AR I Fi T Ifi H Bidi Ti a Review of Interspecific Hybridization in the Order Testudines

Total Page:16

File Type:pdf, Size:1020Kb

AR I Fi T Ifi H Bidi Ti a Review of Interspecific Hybridization in the Order Testudines ARA Rev iew o fIf In terspec ific Hy bidibridiza tion in the Order Testudines Timothy R. Brophy, Wayne Frair, and Darlene Clark Classification of Extant Turtles Order Testudines (Ernst et al., 2000) Suborder Pleurodira (side-necked turtles) FamilyPelomedusidae - S.A. & Africa Family Chelidae - S.A. & Australia Suborder Crytodira (hidden -necked turtles) Superfamily Trionychoidea FilKitFamily Kinostern idae - Md&MMud & Musk Family Dermatemydidae - C.A. River FilCtthlidFamily Carettochelyidae - Pig Nose Family Trionychidae - Softshell Classification of Extant Turtles Suborder Crytodira (hidden-necked turtles) Superfamily Chelonioidea Family Cheloniidae - Marine Family Dermochelyidae - Leatherback SSpuperfamily yT Testudinoidea Family Chelydridae - Snapping Family Platysternidae - Big Headed Family Emydidae - N.W. Pond Family Geoemydidae - OWO.W. Pond Family Testudinidae - Tortoises TTBurtle Baraminology • Turtles have been the subject of much baraminological research (see Wood, 2005) – Frair (1984) – All turtle species constitute a ppyypolytypic baramin with four diversification lines (Pleuro dira, Ch el onioi dea, T rionych id ae & rest of Cryptodira). Diversification line ≈ holobaramin – Frair (1991) – All turtles descended from a created ancestor (possibly PPgroganocheys y))D. Did not discard hypothesis of four diversification lines TTBurtle Baraminology • Turtles have been the subject of much baraminological research (see Wood, 2005) – Wise (1992) – Turtles are apobaraminic. Some evidence supports Frair’s (1984) four holobaramins – Robinson (1997) – Further supports contention tha t tur tles are apo baram in ic. Che lon iidae & Gopherus are monobaraminic Turtle Baraminology • Turtles have been the subject of much baraminological research (see Wood , 2005) – WW(5)ood (2005) – TTpurtles are apobaraminic – Composed of five holobaramins: Chelidae, Pelomedusidae, Trionychoidea, other Cryptodira & Proganochelys TTHyurtle Hybridization • AAg thorough review of inters pecific hybridization, with baraminological interppypretations, has yet to be reported • Robinson (1997) incorporated the use of hbiditihybridization in hibhis baram ino log ica l ana lyses o f the marine turtles & gopher tortoises • We set out to find evidence of interspecific hyygbridization throughout the entire turtle order & use this evidence to “build” monobaramins SSyRummary of Results • EEyvidence of hybridization in 8 of 1 3 families Pelomedusidae Chelidae Kinosternidae DDyermatem1ydidae CCyarrettochel1 yidae TTyrionychidae Cheloniidae Dermochelyidae1 Chelydridae Platysternidae1 Emydddidae GddGeoemydidae TddTestudinidae Summary of Results • Crosses between 89 unique species pairs • 29 of these are intergeneric (≈33%) • No interfamilial or inter-holobaraminic ((W,5)sensu Wood, 2005) crosses • 16 small monobaramins (2-4 species) • 2 medium monobaramins (5-8 species) • 2 large