Harnessing Thermoacoustics for Waste Heat Recovery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Air Treatment and Residential HRV Technical Solutions for Integration Into Radiant Systems Rapid Selection of Heat Recuperators
Radiant Systems Catalog • Price List GIACOMINI.COM 05/2019 ITALY ER0008 JUN2019 AIR TREATMENT AND HRV RESIDENTIAL AIR TREATMENT GIACOMINI S.P.A. VIA PER ALZO, 39 28017 SAN MAURIZIO D’OPAGLIO NOVARA ITALY Air Treatment and Residential HRV Technical solutions for integration into radiant systems Rapid selection of heat recuperators EXCHANGE AIR HOUSE TYPE OF HEAT RECUPERATOR FLOW RATE HEAT RECUPERATOR SURFACE LODGING WITH AIR TREATMENT CALCULATED* 2 3 Nominal Catalog Nominal Catalog m m /h Type flow rate Page Type flow rate Page KHRD-V 300/150 m3/h page 67 KHR-V 200 m3/h page 45 Studio flat, KHRD-H 300/150 m3/h page 73 up to 50 two-roomed flat, max 70 KHR-H 200 m3/h page 50 3 1 bathroom KHRW-V 300/150 m /h page 93 KHRA-H 80 m3/h page 113 KHRW-H 300/150 m3/h page 99 KHRD-V 300/150 m3/h page 67 50÷60 75 KHRD-H 300/150 m3/h page 73 KHR-V 200 m3/h page 45 60÷70 Living room, kitchen 90 KHRW-V 300/150 m3/h page 93 1-2-3 bedrooms KHR-H 200 m3/h page 50 3 70÷80 1-2 bathrooms 105 KHRW-H 300/150 m /h page 99 KHRA-H 140 m3/h page 113 80÷90 115 KHRW-H 600/150 m3/h page 99 KDV water cond 300/160 m3/h page 79 KHRD-V 500/250 m3/h page 67 90÷100 130 KHR-V 200 m3/h page 45 KHRD-H 500/250 m3/h page 73 100÷110 Living room, kitchen 145 2-3 bedrooms KHR-H 200 m3/h page 50 KHRW-V 500/250 m3/h page 93 110÷120 2 bathrooms 160 KHRA-H 200 m3/h page 113 KHRW-H 500/250 m3/h page 99 120÷130 170 KDV air cond 360/220 m3/h page 79 KHRD-V 500/250 m3/h page 67 120÷130 170 KHR-V 300 m3/h page 45 KHRD-H 500/250 m3/h page 73 130÷140 Living room, kitchen 185 2-3-4 bedrooms -
A Lightweight, High-Effectiveness Recuperator for Next-Generation Airborne Cryocoolers
A Lightweight, High-Effectiveness Recuperator for Next-Generation Airborne Cryocoolers A. Niblick, J. Cox, M. Zagarola Creare LLC, Hanover, NH, 03755 USA ABSTRACT Next-generation turboelectric aircraft aim to decouple power generation from propulsion by using gas turbines driving electric generators connected to electric propulsion motors. The power density requirements for these electric machines can only be achieved with superconductors, which in turn require lightweight, high-capacity cryocoolers. However, current cryocooler technologies offer cooling capacities that are too low and masses that are too high to meet projected aircraft needs. For turbo-Brayton cryocoolers, the recuperative heat exchanger historically has been the largest and most massive component, and offers the most potential for size and weight reduction. Improvements PD\EHDFKLHYHGWKURXJKWKHXVHRIVPDOOHUÀRZSDVVDJHVRUWKRWURSLFFRUHWKHUPDOUHVLVWDQFHWR GHFUHDVHUHVLVWDQFHEHWZHHQÀRZVWUHDPVZKLOHLQFUHDVLQJD[LDOUHVLVWDQFHIURPZDUPWRFROGHQGV and lighter-weight materials. To this end, a recuperator that implements all such improvements has been developed. The recuperator core consists of a stack of copper-polyimide plates. Miniature ÀRZIHDWXUHVDUHHWFKHGLQWRWKHFRSSHUWRSURYLGHWKHÀRZSDWKIRUWKHUHFXSHUDWHGJDVVWUHDP 7KHVPDOOÀRZIHDWXUHVHWFKHGLQWRWKHFRQGXFWLYHFRSSHUVXEVWUDWHSURPRWHKHDWWUDQVIHUUDGLDOO\ EHWZHHQÀRZVWUHDPVZKLOHWKHSRO\LPLGHDFWVDVDWKHUPDOUHVLVWRULQWKHD[LDOGLUHFWLRQ7KH ODPLQDWHVDUHERQGHGWRJHWKHU7KHUHVXOWLVDFRPSDFWPRQROLWKLFFRUHWKDWDFKLHYHVKLJKVSHFL¿F FRQGXFWDQFH7KLVQHZUHFXSHUDWRUWHFKQRORJ\¿OOVDYRLGEHWZHHQKLJKSHUIRUPDQFHOLJKWZHLJKW -
Waste Heat Recovery in Diesel Engines Using the Organic Rankine
