A Review on Surface Roughness (Ra) Ranges for Some Finishing Processes Mohammad Dashtia, Abdulaziz Albannaib
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review of Superfinishing by the Magnetic Abrasive Finishing Process
High Speed Mach. 2017; 3:42–55 Review Article Open Access Lida Heng, Yon Jig Kim, and Sang Don Mun* Review of Superfinishing by the Magnetic Abrasive Finishing Process DOI 10.1515/hsm-2017-0004 In the conventional lapping process, loose abrasive Received May 2, 2017; accepted June 20, 2017 particles in the form of highly-concentrated slurry are of- ten used. The finishing mechanism then involves actions Abstract: Recent developments in the engineering indus- between the lapping plate, the abrasive, and the work- try have created a demand for advanced materials with su- piece, in which the abrasive particles roll freely, creating perior mechanical properties and high-quality surface fin- indentation cracks along the surface of the workpiece, ishes. Some of the conventional finishing methods such as which are then removed to finally achieve a smoother sur- lapping, grinding, honing, and polishing are now being re- face [1]. The lapping process typically is not used to change placed by non-conventional finishing processes. Magnetic the dimensional accuracy due to its very low material re- Abrasive Finishing (MAF) is a non-conventional superfin- moval rate. Grinding, on the other hand, is used to achieve ishing process in which magnetic abrasive particles inter- the surface finish and dimensional accuracy of the work- act with a magnetic field in the finishing zone to remove piece simultaneously [2]. In grinding, fixed abrasives are materials to achieve very high surface finishing and de- used by bonding them on paper or a plate for fast stock burring simultaneously. In this review paper, the working removal. -
Guide to Stainless Steel Finishes
Guide to Stainless Steel Finishes Building Series, Volume 1 GUIDE TO STAINLESS STEEL FINISHES Euro Inox Euro Inox is the European market development associa- Full Members tion for stainless steel. The members of Euro Inox include: Acerinox, •European stainless steel producers www.acerinox.es • National stainless steel development associations Outokumpu, •Development associations of the alloying element www.outokumpu.com industries. ThyssenKrupp Acciai Speciali Terni, A prime objective of Euro Inox is to create awareness of www.acciaiterni.com the unique properties of stainless steels and to further their use in existing applications and in new markets. ThyssenKrupp Nirosta, To assist this purpose, Euro Inox organises conferences www.nirosta.de and seminars, and issues guidance in printed form Ugine & ALZ Belgium and electronic format, to enable architects, designers, Ugine & ALZ France specifiers, fabricators, and end users, to become more Groupe Arcelor, www.ugine-alz.com familiar with the material. Euro Inox also supports technical and market research. Associate Members British Stainless Steel Association (BSSA), www.bssa.org.uk Cedinox, www.cedinox.es Centro Inox, www.centroinox.it Informationsstelle Edelstahl Rostfrei, www.edelstahl-rostfrei.de Informationsstelle für nichtrostende Stähle SWISS INOX, www.swissinox.ch Institut de Développement de l’Inox (I.D.-Inox), www.idinox.com International Chromium Development Association (ICDA), www.chromium-asoc.com International Molybdenum Association (IMOA), www.imoa.info Nickel Institute, www.nickelinstitute.org -
Grinding and Honing. Part 2 INFO 20M Information for Ship and Tool-Lovers
Foto: Henk Bos Grinding and honing. Part 2 INFO 20M Information for ship and tool-lovers Info 20M Number 66e Version 1.1 Mai - June 2012 INFO 20M Information paper great pleasure boats and toollovers The paper "great pleasure boats" is meant for owners, skippers and other interested parties of recreational vessels over 20 meters such as: - Former inland vessels - Former Marine vessels - Former fishing vessels - Former Navy ships - Former tugs and pushboats - Houseboats - Recreational vessels specifically built for that purpose. The magazine INFO-20M "great pleasure boats" provides this target group with information about nautical law and the (technical) equipment on board the ship. ISSN: 1872-7824 Initiative: Henk Bos Cover Photo: Henk Bos Design: Henk