monobaramins (>8 species) FFyPamily Pelomedusidae – 1sm. 1 cross 2 spp. Pelusios seychellensis Pelusios castanoides 1 Small Monobaramin FFyCamily Chelidae – 2sm. 3 crosses Chelodina longicollis 2IG2 IG Chelodina canni 4 spp. 1st Small Monobaramin Emydura albertisii Elseya novaeguineae FFyCamily Chelidae Phrynops hilari Phrynops geoffroanus 3 crosses 4spp4 spp. Phrynops williamsi Phrynops gibbus 2nd Small Monobaramin Family Kinosternidae – 1med. Kinos ternon su bru brum Kinos ternon flavescens Kinosternon baurii Sternotherus depressus Sternotherus carinatus 6 crosses Sternotherus minor Sternotherus odoratus 1 IG 7 spp. 1 Medium Monobaramin FFyTyamily Trionychidae – 1sm. 1 “cross” 2 spp. Apalone spinifera Apalone mutica 1 Small Monobaramin Family Cheloniidae – 1med. 7 crosses 6 IG, 3 IT 5 spp. Lepidochelys kempii Lepidochelys olivacea Caretta caretta 1M1 Medi um M onob arami n Eretmochelys imbricata Chelonia mydas FFyCamily Cheloniidae • What about NNp(atator depressus (flatback turtle ))? • No records of hybridization with any other species • May be due in part to its limited range in Australia and New Guinea (Karl et al., 1995) Family Cheloniidae • Tribes Carettini (Caretta, Lepidochelys & Ere tmoche lys)&Ch) & Chelonini (Che lonia) thought to have been separated for 50-75 million years • “May be among the oldest vertebrate lineages capppable of producing viable hy brids in nature” (Kar l et a l., 1995 ) Baraminology of the Cheloniidae • Robinson (1997) considered the Cheloniidae in his baram ino log ica l ana lyses: – Concluded entire family was a single monobaramin – NttNatator depressus fllithifell within ran ge o f cy toc hrome b sequence variation of hybridizing turtles, so it was included as part of the monobaramin • We reviewed several recent reports of hyyyCbridization in the family Cheloniidae – Published since or not included in Robinson (1997) – Several with molecular verification – Confirm Robinson’s (1997) conclusions Recent Reports of Sea Turtle Hybridization Species Crossed N/A? Evidence Reference Morphology, Caretta caretta x Lepidochelys kempii Natural mtDNA Barber et al., 2003 & nuclear DNA Morphology, Garman, 1888; Caretta caretta x Eretmochelys imbricata Natural mtDNA Kamezaki, 1983; Frazier, 1988; & nuclear DNA Witzell & Schmid, 2003 Kamezake et al., 1996; Morphology & Hemens, 1997; Kawata, 2003; Caretta caretta x Chelonia mydas Natural mtDNA Phillips, 2003; Jones et al., 2004 Morphology, Buden & Edward, 2001; Chelonia mydas x Eretmochelys imbricata Natural mtDNA Kawata, 2003; & scnDNA Seminoff et al., 2003 Family Testudinidae – 6sm. Testudo graeca Testudo hermanni 3 crosses 4 spp. Testudo horsfieldi Testudo marginata 1st Small Monobaramin FFyTamily Testudinidae 1 cross 2 spp. Indotestudo forstenii Indotestudo elongata 2nd SllMbSmall Monobaramin FFyTamily Testudinidae 1 cross 2 spp. Gopherus berlandieri Gopherus agassizii 3rd SllMbSmall Monobaramin Baraminology of Gopher Tortoises • Robinson (1997) considered the genus Gopherus in his baraminological analyses: – Concluded entire genus was a single monobaramin (4 spp)ecies): G. agg,assizii, G. berlandieri , G. flavomarginatus, G. polyphemus – G. flavomarginatus & G. polyphemus fell within range of cytochrome b sequence variation of hybridizing turtles, so they were included as part of the monobaramin Family Testudinidae Kinixys erosa 3 crosses 3 spp. Kinixys homeana Kinixys belliana 4th Small Monobaramin Family Testudinidae Madagascar SAmericaS. America Geochelone denticulata GhldGeochelone radiata 2 crosses, 3 spp. GhlGeochelone car bonaria ??? 