DF Waste Heat Recovery in Diesel Engines using the Organic Rankine Cycle Potential of Heat Recovery in the Volvo D13 Engine for Marine and Standby Power Generation Applications ANIL GOPINATH BHARADWAJ WAEL AL HAJI Department of Mechanics and Maritime Sciences, CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2020 Master’s thesis in Automotive Engineering Waste Heat Recovery in Diesel Engines using the Organic Rankine Cycle Anil Gopinath Bharadwaj Wael Al Haji DF Department of Mechanics and Maritime Sciences Division of Combustion and Propulsion Systems Chalmers University of Technology Gothenburg, Sweden 2020 Waste Heat Recovery in Diesel Engines using the Organic Rankine Cycle ANIL GOPINATH BHARADWAJ WAEL AL HAJI © ANIL GOPINATH BHARADWAJ, WAEL AL HAJI, 2020 Examiner: Sven B Andersson, Prof. Division of Combustion and Propulsion Sys- tems, Chalmers University of Technology Supervisors: Jelmer Rijpkema, Chalmers University of Technology; Patrik Land- berg, Volvo Penta AB; Björn Wessman, Volvo Penta AB; Master’s Thesis in Automotive Engineering Department of Mechanics and Maritime Sciences Division of Combustion and Propulsion Systems Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Cover: Pictures showcasing the engine which WHR system is used for, operating points of interest and a T-s diagram of cyclopentane. Printed by Department of Mechanics and Maritime Sciences Gothenburg, Sweden 2020 iv Waste Heat Recovery in Diesel Engines using the Organic Rankine Cycle Potential of Heat Recovery in the Volvo D13 Engine for Marine and Standby Power Generation Applications Thesis for the degree of Masters in Automotive Engineering/Marine Engineering ANIL GOPINATH BHARADWAJ, WAEL AL HAJI Department of Mechanics and Maritime Sciences, Division of Combustion and Propulsion Systems Chalmers University of Technology Abstract The current global warming situation and various other environmental challenges call for innovative and easy-to-implement technologies to help counter the effect. -
I4 Energy Recovery Wheel
I4 ENERGY RECOVERY WHEEL innergytech.com 5 year warranty parts & labor HEAT PIPES PLATES WHEELS CORES * 8068_IT_Manual I4_V2_octobre 2019 Révision 01 TABLE OF CONTENTS ABOUT THIS MANUAL ________________________________________________________________________________4 WINNERGY PRO SELECTION SOFTWARE _______________________________________________________________5 THE IMPROVED I4 WHEEL DESIGN _____________________________________________________________________6 THE I4R FIELD INSTALLED ENERGY RECOVERY WHEEL ___________________________________________________7 SPLIT FRAME DESIGN ________________________________________________________________________________7 PERFECT FOR MECHANICAL ROOMS AND RETROFIT APPLICATIONS _____________________________________7 OTHER FIELD SERVICES ______________________________________________________________________________7 FEATURES AND BENEFITS _____________________________________________________________________________7 PRODUCT OVERVIEW ________________________________________________________________________________8 PRINCIPLE OF OPERATION ___________________________________________________________________________9 1.1 Energy recovery _______________________________________________________________________________ 9 1.2 Key wheel effectiveness factors ________________________________________________________________10 I4 CONSTRUCTION/PARTS __________________________________________________________________________11 2.1 Construction details __________________________________________________________________________ -
Heating Systems That Maximize Efficiency November 2009 with Cooler Months Ahead, a Facility Manager's Thoughts Tend to Turn to Heating Systems
Heating Systems That Maximize Efficiency November 2009 With cooler months ahead, a facility manager's thoughts tend to turn to heating systems. While you won't be able to quickly tack on a heat recovery component to your current systems, it is useful to know where energy—typically heat energy—is lost. This article begins with a description of a standard heat recovery system, after which we'll address some basic heat recovery strategies. We'll finish up with a description of cogeneration, which would typically take place in power plants, but also sometimes in very large facilities. Heat Recovery Systems Many buildings generate excess heat within their interior areas, even in the winter. In most buildings, this heat is removed from the building because it is not transferable to the areas that require heating. Therefore, a large office building may require simultaneous heating and cooling. Heat is required to offset