PLASMODIUM (Malarial Parasite)

Total Page:16

File Type:pdf, Size:1020Kb

PLASMODIUM (Malarial Parasite) PLASMODIUM (Malarial parasite) In olden times the malarial fever was believed to have been caused by inhaling foul air and hence the term (mala = foul; aera = air). In 1880 a French Biologist Laveran pinned the cause for malaria on a protozoan parasite, Plasmodium vivax, occurring in the blood of man. It is a sporozoan occurring in the blood and hence belongs to haemosporidia. The life-cycle is completed in 2 hosts namely (1) man and (2) female Anopheles mosquito. Life Cycle of Plasmodium vivax one in Life-cycle in Man: The life Cycle consists of two phases one in the liver and other in the erythrocyte. Pre-erythrocytic cycle: A man gets infected when bitten by female Anopheles mosquito that librates sporozoite into his blood. Each sporozoite enters the liver and transforms into cryptozoite, grows, fills up the entire cell and is termed undergoes asexual multiplication resulting in cryptomerozoites may either which enter the are blood or liberated into circulation when the schizont bursts (schizogony). The cryptomerozoites invade the RBC or enter fresh liver cells to continue the exo-erythrocytic cycle. Exo-erythrocytic cycle: The cryptomerozoites producing a number of metacryptozoites. This may be repeated several times and each time liver cells are infected. A few metacryptozoites after escaping into the blood stream, invade the erythrocytes to begin the erythrocytic cycle. After the entry of sporozoites into blood, Plasmodium is seen back in the blood only after 7 to 17 days after completing its cycle in the liver (incubation period). The cryptomerozoite entering into R.B.C. becomes amoeboid and it is the feeding stage termed trophozoite. Soon a vacuole appears pushing the cytoplasm and nucleus outwards forming the signet- ring stage. The trophozoite makes use of the haemoglobin as its food. When it is full grown, the vacuole disappears, it becomes disc-shaped, ready to divide asexually and is termed schizont which has a brown pigment haemozoin, the digested haemoglobin. Its nucleus divides into 6 to 24 bits, each bit surrounded by cytoplasm, and these are the merozoites. They break open the R.B.C. to infect a fresh R.B.C. When they are released, the toxin is set free resulting in fever. This cycle is asexual and hence a gamogony. Since schizont produces merozoites, it is schizogony or merogony. This part of the life-cycle was worked out by Golgi and named after him as cycle of Golgi. In man, the life-cycle is asexual, exo-erythrocytic cycle in liver and endo-erythrocytic cycle in the R.B.C. By repeated asexual cycle, almost all R.B.C. may be destroyed and for the continuance of the species, the Plasmodium will have to get into the mosquito. For this purpose it produces two special types of gamete-producing cells called macrogametocyte with small nucleus and reserve food in cytoplasm and microgametocyte with large nucleus and no reserve food. Life-cycle in mosquito: When the mosquito sucks the blood of a malarial patient, all the asexual stages and the two types of gametocytes enter its stomach where gametocytes alone survive. They come out of R.B.C. In the macrogametocyte, a bit of nucleus and cytoplasm forming the polar body get thrown out and the larger cell forms the egg. In microgametocyte, the nucleus divides a number of times and slender finger-like outgrowths develop from the margin. öne of the nuclei enters it forming the male gamete. Cytoplasmic process is formed and the slender nucleated bodies exhibit lashing movement and therefore the process is referred to as exflagellation. The male gametes separate off and one enters the ovum resulting in fertilization, forming a zygote. The male and female gametes are dissimilar and so are termed anisogametes or heterogametes. The zygote exhibits wriggling movement forming the ookinete which penetrates into the stomach wall, develops a cyst wall forming oocyst. It grows absorbing the nourishment from the host. The nucleus once again divides a number of times and around each nuclei, small amount of cytoplasm gets collected. Thus, inside the oocyst a number of cells develop. They are slender, sickle shaped called sporozoites. mature cyst ruptures liberating the content into the haemocoel of mosquiW The sporozoites being motile pierce the salivary glands and collect themselves in the tube Female Anopheles mosquito infected in such a way bite more individuals and inoculate the sporozoite into their blood. life-cycle in mosquito is sexual and hence gamoony. Since it is sporogony. This cycle was worked out first by Sir Ronald Ross. Malarial control: Many fertile agriculturally rich places had to be given up due to the cases of malaria. During the past few years malaria was kept under control and in recent it is on the increase. To eradicate malaria, malarial control measure are followed. Malarial control always goes hand in hand with mosquito control. It