1 cross, 2 spp. Geochelone sulcata Geochelone pardalis 5th & 6th Small Monobaramins EdidEdiEmydidae: Emydinae – 3sm. 1 cross 2 spp. TlTerrapene carolina Terrapene ornata 1st Small Monobaramin Fam ily Emy didae: Emy dinae 1cross1 cross 1 IG Clemmys guttata2 spp. Glyptemys muhlenbergii 2nd SllMbSmall Monobaramin Familyyy Emydidae: Em ydinae Glyptemys insculpta 4 crosses Emys blandingii 4 IG 4 spp. Emys orbicularis Actinemys marmorata 3rd Small Monobaramin Wood x Blandinggy’s Hybrid X Hybridization in the Emydinae • Emydinae = Clemmys, Glyptemys, Actinemys, Emys & Terrapene Clemmys guttata Glyptemys spp. Terrapene spp. 1 Large Monobaramin? Actinemys marmorata Emys spp. Emydidae: Deirochelyinae - 1sm.&1l. Trachemys stejnegeri 2 crosses 3 spp. ThTrachemys decorata ThTrachemys terrapen 1 Small Monobaramin Family Emydidae: Deirochelyinae P. floridana P. concinna P. rubriventris P. alabamensis P. texana C. picta P. nelsoni GGp. psuedog eog rap hica TTp. scripta G. versa GhitiG. ouachitensis G. kohnii GhiG. geographica G. barbouri G. oculifera G. nigrinoda Hybridization in the Deirochelyinae • Deirochelyinae = Graptemys, Trachemys, Chrysemys, Psuedemys, Malaclemys & Deirochelys 21 crosses Trachemys scripta Graptemys spp. 5 IG 16 spp. 1 Large Pseudemys spp. Monobaramin Chrysemys picta Family Geoemydidae – 2sm.&1l. Rhinoclemmys punctularia 3 crosses 3 spp. Rhinoc lemmys me lanosterna Rhinoc lemmys dia dema tta 1st Small Monobaramin FilGFamily Geoemy didae 1 cross 2 spp. Mauremys caspica Mauremys rivulata 2nd SllMbSmall Monobaramin Family Geoemydidae M. japonica M. reevesii M. annamensis M. mutica M. sinensis M. nigricans Cyc. shanensis H. grandis S. quadriocellata R. Pulcherimma S. pseudocellata (C. America) Mal. subtrijuga G. japonica CbiiC. amboinensis CflC. flavomarg inata C. galbinifrons C. mouhotii C. bourreti C. trifasciata Hybridization in the Geoemydidae 26 crosses, 11 IG, 19 species Heosemys grandis * Geoemyda japonica Cyclemys shanensis Mauremys spp. Cuora spp. Sacalia spp. 1 Large Monobaramin Rhinoclemmys pulcherimma *Large phylogenetic distance Malayemys subtrijuga Proposed Phylogeny ofhf the Geoemy dddidae * * Spinks et al., 1994 Discussion • 288 turtle species – 41,238 possible hybrids (0.22%) – 5,971 possible intra-fllhbd()familial hybrids (1.5%) • GGgrowing turtle monobaramins – Continue to verify records we already have – MMy,y,any, as yet, undescribed & undiscovered h ybrids (many in process of being published) – Inclusion of non-hybridizing turtles if they fall within range offhbdlf variation of hybridizing turtles • WWjW(5)e are unable to reject Wood’s (2005) hypothesis of five turtle holobaramins.