the heat loss through the exterior walls and roof, while interior cooling may be necessary to remove excess heat from people, equipment, and lights. In many buildings, the internal heat gain from lights may be sufficient to heat the building through most of the winter season. Thus, the principal heating or cooling requirements are due to heat losses or gains through the exterior walls of the buildings and through infiltration of outside air. A heat recovery system extracts excess interior heat and transfers it to areas of the building that require heat. Such systems are not widely used because they are expensive to install. However, the long-term savings dividends may make the investment worthwhile. -
Evaluation of Heat Transfer on Air Recuperator
© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162) EVALUATION OF HEAT TRANSFER ON AIR RECUPERATOR M. Padma1, P. S. Kishore2, K. Sudhakar3 G.Prasad4 M. E Student1, Professor (Ph. D)2, 푘. 푠푢푑ℎ푎푘푎푟3 퐷푒푝푎푟푡푚푒푛푡 표푓 푀푒푐ℎ푎푛푐푎푙 퐸푛푔푛푒푒푟푛푔12 퐴푛푑ℎ푟푎 푈푛푣푒푟푠푡푦12, Visakhapatnam - 530003, India 퐷푒푝푢푡푦 퐺푒푛푒푟푎푙 푀푎푛푎푔푒푟 (퐸푀퐷)3, 푅푎푠ℎ푡푟푦푎 퐼푠푝푎푡 푁푔푎푚 퐿푚푡푒푑3 Assisitant professor©, JNTU KAKINADA ABSTRACT-Industrial waste heat refers to energy that is flow rates of air and flue gas are consolidated as table and put in generated in industrial process without being put to practical use. appendix. It is estimated that somewhere between 20 to 50% industrial Key words: recuperator, volume flow rate, heat transfer energy input is lost as waste heat in the form of hot exhaust gases, cooling water, heat lost from hot equipment surface and heated coefficient , friction factor, pressure drop. products. While some waste heat losses from industrial processes I INTRODUCTION are inevitable. Facilities can reduce these losses by improving Air Recuperator: equipment efficiency or installing waste heat recovery technologies. The flue gases coming out of the furnace are sent through the air recuperator so that the excess heat energy from the flue In the steel making process, Rolling mills play a vital gases can be absorbed by the incoming air. The recuperator is role in transforming the steel to finished Products. Rolling mills at shell and tube type cross-flow heat exchanger. Waste gases which are to be circulated in the furnace in a direction opposite to that of Visakhapatnam Steel Plant consists of Light and medium bloom movement will be exhausted through the openings merchant mill (LMMM), Wire Rod Mills (WRM) and Medium provided at the charging end, after passing through the Merchant Structural Mills (MMSM). -
A Customer Guide to Combined Heat and Power
A Customer Guide to Combined Heat and Power A product of the Energy Solutions Center Inc. 400 North Capitol St. NW Commercial Buildings Consortium Washington, DC 20001 Energy Solutions Center Inc. www.ESCenter.org Table of Contents Available Resources www.understandingCHP.com What is Combined Heat & Power 1 www.GasAirConditioning.com Prime Movers 3 Reciprocating Engines 4 U.S. Department of Energy and FEMP https://www.energy.gov/eere/amo/combined-heat- Combustion Turbines 5 and-power-basics https://www.energy.gov/eere/femp/federal-energy- Micro Turbines 6 management-program CHP Installation database: Steam Turbines 7 https://doe.icfwebservices.com/chpdb/ Fuel Cells 8 U.S. Environmental Protection Agency (EPA) https://www.epa.gov/chp Micro CHP 9 Policies & Incentives Database: https://www.epa.gov/chp/dchpp-chp-policies-and- Waste Heat Recovery 10 incentives-database Site vs. Source 12 Environmental Benefits 13 Economics 15 Available Resources 18 What is Combined Heat & Power Combined Heat and Power (CHP) by definition is the generation of two forms of energy from one common source of fuel also known as Cogeneration. Waste Heat Heat & Hot Water Recovered Fuel Prime Mover Electricity & Generator The CHP system is typically located at or near your building and generates electricity or mechanical power with the added benefit of recovering the waste heat in the form of hot water, steam, or warm Spark spread is the relative difference between the price of fuel and air to meet thermal needs. This high quality and very reliable power the price of power. Spark spread is highly dependent on the system provides a secure energy source along with the ability to efficiency of conversion. -
