Relation Normalization

Total Page:16

File Type:pdf, Size:1020Kb

Relation Normalization Introduction to Database Management Systems Relation Normalization Why Normalization? Functional Dependencies. First, Second, and Third Normal Forms. Boyce/Codd Normal Form. Fourth and Fifth Normal Form. No loss Decomposition. Summary CIS Relation Normalization 1 Why Normalization? An ill-structured relation contains redundant data Data redundancy causes modification anomalies: Insertion anomalies -- Suppose we want to enter SCUBA as an activity that costs $100, we can’t until a student signs up for it Update anomalies -- If we change the price of swimming for student 150, there is no guarantee that student 200 will pay the new price Deletion anomalies -- If we delete Student 100, we lose not only the fact that he/she is a skier, but also the fact that skiing costs $200 Normalization is the process used to remove modification anomalies ACTIVITY SID Activity Fee How can this table be changed 100 Skiing 200 to fix these problems??? 150 Swimming 50 175 Squash 50 200 Swimming 50 CIS Relation Normalization 2 Dave McDonald, CIS, GSU 10-1 Introduction to Database Management Systems Why Normalization... Course SID Name Grade Course# Text Major Dept s1 Joseph A CIS8110 b1 CIS CIS s1 Joseph B CIS8120 b2 CIS CIS s1 Joseph A CIS8140 b5 CIS CIS s2 Alice A CIS8110 b1 CS MCS s2 Alice A CIS8140 b5 CS MCS s3 Tom B CIS8110 b1 Acct Acct s3 Tom B CIS8140 b5 Acct Acct s3 Tom A CIS8680 b1 Acct Acct Is there any redundant data? Insertion anomalies? Update anomalies? Deletion anomalies? CIS Relation Normalization 3 Functional Dependencies Given two attributes, X and Y, of a relation R, Y is functionally dependent on X iff each X value must always occur with the same Y value in R. R.X --> R.Y or X --> Y List all FDs in the Course relation: CIS Relation Normalization 4 Dave McDonald, CIS, GSU 10-2 Introduction to Database Management Systems Functional Dependencies... X is called the determinant of Y. X and Y may be composite. Dependency relationships change with attribute semantics. X and Y could be mutually dependent on each other. Husband --> Wife, Wife --> Husband, Husband <--> Wife X may or may not be the key attribute of R. AYA Y va lue can occur in more t han one tup le in R. Course# --> Text CIS Relation Normalization 5 Fully Functional Dependencies A fully functional dependence ( FFD ) exists between attributes X and Y if Y is not functional dependent on any proper subset of X. ( SID, Course# ) --> Name? ( SID, Course# ) --> Grade? ( SID, Name ) --> Major? ( SID, Name ) --> SID? Note that if X is not compp,osite, then X --> Y is always a FFD. By default, the term FD refers to FFD CIS Relation Normalization 6 Dave McDonald, CIS, GSU 10-3 Introduction to Database Management Systems Transitively Functional Dependencies Given attributes X, Y, and Z of a relation R, Z is transitively dependent on X iff X --> Y and Y --> Z. Given SID --> Dept and Dept --> College SID -->? Given SID --> Major and Major --> Dept, SID -->?> ? CIS Relation Normalization 7 Graphical Representation Course (SID, Name, Grade, Course#, Text, Major, Dept) Primary Key Name Major SID Grade Course# Dept Text CIS Relation Normalization 8 Dave McDonald, CIS, GSU 10-4 Introduction to Database Management Systems First Normal Form (1NF) A relation R is in 1NF iff all attribute domains contain atomic values only. A relation in 1NF has modification anomalies Part# QTY WAddress WHouse# INVENTORY (Part#, WHouse#, WAddress, QTY) CIS Relation Normalization 9 Second Normal Form (2NF) A relation is in 2NF iff R is in 1NF and every non key attribute is fully dependent on the primary key (i.e. has no partial functional dependencies). The term, non key attribute, refers to any attribute that does not belong to any candidate key. Part# QTY WAddress WHouse# INVENTORY (Part#, WHouse#, WAddress, QTY) CIS Relation Normalization 10 Dave McDonald, CIS, GSU 10-5 Introduction to Database Management Systems Modification Anomalies in 2NF 2NF relations have modification anomalies: Redundant Information? Update anomalies? Insertion anomalies? Deletion anomalies? Which FD causes the redundant data? INVENTORY Part# WHouse# WAddress QTY 123 4 Atlanta 10 456 5 Birmingham 6 456 2 Columbus 10 123 7 Oakland 8 235 1 Denver 2 CIS Relation Normalization 11 Third Normal Form (3NF) A relation R is in 3NF iff R is in 2NF and every non key attribute is