Recommended publications
  • Competing Generic Concepts for Blanding's, Pacific and European
    Zootaxa 2791: 41–53 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Competing generic concepts for Blanding’s, Pacific and European pond turtles (Emydoidea, Actinemys and Emys)—Which is best? UWE FRITZ1,3, CHRISTIAN SCHMIDT1 & CARL H. ERNST2 1Museum of Zoology, Senckenberg Dresden, A. B. Meyer Building, D-01109 Dresden, Germany 2Division of Amphibians and Reptiles, MRC 162, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013-7012, USA 3Corresponding author. E-mail: [email protected] Abstract We review competing taxonomic classifications and hypotheses for the phylogeny of emydine turtles. The formerly rec- ognized genus Clemmys sensu lato clearly is paraphyletic. Two of its former species, now Glyptemys insculpta and G. muhlenbergii, constitute a well-supported basal clade within the Emydinae. However, the phylogenetic position of the oth- er two species traditionally placed in Clemmys remains controversial. Mitochondrial data suggest a clade embracing Actinemys (formerly Clemmys) marmorata, Emydoidea and Emys and as its sister either another clade (Clemmys guttata + Terrapene) or Terrapene alone. In contrast, nuclear genomic data yield conflicting results, depending on which genes are used. Either Clemmys guttata is revealed as sister to ((Emydoidea + Emys) + Actinemys) + Terrapene or Clemmys gut- tata is sister to Actinemys marmorata and these two species together are the sister group of (Emydoidea + Emys); Terra- pene appears then as sister to (Actinemys marmorata + Clemmys guttata) + (Emydoidea + Emys). The contradictory branching patterns depending from the selected loci are suggestive of lineage sorting problems. Ignoring the unclear phy- logenetic position of Actinemys marmorata, one recently proposed classification scheme placed Actinemys marmorata, Emydoidea blandingii, Emys orbicularis, and Emys trinacris in one genus (Emys), while another classification scheme treats Actinemys, Emydoidea, and Emys as distinct genera.
    [Show full text]
  • A Review of Southern Iraq Herpetofauna
    Vol. 3 (1): 61-71, 2019 A Review of Southern Iraq Herpetofauna Nadir A. Salman Mazaya University College, Dhi Qar, Iraq *Corresponding author: [email protected] Abstract: The present review discussed the species diversity of herpetofauna in southern Iraq due to their scientific and national interests. The review includes a historical record for the herpetofaunal studies in Iraq since the earlier investigations of the 1920s and 1950s along with the more recent taxonomic trials in the following years. It appeared that, little is known about Iraqi herpetofauna, and no comprehensive checklist has been done for these species. So far, 96 species of reptiles and amphibians have been recorded from Iraq, but only a relatively small proportion of them occur in the southern marshes. The marshes act as key habitat for globally endangered species and as a potential for as yet unexplored amphibian and reptile diversity. Despite the lack of precise localities, the tree frog Hyla savignyi, the marsh frog Pelophylax ridibunda and the green toad Bufo viridis are found in the marshes. Common reptiles in the marshes include the Caspian terrapin (Clemmys caspia), the soft-shell turtle (Trionyx euphraticus), the Euphrates softshell turtle (Rafetus euphraticus), geckos of the genus Hemidactylus, two species of skinks (Trachylepis aurata and Mabuya vittata) and a variety of snakes of the genus Coluber, the spotted sand boa (Eryx jaculus), tessellated water snake (Natrix tessellata) and Gray's desert racer (Coluber ventromaculatus). More recently, a new record for the keeled gecko, Cyrtopodion scabrum and the saw-scaled viper (Echis carinatus sochureki) was reported. The IUCN Red List includes six terrestrial and six aquatic amphibian species.