is achieved by curative methods. Prophylactic method involves preventing the malarial parasite from entering the blood of man. Since the mosquitoes breed in stagnant waters, the surroundings of habitations should be drained of the stagnant water. Dark comers of houses are to be sprayed with insecticides. Sleeping inside mosquito curtains will keep the mosquitoes away. Smearing the body with mosquito repellents like Citronella oil, or by using fumes of repellents, mosquitoes can be avoided. Oil is to be poured on stagnant water since it forms a thin film preventing the mosquito larvae from breathing. D.D.T. (Dichloro Diphenyl Trichloroethane) was effective for sometime but now mcsquitoes are resistant to it by converting D.D.T. into D.D.E. (Dichloro Diphenyl Ethane) in their body Dragonfly adults feed mainly on mosquito adults and their larvae feed only on mosquito larvae. Certain fishes like Gambusia feed on mosquito larvae and they are termed larvicidal fishes. They are introduced into wells, open tanks, etc. Curative method involves treating the patient after malaria has a firm hold in his body. Quinine derived from the bark of Cinchona tree was in wide use since it was able to kill the parasites. Now, numerous synthetic formulations of Quinine are in the market for treatment of malaria, common being paludrine, mepacrine, camoquin, etc. 3. PARAMECIUM This belongs to the class Ciliata of the Phylum Protozoa. Occurrence: It is a common protozoan occurring in ponds and pools containing organic decay. It can be cultured in an infusion of hay. Structure: The common species is P. caudatum. The anterior end is rounded and the posterior end is pointed. or the outside of that ectoplasm is a distinct pellicle. The oral groove has a depression extending backward for about two-thirds of the length of the body leading into a cytostome or cell mouth. it is connected with a short cytopharynx which opens in the cytoplasm. The cytoplasm contains food vacuoles. The surface of the body is covered with cilia arranged in a definite pattern. Near each end of the endoplasm is a contractile vacuole and into each of these, a variable number of radiating canals empty. Paramecium — Stages in conjugation Endomixis: It is a nuclear reorganisation in one and the same individual macronucleus divides and disappears, the micronucleus establishes future macro and nuclei. Behaviour: Paramecium is sensitive to many kinds stimuli contact, temperature, electric current, chemicals, gravity and others. The response is negative to strong light ultraviolet rays. It is positive for water currents. They are attracted by weak acetic acid repulsed by strong acid. If a Paramecium strikes against an obstacle, it gets back and swims away. The anterior end is more sensitive than the posterior end. .
Recommended publications
  • “Salivary Gland Cellular Architecture in the Asian Malaria Vector Mosquito Anopheles Stephensi”
    Wells and Andrew Parasites & Vectors (2015) 8:617 DOI 10.1186/s13071-015-1229-z RESEARCH Open Access “Salivary gland cellular architecture in the Asian malaria vector mosquito Anopheles stephensi” Michael B. Wells and Deborah J. Andrew* Abstract Background: Anopheles mosquitoes are vectors for malaria, a disease with continued grave outcomes for human health. Transmission of malaria from mosquitoes to humans occurs by parasite passage through the salivary glands (SGs). Previous studies of mosquito SG architecture have been limited in scope and detail. Methods: We developed a simple, optimized protocol for fluorescence staining using dyes and/or antibodies to interrogate cellular architecture in Anopheles stephensi adult SGs. We used common biological dyes, antibodies to well-conserved structural and organellar markers, and antibodies against Anopheles salivary proteins to visualize many individual SGs at high resolution by confocal microscopy. Results: These analyses confirmed morphological features previously described using electron microscopy and uncovered a high degree of individual variation in SG structure. Our studies provide evidence for two alternative models for the origin of the salivary duct, the structure facilitating parasite transport out of SGs. We compare SG cellular architecture in An. stephensi and Drosophila melanogaster, a fellow Dipteran whose adult SGs are nearly completely unstudied, and find many conserved features despite divergence in overall form and function. Anopheles salivary proteins previously observed at the basement membrane were localized either in SG cells, secretory cavities, or the SG lumen. Our studies also revealed a population of cells with characteristics consistent with regenerative cells, similar to muscle satellite cells or midgut regenerative cells. Conclusions: This work serves as a foundation for linking Anopheles stephensi SG cellular architecture to function and as a basis for generating and evaluating tools aimed at preventing malaria transmission at the level of mosquito SGs.
