available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 88: 237–267 (2017). Aspergillus subgenus Polypaecilum from the built environment J.B. Tanney1,2*,5, C.M. Visagie1,3,4*,5, N. Yilmaz1,3, and K.A. Seifert1,3 1Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada; 2Institut de Biologie Integrative et des Systemes (IBIS), Universite Laval, Quebec G1V 0A6, Canada; 3Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada; 4Biosystematics Division, ARC-Plant Health and Protection, P/BagX134, Queenswood, 0121 Pretoria, South Africa *Correspondence: J.B. Tanney,
[email protected]; C.M. Visagie,
[email protected] 5The first two authors contributed equally to this work and share the first authorship Abstract: Xerophilic fungi, especially Aspergillus species, are prevalent in the built environment. In this study, we employed a combined culture-independent (454- pyrosequencing) and culture-dependent (dilution-to-extinction) approach to investigate the mycobiota of indoor dust collected from 93 buildings in 12 countries worldwide. High and low water activity (aw) media were used to capture mesophile and xerophile biodiversity, resulting in the isolation of approximately 9 000 strains. Among these, 340 strains representing seven putative species in Aspergillus subgenus Polypaecilum were isolated, mostly from lowered aw media, and tentatively identified based on colony morphology and internal transcribed spacer rDNA region (ITS) barcodes. Further morphological study and phylogenetic analyses using sequences of ITS, β-tubulin (BenA), calmodulin (CaM), RNA polymerase II second largest subunit (RPB2), DNA topoisomerase 1 (TOP1), and a pre-mRNA processing protein homolog (TSR1) confirmed the isolation of seven species of subgenus Polypaecilum, including five novel species: A.