    [Show full text]
  • Redalyc.MORPHOLOGY and CONSERVATION of the MESOAMERICAN SLIDER (Trachemys Venusta, Emydidae) from the ATRATO RIVER BASIN, COLOMB
    Acta Biológica Colombiana ISSN: 0120-548X [email protected] Universidad Nacional de Colombia Sede Bogotá Colombia CEBALLOS, CLAUDIA P.; BRAND, WILLIAM A. MORPHOLOGY AND CONSERVATION OF THE MESOAMERICAN SLIDER (Trachemys venusta, Emydidae) FROM THE ATRATO RIVER BASIN, COLOMBIA Acta Biológica Colombiana, vol. 19, núm. 3, septiembre-diciembre, 2014, pp. 483-488 Universidad Nacional de Colombia Sede Bogotá Bogotá, Colombia Available in: http://www.redalyc.org/articulo.oa?id=319031647014 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative SEDE BOGOTÁ ACTA BIOLÓGICA COLOMBIANA FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA ARTÍCULO DE INVESTIGACIÓN MORPHOLOGY AND CONSERVATION OF THE MESOAMERICAN SLIDER (Trachemys venusta, EMYDIDAE) FROM THE ATRATO RIVER BASIN, COLOMBIA Morfología y conservación de la tortuga hicotea Mesoamericana (Trachemys venusta, Emydidae) del río Atrato, Colombia CLAUDIA P. CEBALLOS1, Ph. D.; WILLIAM A. BRAND2, Ecol. 1 Grupo Centauro. Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia. Carrera 75 n.º 65-87, of. 47- 122, Medellín, Colombia. [email protected] 2 Corpouraba. Calle 92 n.º 98-39, Turbo, Antioquia, Colombia. [email protected] Author for correspondence: Claudia P. Ceballos, [email protected] Received 20th February 2014, first decision 14th May 2014, accepted 05th June 2014. Citation / Citar este artículo como: CEBALLOS CP, BRAND WA. Morphology and conservation of the mesoamerican slider (Trachemys venusta, Emydidae) from the Atrato River basin, Colombia. Acta biol. Colomb. 2014;19(3):483-488 ABSTRACT The phylogenetic relationships of the Mesoamerican Slider, Trachemys venusta, that inhabits the Atrato River basin of Colombia have been controversial as three different names have been proposed during the last 12 years: T.
    [Show full text]
  • Download Vol. 33, No. 3
    1. , F -6 ~.: 1/JJ/im--3'PT* JL* iLLLZW 1- : s . &, , I ' 4% Or *-* 0 4 Z 0 8 of the FLORIDA STATE MUSEUM Biological Sciences Volume 33 1988 Number 3 REPRODUCTIVE STRATEGIES OF SYMPATRIC FRESHWATER EMYDID TURTLES IN NORTHERN PENINSULAR FLORIDA Dale R. Jackson 3-C p . i ... h¢ 4 f .6/ I Se 4 .¢,$ I - - 64». 4 +Ay. 9.H>« UNIVERSITY OF FLORIDA GAINESVILLE Numbers of the BULLETIN OF TIIE FLORIDA STATE MUSEUM, BIOLOGICAL SCIENCES, are published at irregular intervals. Volumes contain about 300 pages and,are not necessarily completed in any one calendar year. S. DAVID WEBB, Editor OLIVER L. AUSTIN, JR., Editor Bile,ints RHODA J. BRYANT, Managing Editor Communications concerning purchase or exchange of the publications and all manuscripts should be addressed to: Managing Editor, Bulletin; Florida State Museum; University of Florida; Gainesville FL 32611; U.S.A. This public document was promulgated at an annual cost of $2003.53 or $2.000 per copy. It makes available to libraries, scholars, and all interested persons the results of researches in the natural sciences, emphasizing the circum- Caribbean region. ISSN: 0071-6154 CODEN: BFSBAS Publication date: 8/27 Price: $2.00 REPRODUCTIVE STRATEGIES OF SYMPATRIC FRESHWATER EMYDID TURTLES IN NORTHERN PENINSULAR FLORIDA Dale R. Jackson Frontispiece. Alligator nest on Payne's Prairie, Alachua County, Florida, opened to expose seven clutches of Psmdenzys nelsoni eggs and one clutch of Trioi,br ferox eggs (far lower right) surrounding the central clutch of alligator eggs. Most of the alligator eggs had been destroyed earlier by raccoons. REPRODUCTIVE STRATEGIES OF SYMPATRIC FRESHWATER EMYDID TURTLES IN NORTHERN PENINSULAR FLORIDA Dale R.