non transitively dependent on the primary key. Student (SID, Name, Major, Dept) Discussion: If a relation does not have any non-key attribute, would it automatically be in 3NF? CIS Relation Normalization 12 Dave McDonald, CIS, GSU 10-6 Introduction to Database Management Systems Modification Anomalies in 3NF LOCATION (Employee, Department, Location) Redundant Information? Update anomalies? Insertion anomalies? Deletion anomalies? All determinants? ElEmployee Department Location CIS Relation Normalization 13 Boyce/Codd Normal Forms (BCNF) A relation R is in BCNF iff every determinant is a candidate key. BCNF is applied to a relation R if 1. Those candidate keys are composite, and 2. The candidate keys are overlapped, ADVISE (Student, Major, Advisor) STUDENT ADVISOR MAJOR CIS Relation Normalization 14 Dave McDonald, CIS, GSU 10-7 Introduction to Database Management Systems BCNF Example Student Course Instructor Narayan Database Mark Smith Database Jeffries SithSmith OtiOperating Ammar Systems Smith Theory Schulman Wallace Database Mark Wallace Operating Ahamad Systems Wong Database Omiecinski Zelaya Database Jeffries Narayan Operating Ammar Systems Teach(Student, Course, Instructor) CIS Relation Normalization 15 BCNF Example (cont’d) Student Instructor Course There are three possible decompositions (Student, Instructor) and (Student, Course) (Course, Instructor) and (Course, Student) (Instructor, Course) and (Instructor, Student) Which of the three will not generate spurious tuples after a join? CIS Relation Normalization 16 Dave McDonald, CIS, GSU 10-8 Introduction to Database Management Systems Boyce–Codd Normal Form (BCNF) • Difference between 3NF and BCNF is that for a functional dependency A → B, 3NF allows this dependency in a relation if B is a primary-key attribute and A is not a candidate key. • Whereas, BCNF insists that for this dependency to remain in a relation, A must be a candidate key. • Every relation in BCNF is also in 3NF. However, relation in 3NF may not be in BCNF. • Violation of BCNF is quite rare. • Potential to violate BCNF may occur in a relation that: – contains two (or more) composite candidate keys; – the candidate keys overlap (i.e. have at least one attribute in common). CIS Relation Normalization 17 Fourth Normal Form (4NF) • Although BCNF removes anomalies due to functional dependencies, another type of dependency called a multi-valued dependency (MVD) can also cause data redundancy. • Poss ible ex is tence o f MVDs in a re lati on is d ue to 1NF and can result in data redundancy. • Dependency between attributes (for example, A, B, and C) in a relation, such that for each value of A there is a set of values for B and a set of values for C. However, set of values for B and C are independent of each other. • MVD btbetween attr ibu tes A, B,and C inareltilation using the following notation: A --->> B A --->> C CIS Relation Normalization 18 Dave McDonald, CIS, GSU 10-9 Introduction to Database Management Systems Multi-Valued Dependencies and Fourth Normal Form • A multi-valued dependency Course Teacher Text occurs when a determinant determines more than one Phy sics Prof. Basic dependent, and the Greene Mechanics dependents are independent of Principles of each other Physics Prof. Greene Optics • Ex.: course implies teacher Physics Prof. Basic (course -> teacher); course Mechanics implies text (course -> text), Brown where teacher and text are Physics Prof. Principles of independent Brown Optics • A Relation with course, teacher Math Prof. Basic and text is all key, and exhibits Greene Mechanics redundancy, but is in 3NF Math Prof. Vector – R(course, teacher, text) Greene Analysis • Updates can exhibit anomalies Math Prof. Trigonometry Greene CIS Relation Normalization 19 Fourth Normal Form • Relation R is in 4 NF if and only • In the previous example, if, whenever there exist decompose course, teacher, subsets A and B of the text into two Relations: course attributes of R such that the teacher, and course text nontrivial multi-valued dependency A multi- determines B is satisfied, then all attributes of R are also Course Text functionally dependent on A Physics Basic Mechanics Physics Principles of Course Teacher Optics Prof. Greene Math Basic Physics Mechanics Physics Prof. Brown Math Vector Analysis Math Prof. Greene Math Trignonometry CIS Relation Normalization 20 Dave McDonald, CIS, GSU 10-10 Introduction to Database