Impact of Sutherlandia Frutescens on Hepatic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Implication of Chemotypic Variation on the Anti-Oxidant and Anti-Cancer Activities of Sutherlandia Frutescens (L.) R.Br
antioxidants Article The Implication of Chemotypic Variation on the Anti-Oxidant and Anti-Cancer Activities of Sutherlandia frutescens (L.) R.Br. (Fabaceae) from Different Geographic Locations Samkele Zonyane 1, Olaniyi A. Fawole 2,3 , Chris la Grange 1, Maria A. Stander 4 , Umezuruike L. Opara 2 and Nokwanda P. Makunga 1,* 1 Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa; [email protected] (S.Z.); [email protected] (C.l.G.) 2 South African Research Chair in Postharvest Technology, Department of Horticultural Science, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa; [email protected] (O.A.F.); [email protected] (U.L.O.) 3 Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa 4 Central Analytical Facility, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-21-808-3061 Received: 17 January 2020; Accepted: 1 February 2020; Published: 13 February 2020 Abstract: Extracts of Sutherlandia frutescens (cancer bush) exhibit considerable qualitative and quantitative chemical variability depending on their natural wild origins. The purpose of this study was thus to determine bioactivity of extracts from different regions using in vitro antioxidant and anti-cancer assays. Extracts of the species are complex and are predominantly composed of a species-specific set of triterpene saponins (cycloartanol glycosides), the sutherlandiosides, and flavonoids (quercetin and kaempferol glycosides), the sutherlandins. For the Folin-Ciocalteu phenolics test values of 93.311 to 125.330 mg GAE/g DE were obtained. -
The Biochemical Effects of Sutherlandia Frutescens In
THE BIOCHEMICAL EFFECTS OF SUTHERLANDIA FRUTESCENS IN CULTURED H9 CANCEROUS T CELLS AND NORMAL HUMAN T LYMPHOCYTES By MLUNQISI NGCOBO Student Number: 202517955 BSc: Biomedical Sciences (UKZN) B.Med.Sci. (Hons): Medical Biochemistry (UKZN) Submitted in partial fulfilment of the requirements for the degree of Masters in Medical Science in the School of Medical Biochemistry, Department of Physiology, Faculty of Health Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban 2008 ABSTRACT Indigenous plants have long been used by African populations in their cultural lives and health care. Sutherlandia frutescens (SF) is a popular traditional medicinal plant found in various parts of southern Africa and used for treatment or management of different diseases, including cancer and HIV/AIDS. In this study, the biochemical effects of various dilutions (1/50, 1/150, 1/200, and 1/300) of SF 70% ethanol (SFE) and deionised water (SFW) extracts in cancerous H9 and normal T cells were examined. Untreated, 70% ethanol-treated and camptothecin (CPT, 20jiiM) treated cells were used as reference samples for comparison. Cytotoxicity, apoptotic enzymes activity, oxidant scavenging and antioxidant promoting abilities, cellular morphology and cytokine signalling effects were assessed using the methylthiazol tetrazolium (MTT) assay, adenosine triphosphate (ATP) assay, caspase-3/-7 activity assay, thiobarbituric acid reactant substance (TBARS) and glutathione (GSH) assays, fluorescence microscopy and an ELISA- based cytokine analyses assay respectively. Sutherlandia frutescens ethanol and water extract dilutions (1/50 and 1/200) were shown to be cytotoxic to H9 T cells in a dose- and time-dependent manner with the SFE extract having an average IC50 of 1/40 after 24 hours while SFW extract reached a similar IC50 only after 48 hours. -
Anticancer Potential of Sutherlandia Frutescens and Xysmalobium Undulatum in LS180 Colorectal Cancer Mini-Tumors
molecules Article Anticancer Potential of Sutherlandia frutescens and Xysmalobium undulatum in LS180 Colorectal Cancer Mini-Tumors Chrisna Gouws 1,* , Tanya Smit 1, Clarissa Willers 1 , Hanna Svitina 1 , Carlemi Calitz 2 and Krzysztof Wrzesinski 1,3 1 Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; [email protected] (T.S.); [email protected] (C.W.); [email protected] (H.S.); [email protected] (K.W.) 2 Department of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75431 Uppsala, Sweden; [email protected] 3 CelVivo ApS, 5491 Blommenslyst, Denmark * Correspondence: [email protected]; Tel.: +27-18-285-2505 Abstract: Colorectal cancer remains to be one of the leading causes of death worldwide, with millions of patients diagnosed each year. Although chemotherapeutic drugs are routinely used to treat cancer, these treatments have severe side effects. As a result, the use of herbal medicines has gained increasing popularity