slabs Drive Plate Tectonics Article in Science · November 2002 DOI: 10.1126/science.1074161 · Source: PubMed CITATIONS READS 280 350 2 authors: Clinton P. Conrad Carolina Lithgow-Bertelloni University of Oslo University of California, Los Angeles 119 PUBLICATIONS 3,502 CITATIONS 126 PUBLICATIONS 4,840 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Shear-driven upwelling (SDU) and Intraplate Volcanic Fields View project The link between Subduction Parameters and Surface Topography View project All content following this page was uploaded by Carolina Lithgow-Bertelloni on 31 May 2014. The user has requested enhancement of the downloaded file. R EPORTS criterion that corresponds to a maximum allowable rate of trench migration at the How Mantle Slabs Drive Plate surface (17). We defined three models for the slab pull force that used rollback rate Tectonics cutoffs of 10% or 25% (20) and included or excluded material below 660 km (Fig. 1). Clinton P. Conrad* and Carolina Lithgow-Bertelloni Slab pull is applied normal to subducting plate boundaries and totals 1.9 ϫ 1021 N The gravitational pull of subducted slabs is thought to drive the motions of for all upper-mantle slabs. By comparison, Earth’s tectonic plates, but the coupling between slabs and plates is not well slab suction shear tractions from both up- established. If a slab is mechanically attached to a subducting plate, it can exert per- and lower-mantle slabs total 1.6 ϫ a direct pull on the plate.
    [Show full text]