Management Systems 4NF – Text Example CIS Relation Normalization 21 Join Dependencies and Fifth Normal Form • There exist Relations that cannot be nonloss-decomposed into two Relations, but can be nonloss-decomposed into more than two • ElitjtEx.: supplier, part, project • A supplier supplies parts and projects, a project is supplied by suppliers and parts, but from this you may not validly conclude that a particular supplier supplies a particular part to a particular project Supplier# Part# Project# S1 P1 J2 M N S1 P2 J1 SupplierS-P-Pr Part S2 P1 J1 S1 P1 J1 O Project CIS Relation Normalization 22 Dave McDonald, CIS, GSU 10-11 Introduction to Database Management Systems Join Dependency • Let R be a Relation, and let A, B, … Z be subsets of the attributes of R. Then we say that R satisfies
Recommended publications
  • Normalized Form Snowflake Schema
    Normalized Form Snowflake Schema Half-pound and unascertainable Wood never rhubarbs confoundedly when Filbert snore his sloop. Vertebrate or leewardtongue-in-cheek, after Hazel Lennie compartmentalized never shreddings transcendentally, any misreckonings! quite Crystalloiddiverted. Euclid grabbles no yorks adhered The star schemas in this does not have all revenue for this When done use When doing table contains less sensible of rows Snowflake Normalizationde-normalization Dimension tables are in normalized form the fact. Difference between Star Schema & Snow Flake Schema. The major difference between the snowflake and star schema models is slot the dimension tables of the snowflake model may want kept in normalized form to. Typically most of carbon fact tables in this star schema are in the third normal form while dimensional tables are de-normalized second normal. A relation is danger to pause in First Normal Form should each attribute increase the. The model is lazy in single third normal form 1141 Options to Normalize Assume that too are 500000 product dimension rows These products fall under 500. Hottest 'snowflake-schema' Answers Stack Overflow. Learn together is Star Schema Snowflake Schema And the Difference. For step three within the warehouses we tested Redshift Snowflake and Bigquery. On whose other hand snowflake schema is in normalized form. The CWM repository schema is a standalone product that other products can shareeach product owns only. The main difference between in two is normalization. Families of normalized form snowflake schema snowflake. Star and Snowflake Schema in Data line with Examples. Is spread the dimension tables in the snowflake schema are normalized. Like price weight speed and quantitiesie data execute a numerical format.
    [Show full text]
  • Relational Database Design Chapter 7
    Chapter 7: Relational Database Design Chapter 7: Relational Database Design First Normal Form Pitfalls in Relational Database Design Functional Dependencies Decomposition Boyce-Codd Normal Form Third Normal Form Multivalued Dependencies and Fourth Normal Form Overall Database Design Process Database System Concepts 7.2 ©Silberschatz, Korth and Sudarshan 1 First Normal Form Domain is atomic if its elements are considered to be indivisible units + Examples of non-atomic domains: Set of names, composite attributes Identification numbers like CS101 that can be broken up into parts A relational schema R is in first normal form if the domains of all attributes of R are atomic Non-atomic values complicate storage and encourage redundant (repeated) storage of data + E.g. Set of accounts stored with each customer, and set of owners stored with each account + We assume all relations are in first normal form (revisit this in Chapter 9 on Object Relational Databases) Database System Concepts 7.3 ©Silberschatz, Korth and Sudarshan First Normal Form (Contd.) Atomicity is actually a property of how the elements of the domain are used. + E.g. Strings would normally be considered indivisible + Suppose that students are given roll numbers which are strings of the form CS0012 or EE1127 + If the first two characters are extracted to find the department, the domain of roll numbers is not atomic. + Doing so is a bad idea: leads to encoding of information in application program rather than in the database. Database System Concepts 7.4 ©Silberschatz, Korth and Sudarshan 2 Pitfalls in Relational Database Design Relational database design requires that we find a “good” collection of relation schemas.