Bos Correctors: Ge Bos-Thoma, Henk Bos and Janneke Bos In this issue: Henk Bos (HB), Janneke Bos (JB), Rob, Piet, Oldengaerde and Neil Miller English translation: Ge Bos-Thoma. Production and Publishing: Henk en Janneke Bos (Expertisebureau Bos) (c) 2006-2012 Website: http://www.xs4all.nl/~bosq Hasebroekstraat 7, 1962 SV Heemskerk, Tel: 0251-230 050, e-mail: [email protected] Distribution: 20M info is distributed by email free of charge by the following organizations: - The National Association for the Preservation of the Historic Vessel (LVBHB) - Foundation for the preservation of Authentic Steam and Motor Vessels and Tugs (BASM) - Royal Dutch Motorboat Club (KNMC) - The Association Motor Tug (VDMS) and the Association of the Tugboat (VDS) - The Flemish Association for Water Sports (VVW) - Zeekadetkorps Netherlands (ZKK) - Scouting Netherlands (SN) Other organizations may contact the publisher. Info 20M can also be downloaded through the website. -
The Art of Superfinishing
The Superfinishing Experts™ Corporate Headquarters Darmann Abrasive Products, Inc. 100 Sterling Street Clinton, MA 01510 Phone: 978-365-4544 Fax: 800-736-3839 Darmann Eastern Europe, LLC Przemyslowa 1 Street 41-300 Dabrowa Gorniza Poland Phone: +48 608 079 027 Darmann Abrasive Products, Inc. 1F, Building 36 458 North Fu Te Road Shanghai Waigaoqiao F.T.Z 200131 China Phone: +86 (21) 586 2809 www.darmann.com The Art of Superfinishing. About Us. The Superfinishing Process. Darmann Abrasive Products, Inc. has been designing and manu- Superfinishing, sometimes called micromachining or facturing fine grit, bonded abrasive products for superfinishing short-stroke honing, was invented in 1934 by Chrysler and precision grinding applications since 1983. Innovation, Corporation. However, it took about 40 years before gaining combined with superior engineering and unsurpassed customer widespread acceptance. service has made us a world-wide leader in the field. We have During grinding, extreme heat and aggressive stock developed a unique value proposition which we removal often alters micro structure and base metal hardness. call The Darmann Advantage. This creates slight dimensional and surface imperfections such as smeared peaks, waviness and chatter. The Darmann Advantage. Superfinishing, a low temperature, low stock removal • Darmann Is The Market Leader – process, improves part geometry and surface finish by removing No one sells more superfinishing tools than the amorphous layer formed during the grinding process. Darmann. We provide the broadest range This dramatically improves these imperfections, which can of conventional abrasive types, hardness, compromise part quality and performance. engineered structures, bond options, part geometries, packaging and printing. We’ve Superfinishing Benefits. -
5.1 GRINDING Definitions
UNIT-V GRINDING AND BROACHING 5.1 Grinding Definitions Cutting conditions in grinding Wheel wear Surface finish and effects of cutting temperature Grinding wheel Grinding operations Finishing Processes Introduction Finishing processes 5.1 GRINDING Definitions Abrasive machining is a material removal process that involves the use of abrasive cutting tools. There are three principle types of abrasive cutting tools according to the degree to which abrasive grains are constrained, bonded abrasive tools: abrasive grains are closely packed into different shapes, the most common is the abrasive wheel. Grains are held together by bonding material. Abrasive machining process that use bonded abrasives include grinding, honing, superfinishing; coated abrasive tools: abrasive grains are glued onto a flexible cloth, paper or resin backing. Coated abrasives are available in sheets, rolls, endless belts. Processes include abrasive belt grinding, abrasive wire cutting; free abrasives: abrasive grains are not bonded or glued. Instead, they are introduced either in oil-based fluids (lapping, ultrasonic machining), or in water (abrasive water jet cutting) or air (abrasive jet machining), or contained in a semisoft binder (buffing). Regardless the form of the abrasive tool and machining operation considered, all abrasive operations can be considered as material removal processes with geometrically undefined cutting edges, a concept illustrated in the figure: The concept of undefined cutting edge in abrasive machining. Grinding Abrasive machining can be likened to the other machining operations with multipoint cutting tools. Each abrasive grain acts like a small single cutting tool with undefined geometry but usually with high negative rake angle. Abrasive machining involves a number of operations, used to achieve ultimate dimensional precision and surface finish. -