    [Show full text]
  • There Is Not a Latin Root Word Clear Your Desk Protist Quiz Grade Quiz
    There is not a Latin Root Word Clear your desk Protist Quiz Grade Quiz Malaria Fever Wars Classification Kingdom Protista contains THREE main groups of organisms: 1. Protozoa: “animal-like protists” 2. Algae: “plant-like protists” 3. Slime & Water Molds: “fungus-like protists” Basics of Protozoa Unicellular Eukaryotic unlike bacteria 65, 000 different species Heterotrophic Free-living (move in aquatic environments) or Parasitic Habitats include oceans, rivers, ponds, soil, and other organisms. Protozoa Reproduction ALL protozoa can use asexual reproduction through binary fission or multiple fission FEW protozoa reproduce sexually through conjugation. Adaptation Special Protozoa Adaptations Eyespot: detects changes in the quantity/ quality of light, and physical/chemical changes in their environment Cyst: hardened external covering that protects protozoa in extreme environments. Basics of Algae: “Plant-like” protists. MOST unicellular; SOME multicellular. Make food by photosynthesis (“autotrophic prostists”). Were classified as plants, BUT… – Lack tissue differentiation- NO roots, stems, leaves, etc. – Reproduce differently Most algal cells have pyrenoids (organelles that make and store starch) Can use asexual or sexual reproduction. Algae Structure: Thallus: body portion; usually haploid Body Structure: 1) unicellular: single-celled; aquatic (Ex.phytoplankton, Chlamydomonas) 2) colonial: groups of coordinated cells; “division of labor” (Ex. Volvox) 3) filamentous: rod-shaped thallus; some anchor to ocean bottom (Ex. Spyrogyra) 4) multicellular: large, complex, leaflike thallus (Ex. Macrocystis- giant kelp) Basics of Fungus-like Protists: Slime Molds: Water Molds: Once classified as fungi Fungus-like; composed of Found in damp soil, branching filaments rotting logs, and other Commonly freshwater; decaying matter. some in soil; some Some white, most yellow parasites.
    [Show full text]
  • Microorganisms – Protists: Euglena
    Microorganisms – Protists: Euglena Euglena are unicellular organisms classified into the Kingdom Protista, and the Phylum Euglenophyta. All euglena have chloroplasts and can make their own food by photosynthesis. They are not completely autotrophic though, euglena can also absorb food from their environment. Euglena usually live in quiet ponds or puddles. Euglena move by a flagellum (plural flagella), which is a long whip-like structure that acts like a little motor. The flagellum is located on the anterior (front) end, and twirls in such a way as to pull the cell through the water. It is attached at an inward pocket called the reservoir. Color and label the reservoir grey. Color and label the flagellum black. The Euglena is unique in that it is both heterotrophic (must consume food) and autotrophic (can make its own food). Chloroplasts within the euglena trap sunlight that is used for photosynthesis and can be seen as several rod-like structures throughout the cell. Color and label the chloroplasts green. Euglena also have an eyespot at the anterior end that detects light, it can be seen near the reservoir. This helps the euglena find bright areas to gather sunlight to make their food. Color and label the eyespot red. Euglena can also gain nutrients by absorbing them across their cell membrane, hence they become heterotrophic when light is not available, and they cannot photosynthesize. The euglena has a stiff pellicle outside the cell membrane that helps it keep its shape, though the pellicle is somewhat flexible, and some euglena can be observed scrunching up and moving in an inchworm type fashion.