    [Show full text]
  • Boyce-Codd Normal Forms Lecture 10 Sections 15.1 - 15.4
    Boyce-Codd Normal Forms Lecture 10 Sections 15.1 - 15.4 Robb T. Koether Hampden-Sydney College Wed, Feb 6, 2013 Robb T. Koether (Hampden-Sydney College) Boyce-Codd Normal Forms Wed, Feb 6, 2013 1 / 15 1 Third Normal Form 2 Boyce-Codd Normal Form 3 Assignment Robb T. Koether (Hampden-Sydney College) Boyce-Codd Normal Forms Wed, Feb 6, 2013 2 / 15 Outline 1 Third Normal Form 2 Boyce-Codd Normal Form 3 Assignment Robb T. Koether (Hampden-Sydney College) Boyce-Codd Normal Forms Wed, Feb 6, 2013 3 / 15 Third Normal Form Definition (Transitive Dependence) A set of attributes Z is transitively dependent on a set of attributes X if there exists a set of attributes Y such that X ! Y and Y ! Z. Definition (Third Normal Form) A relation R is in third normal form (3NF) if it is in 2NF and there is no nonprime attribute of R that is transitively dependent on any key of R. 3NF is violated if there is a nonprime attribute A that depends on something less than a key. Robb T. Koether (Hampden-Sydney College) Boyce-Codd Normal Forms Wed, Feb 6, 2013 4 / 15 Example Example order_no cust_no cust_name 222-1 3333 Joe Smith 444-2 4444 Sue Taylor 555-1 3333 Joe Smith 777-2 7777 Bob Sponge 888-3 4444 Sue Taylor Table 3 Table 3 is in 2NF, but it is not in 3NF because [order_no] ! [cust_no] ! [cust_name]: Robb T. Koether (Hampden-Sydney College) Boyce-Codd Normal Forms Wed, Feb 6, 2013 5 / 15 3NF Normalization To put a relation into 3NF, for each set of transitive function dependencies X ! Y ! Z , make two tables, one for X ! Y and another for Y ! Z .
    [Show full text]
  • Normalization
    Normalization Normalization is a process in which we refine the quality of the logical design. Some call it a form of evaluation or validation. Codd said normalization is a process of elimination, through which we represent the table in a preferred format. Normalization is also called “non-loss decomposition” because a table is broken into smaller components but no information is lost. Are We Normal? If all values in a table are single atomic values (this is first normal form, or 1NF) then our database is technically in “normal form” according to Codd—the “math” of set theory and predicate logic will work. However, we usually want to do more to get our DB into a preferred format. We will take our databases to at least 3rd normal form. Why Do We Normalize? 1. We want the design to be easy to understand, with clear meaning and attributes in logical groups. 2. We want to avoid anomalies (data errors created on insertion, deletion, or modification) Suppose we have the table Nurse (SSN, Name, Unit, Unit Phone) Insertion anomaly: You need to insert the unit phone number every time you enter a nurse. What if you have a new unit that does not have any assigned staff yet? You can’t create a record with a blank primary key, so you can’t just leave nurse SSN blank. You would have no place to record the unit phone number until after you hire at least 1 nurse. Deletion anomaly: If you delete the last nurse on the unit you no longer have a record of the unit phone number.