as a treatment for cancer. In this study, two South African medicinal plants widely used to treat various diseases, Sutherlandia frutescens and Xysmalobium undulatum, were evaluated for potential activity against colorectal cancer. This potential activity for the treatment of colorectal cancer was assessed relative to the known chemotherapeutic drug, paclitaxel. The cytotoxic activity was considered in an advanced three-dimensional (3D) sodium alginate encapsulated LS180 colorectal Citation: Gouws, C.; Smit, T.; Willers, cancer functional spheroid model, cultured in clinostat-based rotating bioreactors. The LS180 cell C.; Svitina, H.; Calitz, C.; Wrzesinski, mini-tumors were treated for 96 h with two concentrations of each of the crude aqueous extracts K. -
New Combination in Astragalus (Fabaceae)
Smith, J.F. and J.C. Zimmers. 2017. New combination in Astragalus (Fabaceae). Phytoneuron 2017-38: 1–3. Published 1 June 2017. ISSN 2153 733X NEW COMBINATION IN ASTRAGALUS (FABACEAE) JAMES F. SMITH and JAY C. ZIMMERS Department of Biological Sciences Snake River Plains Herbarium Boise State University Boise, Idaho 83725 [email protected] ABSTRACT Recent molecular phylogenetic analyses have established that the four varieties of Astragalus cusickii are three distinct, monophyletic clades: A. cusickii var. cusickii and A. cusickii var. flexilipes form one clade, A. cusickii var. sterilis and A. cusickii var. packardiae each form the other two. Although relationships among the clades in the analyses are poorly resolved, they are also poorly resolved with respect to other recognized species in the genus. Morphological data provide unique synapomorphies for each of the clades and therefore we propose to recognize three distinct species, with A. cusickii var. flexilipes retained at the rank of variety. A new combination brings A. cusickii var. packardiae to species rank, as Astragalus packardiae (Barneby) J.F. Sm. & Zimmers, comb. nov. , whereas A. sterilis has already been published. Astragalus L. is a diverse group of approximately 2500 species (Frodin 2004; Lock & Schrire 2005; Mabberley 2008) and has a rich diversity in four geographic areas (southwest and south-central Asia, the Sino-Himalayan region, the Mediterranean Basin, and western North America; in addition the Andes in South America have at least 100 species. Second to Eurasia in terms of species diversity is the New World, with approximately 400-450 species. The Intermountain Region of western North America (Barneby 1989) is especially diverse, and an estimated 70 species of Astragalus can be found in Idaho alone, including several endemic taxa (Mancuso 1999). -
Screening Methanolic Extracts of Sutherlandia Spp As Anti-Tumor Agents and Their Effects on Anti-Apoptotic Genes
Screening methanolic extracts of Sutherlandia spp as anti-tumor agents and their effects on anti-apoptotic genes. by Mamphago Annah Rakoma Submitted in accordance with the requirements for the degree of MASTER OF SCIENCE In the subject LIFE SCIENCE at the UNIVERSITY OF SOUTH AFRICA Supervisor Dr L.R Motadi March 2016 DECLARATION Name: Mamphago Annah Rakoma Student number: 51999633 Degree: MSc Life Science Exact wording of the title of the dissertation or thesis as appearing on the copies submitted for examination: Screening of methanolic extracts of Sutherlandia spp as anti-tumor agents and their effects on anti-apoptotic genes. I declare that the above dissertation/thesis is my own work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references ________________________ _____________________ SIGNATURE DATE ii | Ms Rakoma M.A MSc Life Science Acknowledgements • First and foremost I would like to thank my HEAVENLY FATHER for allowing me the opportunity to study further, for providing me with the strength and understanding to complete the research. • I would like to express my sincere gratitude to my supervisor Dr L.R Motadi for all the valuable advises, patience and believing in me. • To Sindiswa Lukhele and Pheladi Kgomo for all your assistance in the lab, I greatly appreciate the time you took to help me with Flow cytometry as well as Xcelligence. • To my parents Phuti and Malegasa for all the sacrifices you made for me to study and be who I am today, you supported me from the beginning, listened and advised me with nothing but love. -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07C 39/00 (2006.01) C07D 303/32 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C07C 49/242 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/US20 16/048092 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 22 August 2016 (22.08.2016) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/208,662 22 August 2015 (22.08.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: NEOZYME INTERNATIONAL, INC. -