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]
  • Oecd Guideline for the Testing of Chemicals
    474 Adopted: 21st July 1997 OECD GUIDELINE FOR THE TESTING OF CHEMICALS Mammalian Erythrocyte Micronucleus Test INTRODUCTION 1. The mammalian in vivo micronucleus test is used for the detection of damage induced by the test substance to the chromosomes or the mitotic apparatus of erythroblasts by analysis of erythrocytes as sampled in bone marrow and/or peripheral blood cells of animals, usually rodents. 2. The purpose of the micronucleus test is to identify substances that cause cytogenetic damage which results in the formation of micronuclei containing lagging chromosome fragments or whole chromosomes. 3. When a bone marrow erythroblast develops into a polychromatic erythrocyte, the main nucleus is extruded; any micronucleus that has been formed may remain behind in the otherwise anucleated cytoplasm. Visualisation of micronuclei is facilitated in these cells because they lack a main nucleus. An increase in the frequency of micronucleated polychromatic erythrocytes in treated animals is an indication of induced chromosome damage. 4. Definitions used are set out in the Annex. INITIAL CONSIDERATIONS 5. The bone marrow of rodents is routinely used in this test since polychromatic erythrocytes are produced in that tissue. The measurement of micronucleated immature (polychromatic) erythrocytes in peripheral blood is equally acceptable in any species in which the inability of the spleen to remove micronucleated erythrocytes has been demonstrated, or which has shown an adequate sensitivity to detect agents that cause structural or numerical chromosome aberrations. Micronuclei can be distinguished by a number of criteria. These include identification of the presence or absence of a kinetochore or centromeric DNA in the micronuclei. The frequency of micronucleated immature (polychromatic) erythrocytes is the principal endpoint.
    [Show full text]
  • Can Protozoa Prove the Beginning of the World?
    Southeastern University FireScholars Classical Conversations Spring 2020 Can Protozoa Prove the Beginning of the World? Karina L. Burton Southeastern University - Lakeland, [email protected] Follow this and additional works at: https://firescholars.seu.edu/ccplus Part of the Cell Biology Commons, and the Evolution Commons Recommended Citation Burton, Karina L., "Can Protozoa Prove the Beginning of the World?" (2020). Classical Conversations. 9. https://firescholars.seu.edu/ccplus/9 This Term Paper is brought to you for free and open access by FireScholars. It has been accepted for inclusion in Classical Conversations by an authorized administrator of FireScholars. For more information, please contact [email protected]. 1 Can Protozoa Prove the Beginning of the World? Karina L. Burton Classical Conversations: Challenge 4; Southeastern University ENGL 1233: English Composition II Grace Veach April 16, 2020 2 Abstract Protozoa are magnificent creatures. They exhibit all of the functions intrinsic to living organisms: irritability, metabolism, growth and reproduction. Within these functions, there are numerous examples of mutations that occur in order for organisms to adapt to their given environments. Irritability is demonstrated in protozoa by their use of pseudopodia, flagella, or cilia for motility; it has been shown that such locomotors exhibit diversity while maintaining similar protein and chemical structures that appear to be a result of evolutionary processes. Metabolism in protozoa is similar to that of larger animals, but their diet is unique. They primarily feast upon bacteria, which have begun mutating to evade easy ingestion and digestion by protozoa, therefore increasing their survival rate and making it necessary for protozoa to adapt.