    [Show full text]
  • Normalization Exercises
    DATABASE DESIGN: NORMALIZATION NOTE & EXERCISES (Up to 3NF) Tables that contain redundant data can suffer from update anomalies, which can introduce inconsistencies into a database. The rules associated with the most commonly used normal forms, namely first (1NF), second (2NF), and third (3NF). The identification of various types of update anomalies such as insertion, deletion, and modification anomalies can be found when tables that break the rules of 1NF, 2NF, and 3NF and they are likely to contain redundant data and suffer from update anomalies. Normalization is a technique for producing a set of tables with desirable properties that support the requirements of a user or company. Major aim of relational database design is to group columns into tables to minimize data redundancy and reduce file storage space required by base tables. Take a look at the following example: StdSSN StdCity StdClass OfferNo OffTerm OffYear EnrGrade CourseNo CrsDesc S1 SEATTLE JUN O1 FALL 2006 3.5 C1 DB S1 SEATTLE JUN O2 FALL 2006 3.3 C2 VB S2 BOTHELL JUN O3 SPRING 2007 3.1 C3 OO S2 BOTHELL JUN O2 FALL 2006 3.4 C2 VB The insertion anomaly: Occurs when extra data beyond the desired data must be added to the database. For example, to insert a course (CourseNo), it is necessary to know a student (StdSSN) and offering (OfferNo) because the combination of StdSSN and OfferNo is the primary key. Remember that a row cannot exist with NULL values for part of its primary key. The update anomaly: Occurs when it is necessary to change multiple rows to modify ONLY a single fact.
    [Show full text]
  • Adequacy of Decompositions of Relational Databases*9+
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES 21, 368-379 (1980) Adequacy of Decompositions of Relational Databases*9+ DAVID MAIER State University of New York, Stony Brook, New York 11794 0. MENDELZON IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 FEREIDOON SADRI Princeton University, Princeton, New Jersey 08540 AND JEFFREY D. ULLMAN Stanford University, Stanford, California 94305 Received August 6, 1979; revised July 16, 1980 We consider conditions that have appeared in the literature with the purpose of defining a “good” decomposition of a relation scheme. We show that these notions are equivalent in the case that all constraints in the database are functional dependencies. This result solves an open problem of Rissanen. However, for arbitrary constraints the notions are shown to differ. I. BASIC DEFINITIONS We assume the reader is familiar with the relational model of data as expounded by Codd [ 111, in which data are represented by tables called relations. Rows of the tables are tuples, and the columns are named by attributes. The notation used in this paper is that found in Ullman [23]. A frequent viewpoint is that the “real world” is modeled by a universal set of attributes R and constraints on the set of relations that can be the “current” relation for scheme R (see Beeri et al. [4], Aho et al. [ 11, and Beeri et al. [7]). The database scheme representing the real world is a collection of (nondisjoint) subsets of the * Work partially supported by NSF Grant MCS-76-15255. D. Maier and A. 0. Mendelzon were also supported by IBM fellowships while at Princeton University, and F.
    [Show full text]
  • Fundamentals of Database Systems [Normalization – II]
    Outline First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form Fundamentals of Database Systems [Normalization { II] Malay Bhattacharyya Assistant Professor Machine Intelligence Unit Indian Statistical Institute, Kolkata October, 2019 Outline First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form 1 First Normal Form 2 Second Normal Form 3 Third Normal Form 4 Boyce-Codd Normal Form Outline First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form First normal form The domain (or value set) of an attribute defines the set of values it might contain. A domain is atomic if elements of the domain are considered to be indivisible units. Company Make Company Make Maruti WagonR, Ertiga Maruti WagonR, Ertiga Honda City Honda City Tesla RAV4 Tesla, Toyota RAV4 Toyota RAV4 BMW X1 BMW X1 Only Company has atomic domain None of the attributes have atomic domains Outline First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form First normal form Definition (First normal form (1NF)) A relational schema R is in 1NF iff the domains of all attributes in R are atomic. The advantages of 1NF are as follows: It eliminates redundancy It eliminates repeating groups. Note: In practice, 1NF includes a few more practical constraints like each attribute must be unique, no tuples are duplicated, and no columns are duplicated. Outline First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form First normal form The following relation is not in 1NF because the attribute Model is not atomic. Company Country Make Model Distributor Maruti India WagonR LXI, VXI Carwala Maruti India WagonR LXI Bhalla Maruti India Ertiga VXI Bhalla Honda Japan City SV Bhalla Tesla USA RAV4 EV CarTrade Toyota Japan RAV4 EV CarTrade BMW Germany X1 Expedition CarTrade We can convert this relation into 1NF in two ways!!! Outline First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form First normal form Approach 1: Break the tuples containing non-atomic values into multiple tuples.