Easychair Preprint Energy and Exergy Analyses of a Novel
EasyChair Preprint № 3473 Energy and Exergy Analyses of a Novel Recirculated Regenerative Rotary Desiccant Wheel-Assisted Dehumidification System Xiaoqu Han, Wenxiang Wu, Daotong Chong, Minqi Su, Dan Zhang and Junjie Yan EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair. May 23, 2020 PROCEEDINGS OF ECOS 2020 - THE 33RD INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS JUNE 29-JULY 3, 2020, OSAKA, JAPAN Energy and exergy analyses of a novel recirculated regenerative rotary desiccant wheel- assisted dehumidification system Xiaoqu Hana, Wenxiang Wua, Daotong Chonga, Minqi Sub, Dan Zhanga, and Junjie Yana a State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, China, [email protected] b MOE Key Laboratory of Thermal Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an, China Abstract: The indoor air humidity and temperature in the marine cabins could be as high as 80% and 40 ℃ - 50 ℃, respectively, which may cause security risks to crews and devices. The incorporation of solid desiccant wheel for improved dehumidification and air quality control would contribute to energy saving in air conditioning system through waste heat recovery for regeneration. In the present work, a novel recirculated regenerative rotary desiccant wheel-assisted dehumidification system was proposed. The energy and exergy performances of the system under variable working conditions were quantitatively studied based on experimental tests. The dehumidification effectiveness, dehumidification performance coefficient (DCOP), sensible energy ratio and coefficient of performance (COP) were introduced as key energetic indicators. The effects of air bypass ratio (50% - 85%), process air temperature (28 ℃ - 40 ℃), relative humidity of process air (60%RH - 80%RH) and regeneration air temperature (130 ℃ - 150 ℃) on the system performances were obtained. -
Waste Heat Recovery Technology Assessment
Quadrennial Technology Review 2015 Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing Technology Assessments Additive Manufacturing Advanced Materials Manufacturing Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics U.S. DEPARTMENT OF ENERGY Quadrennial Technology Review 2015 Waste Heat Recovery Systems Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Waste Heat Recovery Systems is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology assessments are illustrated below. Representative Intra-Chapter Connections Representative Extra-Chapter Connections CHP: heat recovery in CHP systems Sustainable Manufacturing: optimization of heat flows to maximize production intensity and minimize waste heat losses Electric Power: waste heat recovery Direct Thermal Energy Conversion: novel energy -
Diesel Engine Waste Heat Recovery System Comprehensive Optimization Based on System and Heat Exchanger Simulation
Open Physics 2021; 19: 331–340 Research Article Da Li, Qiang Sun, Ke Sun*, Guodong Zhang, Shuzhan Bai*, and Guoxiang Li* Diesel engine waste heat recovery system comprehensive optimization based on system and heat exchanger simulation https://doi.org/10.1515/phys-2021-0039 received February 04, 2021; accepted May 11, 2021 Nomenclature Abstract: To further improve the thermal efficiency of E power output, kW diesel engines, a waste heat recovery system model uti- m mass flow rate, kg/s lizing organic Rankine cycle (ORC) is constructed and Q heat flux, kW verified through system bench test and heat exchanger h enthalpy, kJ/kg bench test. To recover waste heat from diesel engine η efficiency exhaust, ethanol, cyclopentane, cyclohexane, R1233zd out outlet (E), and R245fa were selected for comparison. The quality s heat source of heat source, the quality of evaporator, the system r working fluid output, and the system complicity were taken as vari- re recuperated ables for comparison. Analysis shows that for ORC sys- tems without recuperator, ethanol system has the best system output of the five in a wide operation temper range, with the highest exergy efficiency of 24.1%, yet the exergy Subscripts and superscripts efficiency increase after the application of recuperator, 9.0%, is limited. For low temperature exhaust, cyclopen- eva evaporator tane system has the best performance with or without exp expander recuperator, and the cyclopentane system with recup- in inlet erator has the best performance in terms of exergy effi- ciency, 27.6%, though complex heat exchangers are also required for high power output. -
