Examining the Preference of Sodium Concentration in the Diets of Nasutitermes Corniger (Blattodea:Termitidae)(Motschulsky)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution and Ecology of Termite Nesting Behavior and Its Impact On
1 Evolution and Ecology of Termite Nesting Behavior and Its Impact on Disease Susceptibility A dissertation presented by Marielle Aimée Postava-Davignon to The Department of Biology In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Biology Northeastern University Boston, Massachusetts April, 2010 2 Evolution and Ecology of Termite Nesting Behavior and Its Impact on Disease Susceptibility by Marielle Aimée Postava-Davignon ABSTRACT OF DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology in the Graduate School of Arts and Sciences of Northeastern University, April, 2010 3 Abstract Termites construct nests that are often structurally species-specific. They exhibit a high diversity of nest structures, but their nest evolution is largely unknown. Current hypotheses for the factors that influenced nest evolution include adaptations that improved nest thermoregulation, defense against predators, and competition for limited nest sites. Studies have shown a lower prevalence of pathogens and parasites in arboreal nesting animal species compared to ground nesters. Nest building behavior is plastic and can adapt to changing environments. As termites can detect and avoid pathogens, I hypothesized that the evolution of arboreal termite nests was an adaptation to avoid infection. To test this, bacteria and fungi from nest cores, trails, and surrounding soils of the arboreal nesting Nasutitermes acajutlae were cultured. Abiotic factors such as temperature, relative humidity, and light were measured to elucidate how they influenced the interactions between termites and microbes. Fungi associated with N. acajutlae were identified to determine the potential pathogenic pressures these termites encounter in their nest as compared to the external environment. -
In Termite Nests (Blattodea: Termitidae) in a Cocoa Plantation in Brazil Biota Neotropica, Vol
Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Teixeira Lisboa, Jonathas; Guerreiro Couto, Erminda da Conceição; Pereira Santos, Pollyanna; Charles Delabie, Jacques Hubert; Araujo, Paula Beatriz Terrestrial isopods (Crustacea: Isopoda: Oniscidea) in termite nests (Blattodea: Termitidae) in a cocoa plantation in Brazil Biota Neotropica, vol. 13, núm. 3, julio-septiembre, 2013, pp. 393-397 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199128991039 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biota Neotrop., vol. 13, no. 3 Terrestrial isopods (Crustacea: Isopoda: Oniscidea) in termite nests (Blattodea: Termitidae) in a cocoa plantation in Brazil Jonathas Teixeira Lisboa1,7, Erminda da Conceição Guerreiro Couto2, Pollyanna Pereira Santos3, Jacques Hubert Charles Delabie4,5 & Paula Beatriz Araujo6 1Universidade Estadual de Santa Cruz – UESC, Campus Soane Nazaré de Andrade, Rod. Ilhéus-Itabuna, km 16, CEP 45662-900, Ilhéus, BA, Brasil. www.uesc.br/zoologia 2Universidade Estadual de Santa Cruz – UESC, Campus Soane Nazaré de Andrade, Rod. Ilhéus-Itabuna, km 16, CEP 45662-900, Ilhéus, BA, Brasil. www.uesc.br/cursos/pos_graduacao/mestrado/ppsat 3Universidade Federal de Viçosa – UFV, CEP 36570-000 Viçosa, MG, Brasil. www.pos.entomologia.ufv.br 4Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz – UESC, Campus Soane Nazaré de Andrade, Rod. Ilhéus-Itabuna, km 16, CEP 45662-900, Ilhéus, BA, Brasil. www.uesc.br/dcaa/index.php 5Laboratório de Mirmecologia, Convênio UESC/CEPLAC, Centro de Pesquisa do Cacau, CP 7, CEP 45600-000 Itabuna, BA, Brasil. -
Nesting Habit of the Termite Nasutitermes Corniger (Isoptera: Termitidae) on St
Nesting Habit of the Termite Nasutitermes corniger (Isoptera: Termitidae) on St. Eustatius, a Very Small Oceanic Island Christopher K. Starr Starr, C.K. 2015. Nesting Habit of the Termite Nasutitermes corniger (Isoptera: Termitidae) on St. Eustatius, a Very Small Oceanic Islands. Living World, Journal of The Trinidad and Tobago Field Naturalists’ Club , 2015, 62-63. 62 Living World, J. Trinidad and Tobago Field Naturalists’ Club, 2015 Nesting Habit of the Termite Nasutitermes corniger ,soptera Termitidae on St. Eustatius, a Very Small Oceanic Island Nasutitermes corniger (Motschulsky) is very wide- trees. Nasutitermes corniger is very abundant throughout spread in the Neotropics, including the West Indies most of the lower- and mid-level forest. &RQVWDQWLQR6FKHIIUDKQet al. ZKHUHLWVGLV- Preliminary observations suggested that a) unlike else- tinctive brown, dimpled nests are a conspicuous landscape ZKHUHLQWKH/HVVHU$QWLOOHVDVLJQL¿FDQWIUDFWLRQRIQHVWV IHDWXUH,WVFRYHUHGJDOOHULHVPPZLGHDUHUHDGLO\ was not attached to a tree base, and b) nests were never seen running up tree trunks and along major branches. On associated with B. simaruba. the continent and continental islands, the nests are usually On a walk through mid-level forest, I recorded the above ground on trees, whilst in the Lesser Antilles they positions of 50 N. corniger nests. None was above ground DUHXVXDOO\DWWKHEDVHVRIWUHHV &.6WDUUDQG,.DUViL level, nor was any at or close to the base of any B. simaru- unpubl.). Where colony foundation has been studied, col- ba. I noted no galleries on B. simaruba trunks. Thirty of onies are characteristically initiated at ground level and the 50 nests were directly attached to tree bases, whilst may later move to a higher level (T. -