TUFFAK® Polycarbonate Sheet Fabrication Guide (At Curbell Plastics)
TUFFAK® polycarbonate sheet Fabrication guide / Technical manual Table of Contents Page Introduction ..................................... 3 Typical Properties ................................ 4 TUFFAK Product Selection Guide................ 5-6 Chemical / Environmental Resistance ............7-13 Cleaning Recommendations ...................14-15 Fabrication / Machining........................16-21 Fabrication / Laminate & Heavy Gauge Sheet .. 22-25 Thermoforming ...............................26-31 Troubleshooting Guide .......................32-40 Brake Bending, Cold Forming, Annealing .......41-42 Bonding Applications.........................43-45 Mechanical Fastening.........................46-49 Finishing.....................................50-52 Glazing Guidelines ...........................53-58 2 Contact Technical Service Group with additional questions: 800.628.5084 [email protected] 3 TUFFAK Sheet Typical Properties* Property Test Method Units Values PHYSICAL Specific Gravity ASTM D 792 – 1.2 Refractive Index ASTM D 542 – 1.586 Light Transmission, Clear @ 0.118˝ ASTM D 1003 % 86 Light Transmission, I30 Gray @ 0.118˝ ASTM D 1003 % 50 Light Transmission, K09 Bronze @ 0.118˝ ASTM D 1003 % 50 Light Transmission, I35 Dark Gray @ 0.118˝ ASTM D 1003 % 18 Water Absorption, 24 hours ASTM D 570 % 0.15 Poisson’s Ratio ASTM E 132 – 0.38 MECHANICAL Tensile Strength, Ultimate ASTM D 638 psi 9,500 Tensile Strength, Yield ASTM D 638 psi 9,000 Tensile Modulus ASTM D 638 psi 340,000 Elongation ASTM D 638 % 110 Flexural Strength ASTM D -
MACHINISTGRINDER (Duration: Two Years)
GOVERNMENT OF INDIA MINISTRY OF SKILL DEVELOPMENT & ENTREPRENEURSHIP DIRECTORATE GENERAL OF TRAINING COMPETENCY BASED CURRICULUM MACHINISTGRINDER (Duration: Two years) CRAFTSMEN TRAINING SCHEME (CTS) NSQF LEVEL- 5 SECTOR –CAPITAL GOODS AND MANUFACTURING MACHINIST GRINDER (Engineering Trade) (Revised in 2019) Version: 1.2 CRAFTSMEN TRAINING SCHEME (CTS) NSQF LEVEL - 5 Developed By Ministry of Skill Development and Entrepreneurship Directorate General of Training CENTRAL STAFF TRAINING AND RESEARCH INSTITUTE EN-81, Sector-V, Salt Lake City, Kolkata – 700 091 www.cstaricalcutta.gov.in CONTENTS S No. Topics Page No. 1. Course Information 1 2. Training System 3 3. Job Role 7 4. General Information 10 5. Learning Outcome 13 6. Assessment Criteria 15 7. Trade Syllabus 23 Annexure I(List of Trade Tools & Equipment) 40 Annexure II (List of Trade experts) 46 Machinist Grinder 1. COURSE INFORMATION During the two-year duration, a candidate of Machinist Grindertrade is trained on subjects Professional Skill, Professional Knowledge, Engineering Drawing, Workshop Science & Calculation and Employability Skills related to job role. In addition to this, a candidate is entrusted to make/do project work and Extra Curricular Activities to build up confidence. The practical skills are imparted in simple to complex manner & simultaneously theory subject is taught in the same fashion to apply cognitive knowledge while executing task.The course covers the detail aspect of Machinist (Grinder). The broad components covered under Professional Skill subject are as below: FIRST YEAR: The practical part starts with basic fitting covering components like filing, sawing, drilling, tapping, chipping, grinding and different fits. The accuracy proposed is of ±0.2mm and angular accuracy of 1°. -
Super Finishing Strips.Pdf
