Packet-Switching: Store-And-Forward
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 8: Overview of Computer Networking Roadmap
Lecture 8: Overview of Computer Networking Slides adapted from those of Computer Networking: A Top Down Approach, 5th edition. Jim Kurose, Keith Ross, Addison-Wesley, April 2009. Roadmap ! what’s the Internet? ! network edge: hosts, access net ! network core: packet/circuit switching, Internet structure ! performance: loss, delay, throughput ! media distribution: UDP, TCP/IP 1 What’s the Internet: “nuts and bolts” view PC ! millions of connected Mobile network computing devices: server Global ISP hosts = end systems wireless laptop " running network apps cellular handheld Home network ! communication links Regional ISP " fiber, copper, radio, satellite access " points transmission rate = bandwidth Institutional network wired links ! routers: forward packets (chunks of router data) What’s the Internet: “nuts and bolts” view ! protocols control sending, receiving Mobile network of msgs Global ISP " e.g., TCP, IP, HTTP, Skype, Ethernet ! Internet: “network of networks” Home network " loosely hierarchical Regional ISP " public Internet versus private intranet Institutional network ! Internet standards " RFC: Request for comments " IETF: Internet Engineering Task Force 2 A closer look at network structure: ! network edge: applications and hosts ! access networks, physical media: wired, wireless communication links ! network core: " interconnected routers " network of networks The network edge: ! end systems (hosts): " run application programs " e.g. Web, email " at “edge of network” peer-peer ! client/server model " client host requests, receives -
Guidelines on Mobile Device Forensics
NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Sam Brothers Wayne Jansen http://dx.doi.org/10.6028/NIST.SP.800-101r1 NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Software and Systems Division Information Technology Laboratory Sam Brothers U.S. Customs and Border Protection Department of Homeland Security Springfield, VA Wayne Jansen Booz-Allen-Hamilton McLean, VA http://dx.doi.org/10.6028/NIST.SP. 800-101r1 May 2014 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director Authority This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Management Act of 2002 (FISMA), 44 U.S.C. § 3541 et seq., Public Law (P.L.) 107-347. NIST is responsible for developing information security standards and guidelines, including minimum requirements for Federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate Federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A- 130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A- 130, Appendix III, Security of Federal Automated Information Resources. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on Federal agencies by the Secretary of Commerce under statutory authority. -
Research on the System Structure of IPV9 Based on TCP/IP/M
International Journal of Advanced Network, Monitoring and Controls Volume 04, No.03, 2019 Research on the System Structure of IPV9 Based on TCP/IP/M Wang Jianguo Xie Jianping 1. State and Provincial Joint Engineering Lab. of 1. Chinese Decimal Network Working Group Advanced Network, Monitoring and Control Shanghai, China 2. Xi'an, China Shanghai Decimal System Network Information 2. School of Computer Science and Engineering Technology Ltd. Xi'an Technological University e-mail: [email protected] Xi'an, China e-mail: [email protected] Wang Zhongsheng Zhong Wei 1. School of Computer Science and Engineering 1. Chinese Decimal Network Working Group Xi'an Technological University Shanghai, China Xi'an, China 2. Shanghai Decimal System Network Information 2. State and Provincial Joint Engineering Lab. of Technology Ltd. Advanced Network, Monitoring and Control e-mail: [email protected] Xi'an, China e-mail: [email protected] Abstract—Network system structure is the basis of network theory, which requires the establishment of a link before data communication. The design of network model can change the transmission and the withdrawal of the link after the network structure from the root, solve the deficiency of the transmission is completed. It solves the problem of original network system, and meet the new demand of the high-quality real-time media communication caused by the future network. TCP/IP as the core network technology is integration of three networks (communication network, successful, it has shortcomings but is a reasonable existence, broadcasting network and Internet) from the underlying will continue to play a role. Considering the compatibility with structure of the network, realizes the long-distance and the original network, the new network model needs to be large-traffic data transmission of the future network, and lays compatible with the existing TCP/IP four-layer model, at the a solid foundation for the digital currency and virtual same time; it can provide a better technical system to currency of the Internet. -
QUESTION 20-1/2 Examination of Access Technologies for Broadband Communications