    [Show full text]
  • S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use
    Guidance for Industry S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) June 2012 ICH Guidance for Industry S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use Additional copies are available from: Office of Communications Division of Drug Information, WO51, Room 2201 Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Silver Spring, MD 20993-0002 Phone: 301-796-3400; Fax: 301-847-8714 [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm and/or Office of Communication, Outreach and Development, HFM-40 Center for Biologics Evaluation and Research Food and Drug Administration 1401 Rockville Pike, Rockville, MD 20852-1448 http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (Tel) 800-835-4709 or 301-827-1800 U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) June 2012 ICH Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION (1)....................................................................................................... 1 A. Objectives of the Guidance (1.1)...................................................................................................1
    [Show full text]
  • Biology Chapter 19 Kingdom Protista Domain Eukarya Description Kingdom Protista Is the Most Diverse of All the Kingdoms
    Biology Chapter 19 Kingdom Protista Domain Eukarya Description Kingdom Protista is the most diverse of all the kingdoms. Protists are eukaryotes that are not animals, plants, or fungi. Some unicellular, some multicellular. Some autotrophs, some heterotrophs. Some with cell walls, some without. Didinium protist devouring a Paramecium protist that is longer than it is! Read about it on p. 573! Where Do They Live? • Because of their diversity, we find protists in almost every habitat where there is water or at least moisture! Common Examples • Ameba • Algae • Paramecia • Water molds • Slime molds • Kelp (Sea weed) Classified By: (DON’T WRITE THIS DOWN YET!!! • Mode of nutrition • Cell walls present or not • Unicellular or multicellular Protists can be placed in 3 groups: animal-like, plantlike, or funguslike. Didinium, is a specialist, only feeding on Paramecia. They roll into a ball and form cysts when there is are no Paramecia to eat. Paramecia, on the other hand are generalists in their feeding habits. Mode of Nutrition Depends on type of protist (see Groups) Main Groups How they Help man How they Hurt man Ecosystem Roles KEY CONCEPT Animal-like protists = PROTOZOA, are single- celled heterotrophs that can move. Oxytricha Reproduce How? • Animal like • Unicellular – by asexual reproduction – Paramecium – does conjugation to exchange genetic material Animal-like protists Classified by how they move. macronucleus contractile vacuole food vacuole oral groove micronucleus cilia • Protozoa with flagella are zooflagellates. – flagella help zooflagellates swim – more than 2000 zooflagellates • Some protists move with pseudopods = “false feet”. – change shape as they move –Ex. amoebas • Some protists move with pseudopods.
    [Show full text]
  • I Vigour. by This Means We Provide Not Only a Break Which Membrane Could Be Made Out
    16 DR. G. C. CHATTERJEE: THE CULTIVATION OF TRYPANOSOMA, ETC. lilled with bluish-stained granules. No other structure could THE CULTIVATION OF TRYPANOSOMA be made out. The posterior end (that opposite to the OUT OF THE LEISHMAN-DONOVAN aagellum end) was finely drawn out as it were into a small flagellum. BODY UPON THE METHOD OF In the moist hanging-drop preparation made on the third CAPTAIN L. ROGERS, I.M.S. lay the appearance of the fully developed parasite was most interesting. In examining the specimen under 1/16 th inch BY G. C. CHATTERJEE, M.B., oil immersion lens I found several elongated flagellate ASSISTANT BACTERIOLOGIST, MEDICAL COLLEGE, CALCUTTA. bodies moving slowly across the field by a lashing side-to- side movement of the this end the front (With Coloured Illustration.) flagellum, being of the moving parasite. The movement was distinctly slow, much slower than that of an FOLLOWING the method of L. ordinary’ trypanosoma my teacher, Captain Rogers, (trvpanosoma Brucei or Evansi). No wriggling movement I.M.S., for cultivating Leishman-Donovan bodies in citrate could be made out. The thick flagellum end was ’distinctly of sodium solution I have succeeded in developing trypano-. seen moving among the broken-down red corpuscles which soma from the Leishman-Donovan bodies. were pushed out by the jerking movement of the flagellum. In one field .I a a The patient from whom the blood for making the culture found group of these parasites lying in clump, their anterior ends being free, reminding one was taken by spleen puncture was an inhabitant of Sylhet.