    [Show full text]
  • Aslmple GUIDE to FIVE NORMAL FORMS in RELATIONAL DATABASE THEORY
    COMPUTING PRACTICES ASlMPLE GUIDE TO FIVE NORMAL FORMS IN RELATIONAL DATABASE THEORY W|LL|AM KErr International Business Machines Corporation 1. INTRODUCTION The normal forms defined in relational database theory represent guidelines for record design. The guidelines cor- responding to first through fifth normal forms are pre- sented, in terms that do not require an understanding of SUMMARY: The concepts behind relational theory. The design guidelines are meaningful the five principal normal forms even if a relational database system is not used. We pres- in relational database theory are ent the guidelines without referring to the concepts of the presented in simple terms. relational model in order to emphasize their generality and to make them easier to understand. Our presentation conveys an intuitive sense of the intended constraints on record design, although in its informality it may be impre- cise in some technical details. A comprehensive treatment of the subject is provided by Date [4]. The normalization rules are designed to prevent up- date anomalies and data inconsistencies. With respect to performance trade-offs, these guidelines are biased to- ward the assumption that all nonkey fields will be up- dated frequently. They tend to penalize retrieval, since Author's Present Address: data which may have been retrievable from one record in William Kent, International Business Machines an unnormalized design may have to be retrieved from Corporation, General several records in the normalized form. There is no obli- Products Division, Santa gation to fully normalize all records when actual perform- Teresa Laboratory, ance requirements are taken into account. San Jose, CA Permission to copy without fee all or part of this 2.
    [Show full text]
  • Database Normalization
    Outline Data Redundancy Normalization and Denormalization Normal Forms Database Management Systems Database Normalization Malay Bhattacharyya Assistant Professor Machine Intelligence Unit and Centre for Artificial Intelligence and Machine Learning Indian Statistical Institute, Kolkata February, 2020 Malay Bhattacharyya Database Management Systems Outline Data Redundancy Normalization and Denormalization Normal Forms 1 Data Redundancy 2 Normalization and Denormalization 3 Normal Forms First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form Elementary Key Normal Form Fourth Normal Form Fifth Normal Form Domain Key Normal Form Sixth Normal Form Malay Bhattacharyya Database Management Systems These issues can be addressed by decomposing the database { normalization forces this!!! Outline Data Redundancy Normalization and Denormalization Normal Forms Redundancy in databases Redundancy in a database denotes the repetition of stored data Redundancy might cause various anomalies and problems pertaining to storage requirements: Insertion anomalies: It may be impossible to store certain information without storing some other, unrelated information. Deletion anomalies: It may be impossible to delete certain information without losing some other, unrelated information. Update anomalies: If one copy of such repeated data is updated, all copies need to be updated to prevent inconsistency. Increasing storage requirements: The storage requirements may increase over time. Malay Bhattacharyya Database Management Systems Outline Data Redundancy Normalization and Denormalization Normal Forms Redundancy in databases Redundancy in a database denotes the repetition of stored data Redundancy might cause various anomalies and problems pertaining to storage requirements: Insertion anomalies: It may be impossible to store certain information without storing some other, unrelated information. Deletion anomalies: It may be impossible to delete certain information without losing some other, unrelated information.