International Telecommunication Union QUESTION 20-1/2 Examination of access technologies for broadband communications ITU-D STUDY GROUP 2 3rd STUDY PERIOD (2002-2006) Report on broadband access technologies eport on broadband access technologies QUESTION 20-1/2 R International Telecommunication Union ITU-D THE STUDY GROUPS OF ITU-D The ITU-D Study Groups were set up in accordance with Resolutions 2 of the World Tele- communication Development Conference (WTDC) held in Buenos Aires, Argentina, in 1994. For the period 2002-2006, Study Group 1 is entrusted with the study of seven Questions in the field of telecommunication development strategies and policies. Study Group 2 is entrusted with the study of eleven Questions in the field of development and management of telecommunication services and networks. For this period, in order to respond as quickly as possible to the concerns of developing countries, instead of being approved during the WTDC, the output of each Question is published as and when it is ready. For further information: Please contact Ms Alessandra PILERI Telecommunication Development Bureau (BDT) ITU Place des Nations CH-1211 GENEVA 20 Switzerland Telephone: +41 22 730 6698 Fax: +41 22 730 5484 E-mail: [email protected] Free download: www.itu.int/ITU-D/study_groups/index.html Electronic Bookshop of ITU: www.itu.int/publications © ITU 2006 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. International Telecommunication Union QUESTION 20-1/2 Examination of access technologies for broadband communications ITU-D STUDY GROUP 2 3rd STUDY PERIOD (2002-2006) Report on broadband access technologies DISCLAIMER This report has been prepared by many volunteers from different Administrations and companies. -
F. Circuit Switching
CSE 3461: Introduction to Computer Networking and Internet Technologies Circuit Switching Presentation F Study: 10.1, 10.2, 8 .1, 8.2 (without SONET/SDH), 8.4 10-02-2012 A Closer Look At Network Structure: • network edge: applications and hosts • network core: —routers —network of networks • access networks, physical media: communication links d. xuan 2 1 The Network Core • mesh of interconnected routers • the fundamental question: how is data transferred through net? —circuit switching: dedicated circuit per call: telephone net —packet-switching: data sent thru net in discrete “chunks” d. xuan 3 Network Layer Functions • transport packet from sending to receiving hosts application transport • network layer protocols in network data link network physical every host, router network data link network data link physical data link three important functions: physical physical network data link • path determination: route physical network data link taken by packets from source physical to dest. Routing algorithms network network data link • switching: move packets from data link physical physical router’s input to appropriate network data link application router output physical transport network data link • call setup: some network physical architectures require router call setup along path before data flows d. xuan 4 2 Network Core: Circuit Switching End-end resources reserved for “call” • link bandwidth, switch capacity • dedicated resources: no sharing • circuit-like (guaranteed) performance • call setup required d. xuan 5 Circuit Switching • Dedicated communication path between two stations • Three phases — Establish (set up connection) — Data Transfer — Disconnect • Must have switching capacity and channel capacity to establish connection • Must have intelligence to work out routing • Inefficient — Channel capacity dedicated for duration of connection — If no data, capacity wasted • Set up (connection) takes time • Once connected, transfer is transparent • Developed for voice traffic (phone) g. -
Wang Systems Networking VS Network Core (Standard Components) Software Bulletin Release 8.21 Release 8.30
... ·.·,:·:··.···'Wang Systems Networkiitg VS Network Core (Standard Components) Software Bulletin Release 8.21 Release 8.30 .. ' ~ t -..~ ~. ·.J. ~ \~ --- ..,·I Wang Systems Networking VS Network Core (Standard Components) Software Bulletin Release 8.21 Release 8.30 1st Edition - July 1986 Copyright c Wang Laboratories, Inc., 1986 71 S-0542.01 i\'14§• WANG LABORATORIES, INC. ONE INDUSTRIAL AVE., LOWELL, MA 01851 TEL. (617) 459-5000, TWX 710-343-6769, TELEX 94-7421 Disclaimer of Warranties and Limitation of Liabilities The staff of Wang Laboratories, Inc., has taken due care in preparing this manual. How ever, nothing contained herein modifies or alters in any way the standard terms and conditions of the Wang purchase, lease, or license agreement by which the product was acquired, nor increases in any way Wang's liability to the customer. In no event shall Wang or its subsidiaries be liable for incidental or consequential damages in connection with or arising from the use of the product, the accompanying manual, or any related materials. Software Notice All Wang Program Products (software) are licensed to customers in accordance with the terms and conditions of the Wang Standard Software License. No title or ownership of Wang software is transferred, and any use of the software beyond the terms of the aforesaid license, without the written authorization of Wang, is prohibited. Warning This equipment generates, uses, and can radiate radio frequency energy and, if not ,~ installed and used in accordance with the instructions manual, may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device, pursuant to Subpart J of Part 15 of FCC rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. -