DIAMOND STRIPS FINISHING / POLISHING Super finishing INDUSTRY Pulp, paper, printing, hot rolling mills, oil, gas, mining, drilling, water engineering, earthmoving equipment. MAIN APPLICATIONS The actual goal through the super finishing operation is to achieve a surface that is as smooth as possible, so that the following advantages can be achieved: wear resistance, frictional resistance, fouling resistance and fatigue resistance. Superfinishing systems are commonly used for optimising surfaces of rolls and other cylindrical parts. Long super-abrasive strips (with tails) are used for polishing and finishing hard brittle materials such as thermal sprayed coatings like HVOF sprayed carbides and ceramics. KGS flexible diamond tools are used on super-finishing machines for roll finishing of very hard materials like tungsten carbide, ceramics, thermal spray, epoxy and special alloys. This process in mainly used for precision engineering applications, ensuring improved operations and a longer product life. Your future benefits are: High tolerance of material, Less maintanance, Less replacement costs / investments. This system provides predictable, consistent (over the entire surface) and repeatable finishes. It improves the surface structure which can easily be compared to levels reached by honing or lapping. Another important advantage is the ability to achieve the desired surface texture. From a highly reflective finish and low Ra value, to a specific surface roughness for friction grip and/or ink, water or oil retention. During the constant use of these rolls, they tend to lose this surface roughness and become “polished” over time. In this way rolls can be refurbished many times before fully being stripped and recoated. Also, another advantage is the removal of chatter marks, feed marks and other imperfections left by (previous) grinding operations. -
Understanding Surface Quality: Beyond Average Roughness (Ra)
Paper ID #23551 Understanding Surface Quality: Beyond Average Roughness (Ra) Dr. Chittaranjan Sahay P.E., University of Hartford Dr. Sahay has been an active researcher and educator in Mechanical and Manufacturing Engineering for the past four decades in the areas of Design, Solid Mechanics, Manufacturing Processes, and Metrology. He is a member of ASME, SME,and CASE. Dr. Suhash Ghosh, University of Hartford Dr. Ghosh has been actively working in the areas of advanced laser manufacturing processes modeling and simulations for the past 12 years. His particular areas of interests are thermal, structural and materials modeling/simulation using Finite Element Analysis tools. His areas of interests also include Mechanical Design and Metrology. c American Society for Engineering Education, 2018 Understanding Surface Quality: Beyond Average Roughness (Ra) Abstract Design of machine parts routinely focus on the dimensional and form tolerances. In applications where surface quality is critical and requires a characterizing indicator, surface roughness parameters, Ra (roughness average) is predominantly used. Traditionally, surface texture has been used more as an index of the variation in the process due to tool wear, machine tool vibration, damaged machine elements, etc., than as a measure of the performance of the component. There are many reasons that contribute to this tendency: average roughness remains so easy to calculate, it is well understood, and vast amount of published literature explains it, and historical part data is based upon it. It has been seen that Ra, typically, proves too general to describe surface’s true functional nature. Additionally, the push for complex geometry, coupled with the emerging technological advances in establishing new limits in manufacturing tolerances and better understanding of the tribological phenomena, implies the need for surface characterization to correlate surface quality with desirable function of the surface. -
Surface Finish Measurement Objectives
Surface Finish Measurement Objectives • Interpret the surface finish symbols that appear on a drawing • Use a surface finish indicator to measure the surface finish of a part Surface Finish Measurement • Modern technology demanding improved surface finishes • Often require additional operations: lapping or honing • System of symbols devised by ASA • Provide standard system of determining and indicating surface finish • Inch unit is microinch (µin) • Metric unit is micrometer (µm) Surface Indicator • Tracer head and amplifier • Tracer head has diamond stylus, point radius .0005 µin that bears against work surface • Movement caused by surface irregularities converted into electrical fluctuations • Signals magnified by amplifier and registered on meter • Reading indicates average height of surface