    [Show full text]
  • SEMESTER-II Functional Dependencies
    For SEMESTER-II Paper II : Database Management Systems(CODE: CSC-RC-2016) Topics: Functional dependencies, Normalization and Normal forms up to 3NF Functional Dependencies A functional dependency (FD) is a relationship between two attributes, typically between the primary key and other non-key attributes within a table. A functional dependency denoted by X Y , is an association between two sets of attribute X and Y. Here, X is called the determinant, and Y is called the dependent. For example, SIN ———-> Name, Address, Birthdate Here, SIN determines Name, Address and Birthdate.So, SIN is the determinant and Name, Address and Birthdate are the dependents. Rules of Functional Dependencies 1. Reflexive rule : If Y is a subset of X, then X determines Y . 2. Augmentation rule: It is also known as a partial dependency, says if X determines Y, then XZ determines YZ for any Z 3. Transitivity rule: Transitivity says if X determines Y, and Y determines Z, then X must also determine Z Types of functional dependency The following are types functional dependency in DBMS: 1. Fully-Functional Dependency 2. Partial Dependency 3. Transitive Dependency 4. Trivial Dependency 5. Multivalued Dependency Full functional Dependency A functional dependency XY is said to be a full functional dependency, if removal of any attribute A from X, the dependency does not hold any more. i.e. Y is fully functional dependent on X, if it is Functionally Dependent on X and not on any of the proper subset of X. For example, {Emp_num,Proj_num} Hour Is a full functional dependency. Here, Hour is the working time by an employee in a project.
    [Show full text]
  • Normalization for Relational Databases
    Chapter 10 Functional Dependencies and Normalization for Relational Databases Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant Information in Tuples and Update Anomalies 1.3 Null Values in Tuples 1.4 Spurious Tuples 2. Functional Dependencies (skip) Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 10- 2 Chapter Outline 3. Normal Forms Based on Primary Keys 3.1 Normalization of Relations 3.2 Practical Use of Normal Forms 3.3 Definitions of Keys and Attributes Participating in Keys 3.4 First Normal Form 3.5 Second Normal Form 3.6 Third Normal Form 4. General Normal Form Definitions (For Multiple Keys) 5. BCNF (Boyce-Codd Normal Form) Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 10- 3 Informal Design Guidelines for Relational Databases (2) We first discuss informal guidelines for good relational design Then we discuss formal concepts of functional dependencies and normal forms - 1NF (First Normal Form) - 2NF (Second Normal Form) - 3NF (Third Normal Form) - BCNF (Boyce-Codd Normal Form) Additional types of dependencies, further normal forms, relational design algorithms by synthesis are discussed in Chapter 11 Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 10- 4 1 Informal Design Guidelines for Relational Databases (1) What is relational database design? The grouping of attributes to form "good" relation schemas Two levels of relation schemas The logical "user view" level The storage "base relation" level Design is concerned mainly with base relations What are the criteria for "good" base relations? Copyright © 2007 Ramez Elmasri and Shamkant B.
    [Show full text]
  • Final Exam Review
    Final Exam Review Winter 2006-2007 Lecture 26 Final Exam Overview • 3 hours, single sitting • Topics: – Database schema design – Entity-Relationship Model – Functional and multivalued dependencies – Normal forms – Also some SQL DDL and DML, of course • General format: – Final will give a functional specification for a database – Design the database; normalize it; write some queries – Maybe one or two functional dependency problems Entity-Relationship Model • Diagramming system for specifying database schemas – Can map an E-R diagram to the relational model • Entity-sets: “things” that can be uniquely represented – Can have a set of attributes; must have a primary key • Relationship-sets: associations between entity-sets – Can have descriptive attributes – Relationships uniquely identified by the participating entities! – Primary key of relationship depends on mapping cardinality of the relationship-set • Weak entity-sets – Don’t have a primary key; have a discriminator instead – Must be associated with a strong entity-set via an identifying relationship Entity-Relationship Model (2) • E-R model has extended features too • Generalization/specialization of entity-sets – Subclass entity-sets inherit attributes and relationships of superclass entity-sets • Aggregation – Relationships involving other relationships • Should know: – How to diagram each of these things – Kinds of constraints and how to diagram them – How to map each E-R concept to relational model, including rules for primary keys, candidate keys, etc. E-R Model Attributes • Attributes
    [Show full text]