Circuit-Switching
Welcome to CSC358! Introduction to Computer Networks Amir H. Chinaei, Winter 2016 Today Course Outline . What this course is about Logistics . Course organization, information sheet . Assignments, grading scheme, etc. Introduction to . Principles of computer networks Introduction 1-2 What is this course about? Theory vs practice . CSC358 : Theory . CSC309 and CSC458 : Practice Need to have solid math background . in particular, probability theory Overview . principles of computer networks, layered architecture . connectionless and connection-oriented transports . reliable data transfer, congestion control . routing algorithms, multi-access protocols, . delay models, addressing, and some special topics Introduction 1-3 Overview: internet protocol stack application: supporting network applications . FTP, SMTP, HTTP application transport: process-process data transfer transport . TCP, UDP network network: routing of datagrams from source to destination link . IP, routing protocols link: data transfer between physical neighboring network elements . Ethernet, 802.111 (WiFi), PPP physical: bits “on the wire” Introduction 1-4 Logistics (1/3) Prerequisite knowledge . Probability theory is a must . Mathematical modeling . Data structures & algorithms Course components . Lectures: concepts . Tutorials: problem solving . Assignments: mastering your knowledge . Readings: preparing you for above . Optional assignments: things in practice, bonus Introduction 1-5 Logistics (2/3) Text book . Computer Networking A Top-Down Approach Featuring the Internet 5th Edition, J. F. Kurose and K. W. Ross Lecture slides . Many slides are (adapted) from the above source . © All material copyright . All rights reserved for the authors Introduction 1-6 Logistics (3/3) For important information on . Lecture and tutorial time/location . Contact information of course staff (instructor and TAs) . Office hour and location . Assignments specification and solution . -
From Packet Switching to the Cloud
Professor Nigel Linge FROM PACKET SWITCHING TO THE CLOUD Telecommunication engineers have always drawn a picture of a cloud to represent a network. Today, however, the cloud has taken on a new meaning, where IT becomes a utility, accessed and used in exactly the same on-demand way as we connect to the National Grid for electricity. Yet, only 50 years ago, this vision of universal access to an all- encompassing and powerful network would have been seen as nothing more than fanciful science fiction. he first electronic, digital, network - a figure that represented a concept of packet switching in which stored-program computer 230% increase on the previous year. data is assembled into a short se- was built in 1948 and This clear and growing demand for quence of data bits (a packet) which heralded the dawning of data services resulted in the GPO com- includes an address to tell the network a new age. missioning in July 1970 an experi- where the data is to be sent, error de- T mental, manual call-set-up, data net- tection to allow the receiver to confirm DATA COMMUNICATIONS 1 work that used modems operating at that the contents of the packet are cor- These early computers were large, 48,000bit/s (48kbit/s). rect and a source address to facilitate cumbersome and expensive machines However, computer communica- a reply. and inevitably a need arose for a com- tions is different to voice communi- Since each packet is self-contained, munication system that would allow cations not only in its form but also any number of them can be transmit- shared remote access to them. -
Not the Internet, but This Internet
Not The Internet, but This Internet: How Othernets Illuminate Our Feudal Internet Paul Dourish Department of Informatics University of California, Irvine Irvine, CA 92697-3440, USA [email protected] ABSTRACT built – the Internet, this Internet, our Internet, the one to What is the Internet like, and how do we know? Less which I’m connected right now? tendentiously, how can we make general statements about the Internet without reference to alternatives that help us to I ask these questions in the context of a burgeoning recent understand what the space of network design possibilities interest in examining digital technologies as materially, might be? This paper presents a series of cases of network socially, historically and geographically specific [e.g. 13, alternatives which provide a vantage point from which to 15, 36, 37]. There is no denying the central role that “the reflect upon the ways that the Internet does or does not digital,” broadly construed, plays as part of contemporary uphold both its own design goals and our collective everyday life. Wireless connectivity, broadband imaginings of what it does and how. The goal is to provide communications, and computational devices may be a framework for understanding how technologies embody concentrated in the urban centers of economically promises, and how these both come to evolve. privileged nations, but even in the most “remote” corners of the globe, much of everyday life is structured, organized, Author Keywords and governed by databases and algorithms, and “the digital” Network protocols; network topology; naming routing; still operates even in the central fact of its occasional media infrastructures. -