A Waste Heat Recovery Strategy for an Integrated Steelworks
A Waste Heat Recovery Strategy for An Integrated Steelworks By Christopher Lloyd Williams Thesis submitted to the Cardiff University in fulfilment of the requirements for the degree of Doctor of Philosophy. School of Engineering Cardiff University December 2015 Summary UK energy prices have doubled over the last decade, which has driven the UK Iron and Steel Industry to invest in energy efficient technologies. However, even with these relatively high prices the industry still finds it difficult to build a business case to justify waste heat recovery projects. The Steel Industry has large quantities of waste heat and there are technologies readily available for its capture, but often the issue has been finding a cost effective ‘end use’. Individual schemes incorporating both capturing and an ‘end use’ for the waste heat often incur high capital costs with resulting long payback times. This thesis defines the development and modelling of a strategy and methodology for the utilisation of waste heat recovery in a UK based Steelworks. The methodology involves the utilisation of the existing steam distribution circuit to link the possible waste heat schemes together with a single ‘end user’ thus limiting the capital requirement for each subsequent project. The thesis defines the development of a numerical model that is initially verified through extensive comparison to actual plant data from a series of pre-defined operational scenarios. The model is used to predict the pressure and temperature effects on the steam distribution system as the waste heat recovery boilers from various areas of the case study steelworks are connected up to it. -
Compact Heat Exchangers for Microturbines
Compact Heat Exchangers for Microturbines R.K. Shah Rochester Institute of Technology Dept. of Mechanical Engineering 76 Lomb Memorial Drive Rochester NY 14623-5604 USA [email protected] ABSTRACT With distributed power generation market, the most economical solution today is to generate power through small gas turbine systems, arbitrarily categorized as microturbines (5 – 200 kW) and miniturbines (200 – 500 kW). The thermal efficiency of such microturbines is about 20% or less if no recuperator is used in the system. Using a recuperator (regenerator can also be considered but has a number of problems) operating at 87% effectiveness, the efficiency of the gas turbine system increases to about 30%, a substantial performance improvement. However, cost of the recuperator is about 25 – 30% of the total power plant. This means that the heat exchanger (recuperator) must be designed to get high performance with minimum cost. While the offset strip fin geometry is one of the highest performing surface it is also quite expensive to manufacture. This necessitates the use of all prime surface heat exchangers with no brazing. In this paper, after providing the necessary concise information on microturbines, the discussion is presented on various types of heat exchanger surfaces and novel designs considered for the cost effective heat exchangers and packaging in the system. For hot fluid inlet temperature of less than about 675°C, stainless steel material can be used for the heat exchanger, which has reasonable cost. However, for higher inlet temperatures in heat exchangers associated with higher turbine inlet temperatures, superalloys are essential which increases the material cost of the exchanger alone by a factor of 4 to 5.