    [Show full text]
  • Green Sea Turtle in the New England Aquarium Has Been in Captivity Since 1970, and Is Believed to Be Around 80 Years Old (NEAQ 2013)
    Species Status Assessment Class: Reptilia Family: Cheloniidae Scientific Name: Chelonia mydas Common Name: Green turtle Species synopsis: The green turtle is a marine turtle that was originally described by Linnaeus in 1758 as Testudo mydas. In 1868 Marie Firmin Bocourt named a new species of sea turtle Chelonia agassizii. It was later determined that these represented the same species, and the name became Chelonia mydas. In New York, the green turtle can be found from July – November, with individuals occasionally found cold-stunned in the winter months (Berry et al. 1997, Morreale and Standora 1998). Green turtles are sighted most frequently in association with sea grass beds off the eastern side of Long Island. They are observed with some regularity in the Peconic Estuary (Morreale and Standora 1998). Green turtles experienced a drastic decline throughout their range during the 19th and 20th centuries as a result of human exploitation and anthropogenic habitat degradation (NMFS and USFWS 1991). In recent years, some populations, including the Florida nesting population, have been experiencing some signs of increase (NMFS and USFWS 2007). Trends have not been analyzed in New York; a mark-recapture study performed in the state from 1987 – 1992 found that there seemed to be more green turtles at the end of the study period (Berry et al. 1997). However, changes in temperature have lead to an increase in the number of cold stunned green turtles in recent years (NMFS, Riverhead Foundation). Also, this year a record number of nests were observed at nesting beaches in Flordia (Mote Marine Laboratory 2013). 1 I.
    [Show full text]
  • Buhlmann Etal 2009.Pdf
    Chelonian Conservation and Biology, 2009, 8(2): 116–149 g 2009 Chelonian Research Foundation A Global Analysis of Tortoise and Freshwater Turtle Distributions with Identification of Priority Conservation Areas 1 2 3 KURT A. BUHLMANN ,THOMAS S.B. AKRE ,JOHN B. IVERSON , 1,4 5 6 DENO KARAPATAKIS ,RUSSELL A. MITTERMEIER ,ARTHUR GEORGES , 7 5 1 ANDERS G.J. RHODIN ,PETER PAUL VAN DIJK , AND J. WHITFIELD GIBBONS 1University of Georgia, Savannah River Ecology Laboratory, Drawer E, Aiken, South Carolina 29802 USA [[email protected]; [email protected]]; 2Department of Biological and Environmental Sciences, Longwood University, 201 High Street, Farmville, Virginia 23909 USA [[email protected]]; 3Department of Biology, Earlham College, Richmond, Indiana 47374 USA [[email protected]]; 4Savannah River National Laboratory, Savannah River Site, Building 773-42A, Aiken, South Carolina 29802 USA [[email protected]]; 5Conservation International, 2011 Crystal Drive, Suite 500, Arlington, Virginia 22202 USA [[email protected]; [email protected]]; 6Institute for Applied Ecology Research Group, University of Canberra, Australian Capitol Territory 2601, Canberra, Australia [[email protected]]; 7Chelonian Research Foundation, 168 Goodrich Street, Lunenburg, Massachusetts 01462 USA [[email protected]] ABSTRACT. – There are currently ca. 317 recognized species of turtles and tortoises in the world. Of those that have been assessed on the IUCN Red List, 63% are considered threatened, and 10% are critically endangered, with ca. 42% of all known turtle species threatened. Without directed strategic conservation planning, a significant portion of turtle diversity could be lost over the next century. Toward that conservation effort, we compiled museum and literature occurrence records for all of the world’s tortoises and freshwater turtle species to determine their distributions and identify priority regions for conservation.