Phylogenetic Analysis of Nuclear Ribosomal ITS/5.8S Sequences In
Systematic Botany (2002), 27(4): pp. 722±733 q Copyright 2002 by the American Society of Plant Taxonomists Phylogenetic Analysis of Nuclear Ribosomal ITS/5.8S Sequences in the Tribe Millettieae (Fabaceae): Poecilanthe-Cyclolobium, the core Millettieae, and the Callerya Group JER-MING HU,1,5 MATT LAVIN,2 MARTIN F. W OJCIECHOWSKI,3 and MICHAEL J. SANDERSON4 1Department of Botany, National Taiwan University, Taipei, Taiwan; 2Department of Plant Sciences, Montana State University, Bozeman, Montana 59717; 3Department of Plant Biology, Arizona State University, Tempe, Arizona 85287; 4Section of Evolution and Ecology, University of California, Davis, California 95616 5Author for correspondence ([email protected]) Communicating Editor: Jerrold I. Davis ABSTRACT. The taxonomic composition of three principal and distantly related groups of the former tribe Millettieae, which were ®rst identi®ed from nuclear phytochrome and chloroplast trnK/matK sequences, was more extensively investi- gated with a phylogenetic analysis of nuclear ribosomal DNA ITS/5.8S sequences. The ®rst of these groups includes the neotropical genera Poecilanthe and Cyclolobium, which are resolved as basal lineages in a clade that otherwise includes the neotropical genera Brongniartia and Harpalyce and the Australian Templetonia and Hovea. The second group includes the large millettioid genera, Millettia, Lonchocarpus, Derris,andTephrosia, which are referred to as the ``core Millettieae'' group. Phy- logenetic analysis of nuclear ribosomal DNA ITS/5.8S sequences reveals that Millettia is polyphyletic, and that subclades of the core Millettieae group, such as the New World Lonchocarpus or the pantropical Tephrosia and segregate genera (e.g., Chadsia and Mundulea), each form well supported monophyletic subgroups. -
Lessertia | Plantz Africa About:Reader?Url=
Lessertia | Plantz Africa about:reader?url=http://pza.sanbi.org/lessertia pza.sanbi.org Lessertia | Plantz Africa Lessertia DC. Family: Fabaceae Common names: Introduction This group of plants, which now includes Sutherlandia (the cancer bush group), is reported to be useful medicinally and also good for pasture. Description Description Lessertia species are mainly perennials with a few annuals. The genus consists of erect, prostrate or decumbent herbs and shrubs. It has compound or rarely unifoliate leaves, paired stipules, an elongated or subcapitate raceme, paired bracts. The original group differs from the plants previously known as Sutherlandia in flower and fruit. In original Lessertia species flowers are small and they range from 6-10 mm long. They are pink, yellow or purple in colour. Fruits are either linear, compressed or subcompressed and few are inflated. In the Sutherlandia (cancer bush) group, flowers are very big, red in colour about 15 to 30 mm long. Fruits are also big, inflated and bladder-like in form. Distribution and habitat Distribution description Prior to the inclusion of Sutherlandia species , Lessertia DC . consists of about 50 species. The genus is mainly restricted to Africa with most of the diversity (about 46) centred in southern Africa, only four species extend into tropical Africa and they are L. benguellensis, L. pauciflora, L. incana , and L. stipulata . Species are found thoughout southern Africa: 24 species have been recorded in Western Cape, 18 in Eastern Cape and Northern Cape, 14 in Free State, 12 in Namibia, 10 in KwaZulu-Natal, seven in Lesotho, six in Gauteng, five in North-West and Botswana, four in Mpumalanga and one in Swaziland. -
A Biosystematic Study of the Genus Sutherlandia Br. R. (Fabaceae
A BIOSYSTEMATIC STUDY OF THE GENUS SUTHERLANDIA Br. R. (FABACEAE, GALEGEAE) by DINEO MOSHE DISSERTATION presented in fulfilment of the requirements for the degree of MAGISTER SCIENTIAE in BOTANY at the FACULTY OF NATURAL SCIENCES of the RAND AFRIKAANS UNIVERSITY SUPERVISOR: PROF B-E VAN WYK CO-SUPERVISOR: MRS M VAN DER BANK DECEMBER 1998 OPSOMMING 'n Biosistematiese studie van die genus Sutherlandia (L.) R. Br., 'n relatief onbekende genus met verwarrende geografiese vorme, word aangebied. Die spesies van Sutherlandia is almal endemies aan Suidelike Afrika. Die spesies is naverwant en probleme rondom hul taksonomie word bespreek. Enkele morfologiese kenmerke wat nutting is om spesies te onderskei, word geIllustreer en in detail bespreek. Morfologiese inligting word gebruik om infrageneriese verwantskappe te ondersoek in 'n fenetiese ontleding van 51 geografies-geIsoleerde bevolkings. Sutherlandia het tradisionele gebruike, hoofsaaklik as behandeling teen interne kankers en as 'n algemene tonikum. 