Reducing Pessimism in Interval Analysis using BSplines Properties: Application to Robotics∗ S´ebastienLengagne, Universit´eClermont Auvergne, CNRS, SIGMA Cler- mont, Institut Pascal, F-63000 Clermont-Ferrand, France.
[email protected] Rawan Kalawouny Universit´eClermont Auvergne, CNRS, SIGMA Cler- mont, Institut Pascal, F-63000 Clermont-Ferrand, France.
[email protected] Fran¸coisBouchon CNRS UMR 6620 and Clermont-Auvergne University, Math´ematiquesBlaise Pascal, Campus des C´ezeaux, 3 place Vasarely, TSA 60026, CS 60026, 63178 Aubi`ere Cedex France
[email protected] Youcef Mezouar Universit´eClermont Auvergne, CNRS, SIGMA Cler- mont, Institut Pascal, F-63000 Clermont-Ferrand, France.
[email protected] Abstract Interval Analysis is interesting to solve optimization and constraint satisfaction problems. It makes possible to ensure the lack of the solu- tion or the global optimal solution taking into account some uncertain- ties. However, it suffers from an over-estimation of the function called pessimism. In this paper, we propose to take part of the BSplines prop- erties and of the Kronecker product to have a less pessimistic evaluation of mathematical functions. We prove that this method reduces the pes- simism, hence the number of iterations when solving optimization or con- straint satisfaction problems. We assess the effectiveness of our method ∗Submitted: December 12, 2018; Revised: March 12, 2020; Accepted: July 23, 2020. yR. Kalawoun was supported by the French Government through the FUI Program (20th call with the project AEROSTRIP). 63 64 Lengagne et al, Reducing Pessimism in Interval Analysis on planar robots with 2-to-9 degrees of freedom and to 3D-robots with 4 and 6 degrees of freedom.