Readings Either arithmetic average roughness height (Ra) or root mean square (Rq) Symbols Used to Identify Surface Finishes and Characteristics 18-6 Surface Finish Definitions • Surface deviations: departures from nominal surface in form of waviness, roughness, flaws, lay, and profile • Waviness: surface irregularities that deviate from mean surface in form of waves • Waviness height: peak-to-valley distance in inches or millimeters • Waviness width: distance between successive waviness peaks or valleys in inches or millimeters Surface Finish Definitions • Roughness: relatively finely spaced irregularities superimposed on waviness pattern • Caused by cutting tool or abrasive grain action • Irregularities narrower than waviness pattern • Roughness -
A Study of Micro- and Surface Structures of Additive Manufactured Selective Laser Melted Nickel Based Superalloys
DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2016 A study of micro- and surface structures of additive manufactured selective laser melted nickel based superalloys EMIL STRAND, ALEXANDER WÄRNHEIM KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT Abstract This study examined the micro- and surface structures of objects manufactured by selective laser melting (SLM). The results show that the surface roughness in additively manufactured objects is strongly dependent on the geometry of the built part whereas the microstructure is largely unaffected. As additive manufacturing techniques improve, the application range increases and new parameters become the limiting factor in high performance applications. Among the most demanding applications are turbine components in the aerospace and energy industries. These components are subjected to high mechanical, thermal and chemical stresses and alloys customized to endure these environments are required, these are often called superalloys. Even though the alloys themselves meet the requirements, imperfections can arise during manufacturing that weaken the component. Pores and rough surfaces serve as initiation points to cracks and other defects and are therefore important to consider. This study used scanning electron-, optical- and focus variation microscopes to evaluate the microstructures as well as parameters of surface roughness in SLM manufactured nickel based superalloys, Inconel 939 and Hastelloy X. How the orientation of the built part affected the surface and microstructure was also examined. The results show that pores, melt pools and grains where not dependent on build geometry whereas the surface roughness was greatly affected. Both the Rz and Ra values of individual measurements were almost doubled between different sides of the built samples. -
Manufacture Engineers, Part B
CORE Metadata, citation and similar papers at core.ac.uk Provided by Cranfield CERES Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture http://pib.sagepub.com/ Electrolytic In-Process Dressing Superfinishing of Spherical Bearings Using Metal−−Resin Bond Ultra-Fine CBN Wheels M H Raffles, D J Stephenson, P Shore and T Jin Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2011 225: 112 DOI: 10.1243/09544054JEM2003 The online version of this article can be found at: http://pib.sagepub.com/content/225/1/112 Published by: http://www.sagepublications.com On behalf of: Institution of Mechanical Engineers Additional services and information for Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture can be found at: Email Alerts: http://pib.sagepub.com/cgi/alerts Subscriptions: http://pib.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav Citations: http://pib.sagepub.com/content/225/1/112.refs.html Downloaded from pib.sagepub.com at CRANFIELD UNIV INFO & LIB SVC on May 4, 2011 112 SPECIAL ISSUE PAPER Electrolytic in-process dressing superfinishing of spherical bearings using metal–resin bond ultra-fine CBN wheels M H Raffles, D J Stephenson*, P Shore, and T Jin Cranfield University, Cranfield, UK The manuscript was received on 28 January 2010 and was accepted after revision for publication on 19 July 2010. DOI: 10.1243/09544054JEM2003 Abstract: The use of electrolytic in-process dressing (ELID) superfinishing has been investi- gated with the aim of substantially improving surface finish on spherical bearing balls as well as reducing process times.