    [Show full text]
  • The Protozoan Nucleus. Molecular and Biochemical Parasitology, 209(1-2), Pp
    McCulloch, R., and Navarro, M. (2016) The protozoan nucleus. Molecular and Biochemical Parasitology, 209(1-2), pp. 76-87. (doi:10.1016/j.molbiopara.2016.05.002) This is the author’s final accepted version. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/135296/ Deposited on: 22 February 2017 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk *Manuscript Click here to view linked References The protozoan nucleus Richard McCulloch1 and Miguel Navarro2 1. The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, U.K. Telephone: 01413305946 Fax: 01413305422 Email: [email protected] 2. Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Avda. del Conocimiento s/n, 18100 Granada, Spain. Email: [email protected] Correspondence can be sent to either of above authors Keywords: nucleus; mitosis; nuclear envelope; chromosome; DNA replication; gene expression; nucleolus; expression site body 1 Abstract The nucleus is arguably the defining characteristic of eukaryotes, distinguishing their cell organisation from both bacteria and archaea. Though the evolutionary history of the nucleus remains the subject of debate, its emergence differs from several other eukaryotic organelles in that it appears not to have evolved through symbiosis, but by cell membrane elaboration from an archaeal ancestor. Evolution of the nucleus has been accompanied by elaboration of nuclear structures that are intimately linked with most aspects of nuclear genome function, including chromosome organisation, DNA maintenance, replication and segregation, and gene expression controls.
    [Show full text]
  • Chapter 7 Cell Structure and Function, TE
    Name______________________________ Class __________________ Date ______________ Chapter 7 Cell Structure and Function Section 7–1 Life Is Cellular (pages 169–172) This section explains what the cell theory is. It also describes the characteristics of two categories of cells, prokaryotes and eukaryotes. Introduction (page 169) 1. What is the structure that makes up every living thing? The cell The Cell Theory (pages 169–170) 2. What was Anton van Leeuwenhoek the first to see in the 1600s? He was the first person to see tiny living organisms in a drop of water. 3. What did a thin slice of cork seem like to Robert Hooke when he observed it through a microscope? The cork seemed to be made of tiny chambers. 4. What did the German botanist Matthias Schleiden conclude? He concluded that all plants are made of cells. 5. What did the German scientist Theodor Schwann conclude? He concluded that animals were also made of cells. 6. How did Rudolph Virchow summarize his years of work? He stated that where a cell exists, there must have been a preexisting cell. 7. What are the three concepts that make up the cell theory? a. All living things are composed of cells. b. Cells are the basic units of structure and function in living things. c. New cells are produced from existing cells. Basic Cell Structures (page 171) 8. Complete the table about structures that are common to most cells. COMMON CELL STRUCTURES Structure Description Cell membrane A thin, flexible barrier around the cell Cell wall A strong layer around the cell membrane in many cells © Pearson Education, Inc.
    [Show full text]
  • Functional Characterization of Contractile Vacuole Isolated from Amoeba Proteus
    CELL STRUCTURE AND FUNCTION 29: 85–90 (2004) © 2004 by Japan Society for Cell Biology Functional Characterization of Contractile Vacuole Isolated from Amoeba proteus Eri Nishihara, Teruo Shimmen, and Seiji Sonobe Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan ABSTRACT. Contractile vacuoles (CVs) released from cells of Amoeba proteus were used to analyze its function in vitro. When CV was transferred to a hypertonic medium, its volume decreased within 10 sec. When it was sub- sequently returned to its original medium, it quickly started swelling. However, it ruptured before recovering its initial volume. These results suggested that the CV membrane is semi-permeable and that the fluid is collected by the osmotic gradient in vivo. The water permeability of membrane of isolated CV was calculated from the rate of osmotic volume change to be 0.94 m/sec · OsM. This high value suggested that CV membrane is equipped with water channel. CV contracted (or burst) quickly upon addition of 1 mM ATP. Contraction was induced by ATP, but not by other nucleotides, GTP, ITP, ADP, or the analogues of ATP, AMP-PNP and ATPS. It was suggested that the contraction of isolated CV was caused by increase in the tension of its membrane by ATP. Key words: contractile vacuole/Amoeba proteus/osmolality/water permeability/ATP Introduction release fluid to cell exterior at systole. The function of CVs has been extensively studied in In higher animals forming multicellular systems, cells and Paramecium (Allen, 2000), in which CV apparatus is body fluids are isotonic.
    [Show full text]