    [Show full text]
  • N.C. Turtles Checklist
    Checklist of Turtles Historically Encountered In Coastal North Carolina by John Hairr, Keith Rittmaster and Ben Wunderly North Carolina Maritime Museums Compiled June 1, 2016 Suborder Family Common Name Scientific Name Conservation Status Testudines Cheloniidae loggerhead Caretta caretta Threatened green turtle Chelonia mydas Threatened hawksbill Eretmochelys imbricata Endangered Kemp’s ridley Lepidochelys kempii Endangered Dermochelyidae leatherback Dermochelys coriacea Endangered Chelydridae common snapping turtle Chelydra serpentina Emydidae eastern painted turtle Chrysemys picta spotted turtle Clemmys guttata eastern chicken turtle Deirochelys reticularia diamondback terrapin Malaclemys terrapin Special concern river cooter Pseudemys concinna redbelly turtle Pseudemys rubriventris eastern box turtle Terrapene carolina yellowbelly slider Trachemys scripta Kinosternidae striped mud turtle Kinosternon baurii eastern mud turtle Kinosternon subrubrum common musk turtle Sternotherus odoratus Trionychidae spiny softshell Apalone spinifera Special concern NOTE: This checklist was compiled and updated from several sources, both in the scientific and popular literature. For scientific names, we have relied on: Turtle Taxonomy Working Group [van Dijk, P.P., Iverson, J.B., Rhodin, A.G.J., Shaffer, H.B., and Bour, R.]. 2014. Turtles of the world, 7th edition: annotated checklist of taxonomy, synonymy, distribution with maps, and conservation status. In: Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B., and Mittermeier, R.A. (Eds.). Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs 5(7):000.329–479, doi:10.3854/crm.5.000.checklist.v7.2014; The IUCN Red List of Threatened Species.
    [Show full text]
  • A Phylogenomic Analysis of Turtles ⇑ Nicholas G
    Molecular Phylogenetics and Evolution 83 (2015) 250–257 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A phylogenomic analysis of turtles ⇑ Nicholas G. Crawford a,b,1, James F. Parham c, ,1, Anna B. Sellas a, Brant C. Faircloth d, Travis C. Glenn e, Theodore J. Papenfuss f, James B. Henderson a, Madison H. Hansen a,g, W. Brian Simison a a Center for Comparative Genomics, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA b Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA c John D. Cooper Archaeological and Paleontological Center, Department of Geological Sciences, California State University, Fullerton, CA 92834, USA d Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA e Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA f Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA g Mathematical and Computational Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 9171, USA article info abstract Article history: Molecular analyses of turtle relationships have overturned prevailing morphological hypotheses and Received 11 July 2014 prompted the development of a new taxonomy. Here we provide the first genome-scale analysis of turtle Revised 16 October 2014 phylogeny. We sequenced 2381 ultraconserved element (UCE) loci representing a total of 1,718,154 bp of Accepted 28 October 2014 aligned sequence. Our sampling includes 32 turtle taxa representing all 14 recognized turtle families and Available online 4 November 2014 an additional six outgroups. Maximum likelihood, Bayesian, and species tree methods produce a single resolved phylogeny.
    [Show full text]
  • The Conservation Biology of Tortoises
    The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1.
    [Show full text]
  • The Common Snapping Turtle, Chelydra Serpentina
    The Common Snapping Turtle, Chelydra serpentina Rylen Nakama FISH 423: Olden 12/5/14 Figure 1. The Common Snapping Turtle, one of the most widespread reptiles in North America. Photo taken in Quebec, Canada. Image from https://www.flickr.com/photos/yorthopia/7626614760/. Classification Order: Testudines Family: Chelydridae Genus: Chelydra Species: serpentina (Linnaeus, 1758) Previous research on Chelydra serpentina (Phillips et al., 1996) acknowledged four subspecies, C. s. serpentina (Northern U.S. and Figure 2. Side profile of Chelydra serpentina. Note Canada), C. s. osceola (Southeastern U.S.), C. s. the serrated posterior end of the carapace and the rossignonii (Central America), and C. s. tail’s raised central ridge. Photo from http://pelotes.jea.com/AnimalFact/Reptile/snapturt.ht acutirostris (South America). Recent IUCN m. reclassification of chelonians based on genetic analyses (Rhodin et al., 2010) elevated C. s. rossignonii and C. s. acutirostris to species level and established C. s. osceola as a synonym for C. s. serpentina, thus eliminating subspecies within C. serpentina. Antiquated distinctions between the two formerly recognized North American subspecies were based on negligible morphometric variations between the two populations. Interbreeding in the overlapping range of the two populations was well documented, further discrediting the validity of the subspecies distinction (Feuer, 1971; Aresco and Gunzburger, 2007). Therefore, any emphasis of subspecies differentiation in the ensuing literature should be disregarded. Figure 3. Front-view of a captured Chelydra Continued usage of invalid subspecies names is serpentina. Different skin textures and the distinctive pink mouth are visible from this angle. Photo from still prevalent in the exotic pet trade for C.