'n Ondersoek van chemiese verbindings is gedoen en die resultate word geIllustreer en in tabelle aangebied. Die aard van hierdie studie het nie gedetailleerde mediese ondersoeke toegelaat nie, maar die medisinale waarde van Sutherlandia en die waargenome chemiese verbindings word toegelig. Daar word voorgestel dat die anti-kanker aktiwiteit hoofsaaklik toegeskryf kan word aan die hob vlakke van kanavanien, 'n nie-proteIen aminosuur, in die blare van die plant. Kanavanien, 'n analoog van arginien, is bekend vir sy aktiwiteit teen gewasvorming. Die waarde van die plant as 'n bitter tonikum hou waarskynlik verband met die teenwoordigheid van triterpendiede, sommige waarvan waarskynlik ook ander voordelige uitwerkings het. Ensiem-elektroforese is gedoen om genetiese verwantskappe tussen die talryke streeksvorme van Sutherlandia te ondersoek. -
The “Alluvial Mesovoid Shallow Substratum”, a New Subterranean Habitat
The “Alluvial Mesovoid Shallow Substratum”, a New Subterranean Habitat Vicente M. Ortuño1*, José D. Gilgado1, Alberto Jiménez-Valverde2,4, Alberto Sendra1, Gonzalo Pérez- Suárez1, Juan J. Herrero-Borgoñón3 1 Departamento de Ciencias de la Vida, Facultad de Biología Ciencias Ambientales y Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain, 2 Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain, 3 Departamento de Botánica, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain, 4 Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, Madrid, Spain Abstract In this paper we describe a new type of subterranean habitat associated with dry watercourses in the Eastern Iberian Peninsula, the “Alluvial Mesovoid Shallow Substratum” (alluvial MSS). Historical observations and data from field sampling specially designed to study MSS fauna in the streambeds of temporary watercourses support the description of this new habitat. To conduct the sampling, 16 subterranean sampling devices were placed in a region of Eastern Spain. The traps were operated for 12 months and temperature and relative humidity data were recorded to characterise the habitat. A large number of species was captured, many of which belonged to the arthropod group, with marked hygrophilous, geophilic, lucifugous and mesothermal habits. In addition, there was also a substantial number of species showing markedly ripicolous traits. The results confirm that the network of spaces which forms in alluvial deposits of temporary watercourses merits the category of habitat, and here we propose the name of “alluvial MSS”. The “alluvial MSS” may be covered or not by a layer of soil, is extremely damp, provides a buffer against above ground temperatures and is aphotic. -
Galegeae (PDF)
25. Tribe GALEGEAE 山羊豆族 shan yang dou zu Xu Langran (徐朗然 Xu Lang-rang), Zhu Xiangyun (朱相云), Bao Bojian (包伯坚), Zhang Mingli (张明理), Sun Hang (孙航); Dietrich Podlech, Stanley L. Welsh, Hiroyoshi Ohashi, Kai Larsen, Anthony R. Brach Herbs or shrubs, with simple or T-shaped hairs; glands or glandular punctae sometimes present. Leaves epulvinate or pulvinus reduced, imparipinnate or paripinnate, with many opposite to irregularly arranged or rarely conjugate leaflets, rarely 1–3-foliolate; stipules free or adnate to petiole, estipellate. Flowers in axillary racemes, spikes, or rarely solitary. Calyx campanulate to tubular; standard clawed or narrowed to base; wings auriculate; keel blunt to apiculate. Stamens diadelphous, rarely monadelphous; anthers usually uniform, but slightly dimorphic and with confluent thecae in Glycyrrhiza. Ovary few to many ovuled (sometimes 1-seeded); style slender, bearded or not, with a terminal or lateral stigma. Legumes compressed, angled or inflated, sometimes with sutured margins intruded or longitudinally septate, occasionally torulose, dehiscent or indehiscent. Seeds oblong-reniform, estrophiolate. About 24 genera and 2900–3200 species: principally in Asia, Europe, and North America, but extending thinly in mountainous and/or drier places to S Africa, Australia, and temperate South America; 11 genera and 586 species (324 endemic, two introduced) in China. Galega officinalis Linnaeus (Sp. Pl. 2: 714. 1753), probably native to SW Asia (Caucasus), is cultivated in China. 1a. Style bearded, sometimes just a tuft of hairs below stigma on one side; wings and keel never interlocking (subtribe Coluteinae). 2a. Leaves reduced to scales; flowers solitary; legumes compressed ................................................................. 145. Eremosparton 2b. Leaves imparipinnate, 7–25-foliolate; flowers in racemes; legumes inflated.