Telemedicine and Rural Health Care Applications
Symposium www.jpgmonline.com TTelemedicine elemedicine and Rural Health Care Applications Smith AC, Bensink M, Armfield N, Stillman J, Caffery L The University of ABSTRACTABSTRACTA ABSTRACTABSTRACTBSTRACT Queensland, Centre for Telemedicine has the potential to help facilitate the delivery of health services to rural areas. In the right Online Health, Australia. circumstances, telemedicine may also be useful for the delivery of education and teaching programmes and Correspondence: the facilitation of administrative meetings. In this paper reference is made to a variety of telemedicine applications Anthony C. Smith, in Australia and other countries including telepaediatrics, home telehealth, critical care telemedicine for new E-mail: [email protected] born babies, telemedicine in developing countries, health screening via e-mail, and teleradiology. These applications represent some of the broad range of telemedicine applications possible. An overriding imperative is to focus on the clinical problem first with careful consideration given to the significant organisational changes which are associated with the introduction of a new service or alternative method of service delivery. For telemedicine to be effective it is also important that all sites involved are adequately resourced in terms of staff, equipment, telecommunications, technical support and training. In addition, there are a number of logistical factors which are important when considering the development of a telemedicine service including site selection, clinician empowerment, -
Chapter 10: Circuit Switching and Packet Switching Switching Networks
Chapter 10: Circuit Switching and Packet Switching CS420/520 Axel Krings Page 1 Sequence 10 Switching Networks • Long distance transmission is typically done over a network of switched nodes • Nodes not concerned with content of data • End devices are stations — Computer, terminal, phone, etc. • A collection of nodes and connections is a communications network • Data is routed by being switched from node to node CS420/520 Axel Krings Page 2 Sequence 10 1 Nodes • Nodes may connect to other nodes only, or to stations and other nodes • Node to node links usually multiplexed • Network is usually partially connected — Some redundant connections are desirable for reliability • Two different switching technologies — Circuit switching — Packet switching CS420/520 Axel Krings Page 3 Sequence 10 Simple Switched Network CS420/520 Axel Krings Page 4 Sequence 10 2 Circuit Switching • Dedicated communication path between two stations • Three phases — Establish — Transfer — Disconnect • Must have switching capacity and channel capacity to establish connection • Must have intelligence to work out routing CS420/520 Axel Krings Page 5 Sequence 10 Circuit Switching • Inefficient — Channel capacity dedicated for duration of connection — If no data, capacity wasted • Set up (connection) takes time • Once connected, transfer is transparent • Developed for voice traffic (phone) CS420/520 Axel Krings Page 6 Sequence 10 3 Public Circuit Switched Network CS420/520 Axel Krings Page 7 Sequence 10 Telecom Components • Subscriber — Devices attached to network • Subscriber -
Introduction to Data Communications & Networks What Is Data Communication?
LECTURE-1 Introduction to Data Communications & Networks What is data communication? Not to be confused with telecommunication— ◦ Any process that permits the passage from a sender to one or more receivers of information of any nature, delivered in any easy to use form by any electromagnetic system. What is data communication? Data communication- ◦ Defined as a subset of telecommunication involving the transmission of data to and from computers and components of computer systems. More specifically data communication is transmitted via mediums such as wires, coaxial cables, fiber optics, or radiated electromagnetic waves such as broadcast radio, infrared light, microwaves, and satellites. History of Telecommunications Invention of telegraph Samuel Morse – 1837 Invention of telephone- Alexander Graham Bell – 1876 Development of wireless – 1896 Concept of universal access and growth of AT&T (American Telephone & Telegraph) - 1983 History of Telecommunications Continued…. Telecommunications Act of 1996 Three main developments that led to the growth of data communications systems: ◦ Large-scale integration of circuits reduced the cost and size of terminals and communication equipment ◦ Developments of software systems made establishment of communication networks easy ◦ Competition among providers of transmission facilities reduced the cost of data circuits History of Data Communication Transistor developed by Bell Labs Hush-a-Phone Case Carterfone case MCI (Microwave Communications Inc.) and Long Distance Creation of networks (LAN’s and WAN’s) Data Link Protocols Microcomputers Hush-a-Phone Case The Hush-A-Phone was a device designed to attach to the transmitter of a telephone to reduce noise pollution and increase privacy. A voice silencer designed for confidential conversation, clear transmission and office quiet.