    [Show full text]
  • Demographic Consequences of Superabundance in Krefft's River
    i The comparative ecology of Krefft’s River Turtle Emydura krefftii in Tropical North Queensland. By Dane F. Trembath B.Sc. (Zoology) Applied Ecology Research Group University of Canberra ACT, 2601 Australia A thesis submitted in fulfilment of the requirements of the degree of Masters of Applied Science (Resource Management). August 2005. ii Abstract An ecological study was undertaken on four populations of Krefft’s River Turtle Emydura krefftii inhabiting the Townsville Area of Tropical North Queensland. Two sites were located in the Ross River, which runs through the urban areas of Townsville, and two sites were in rural areas at Alligator Creek and Stuart Creek (known as the Townsville Creeks). Earlier studies of the populations in Ross River had determined that the turtles existed at an exceptionally high density, that is, they were superabundant, and so the Townsville Creek sites were chosen as low abundance sites for comparison. The first aim of this study was to determine if there had been any demographic consequences caused by the abundance of turtle populations of the Ross River. Secondly, the project aimed to determine if the impoundments in the Ross River had affected the freshwater turtle fauna. Specifically this study aimed to determine if there were any difference between the growth, size at maturity, sexual dimorphism, size distribution, and diet of Emydura krefftii inhabiting two very different populations. A mark-recapture program estimated the turtle population sizes at between 490 and 5350 turtles per hectare. Most populations exhibited a predominant female sex-bias over the sampling period. Growth rates were rapid in juveniles but slowed once sexual maturity was attained; in males, growth basically stopped at maturity, but in females, growth continued post-maturity, although at a slower rate.
    [Show full text]
  • A Case of Inversion and Duplication Involving Constitutive Heterochromatin
    Genetics and Molecular Biology, 36, 3, 353-356 (2013) Copyright © 2013, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Short Communication Cytogenetic comparison of Podocnemis expansa and Podocnemis unifilis: A case of inversion and duplication involving constitutive heterochromatin Ricardo José Gunski1, Isabel Souza Cunha2, Tiago Marafiga Degrandi1, Mario Ledesma3 and Analía Del Valle Garnero1 1Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil. 2Secretaria Municipal de Meio Ambiente e Turismo, São Desidério, BA, Brazil. 3Parque Ecológico “El Puma”, Candelaria, Argentina. Abstract Podocnemis expansa and P. unifilis present 2n = 28 chromosomes, a diploid number similar to those observed in other species of the genus. The aim of this study was to characterize these two species using conventional staining and differential CBG-, GTG and Ag-NOR banding. We analyzed specimens of P. expansa and P. unifilis from the state of Tocantins (Brazil), in which we found a 2n = 28 and karyotypes differing in the morphology of the 13th pair, which was submetacentric in P. expansa and telocentric in P. unifilis. The CBG-banding patterns revealed a heterochromatic block in the short arm of pair 13 of P. expansa and an interstitial one in pair 13 of P. unifilis, suggest- ing a pericentric inversion. Pair 14 of P. unifilis showed an insterstitial band in the long arm that was absent in P. expansa, suggesting a duplication in this region. Ag-NORs were observed in the first chromosome pair of both spe- cies and was associated to a secondary constriction and heterochromatic blocks. Keywords: chromosome banding, Ag-NORs, karyotype, chelonids.
    [Show full text]