Fiber-Associated Spirochetes Are Major Agents of Hemicellulose Degradation in the Hindgut of Wood-Feeding Higher Termites
Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites Gaku Tokudaa,b,1, Aram Mikaelyanc,d, Chiho Fukuia, Yu Matsuuraa, Hirofumi Watanabee, Masahiro Fujishimaf, and Andreas Brunec aTropical Biosphere Research Center, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, 903-0213 Okinawa, Japan; bGraduate School of Engineering and Science, University of the Ryukyus, Nishihara, 903-0213 Okinawa, Japan; cResearch Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; dDepartment of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27607; eBiomolecular Mimetics Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8634 Ibaraki, Japan; and fDepartment of Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, 753-8512 Yamaguchi, Japan Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved November 5, 2018 (received for review June 25, 2018) Symbiotic digestion of lignocellulose in wood-feeding higher digestion in the hindgut of higher termites must be attributed to termites (family Termitidae) is a two-step process that involves their entirely prokaryotic microbial community (5). endogenous host cellulases secreted in the midgut and a dense The gut microbiota of higher termites comprises more than bacterial community in the hindgut compartment. The genomes of 1,000 bacterial phylotypes, which are organized into distinc- the bacterial gut microbiota encode diverse cellulolytic and hemi- tive communities colonizing the microhabitats provided by the cellulolytic enzymes, but the contributions of host and bacterial compartmentalized intestine, including the highly differentiated symbionts to lignocellulose degradation remain ambiguous. -
Evaluation of the Chemical Defense Fluids of Macrotermes Carbonarius
www.nature.com/scientificreports OPEN Evaluation of the chemical defense fuids of Macrotermes carbonarius and Globitermes sulphureus as possible household repellents and insecticides S. Appalasamy1,2*, M. H. Alia Diyana2, N. Arumugam2 & J. G. Boon3 The use of chemical insecticides has had many adverse efects. This study reports a novel perspective on the application of insect-based compounds to repel and eradicate other insects in a controlled environment. In this work, defense fuid was shown to be a repellent and insecticide against termites and cockroaches and was analyzed using gas chromatography-mass spectrometry (GC– MS). Globitermes sulphureus extract at 20 mg/ml showed the highest repellency for seven days against Macrotermes gilvus and for thirty days against Periplaneta americana. In terms of toxicity, G. sulphureus extract had a low LC50 compared to M. carbonarius extract against M. gilvus. Gas chromatography–mass spectrometry analysis of the M. carbonarius extract indicated the presence of six insecticidal and two repellent compounds in the extract, whereas the G. sulphureus extract contained fve insecticidal and three repellent compounds. The most obvious fnding was that G. sulphureus defense fuid had higher potential as a natural repellent and termiticide than the M. carbonarius extract. Both defense fuids can play a role as alternatives in the search for new, sustainable, natural repellents and termiticides. Our results demonstrate the potential use of termite defense fuid for pest management, providing repellent and insecticidal activities comparable to those of other green repellent and termiticidal commercial products. A termite infestation could be silent, but termites are known as destructive urban pests that cause structural damage by infesting wooden and timber structures, leading to economic loss. -
Food Resources of Anteaters (Edentata: Myrmecophagidae) I
Food Resources of Anteaters (Edentata: Myrmecophagidae) I. A Year's Census of Arboreal Nests of Ants and Termites on Barro Colorado Island, Panama Canal Zone Author(s): Yael D. Lubin, G. Gene Montgomery and Orrey P. Young Reviewed work(s): Source: Biotropica, Vol. 9, No. 1 (Mar., 1977), pp. 26-34 Published by: The Association for Tropical Biology and Conservation Stable URL: http://www.jstor.org/stable/2387856 . Accessed: 30/09/2012 22:16 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The Association for Tropical Biology and Conservation is collaborating with JSTOR to digitize, preserve and extend access to Biotropica. http://www.jstor.org Food Resources of Anteaters (Edentata: Myrmecophagidae) 1. A Year's Census of Arboreal Nests of Ants and Termites on Barro Colorado Island, Panama Canal Zone Yael D. Lubin Smithsonian Tropical Research Institute, P. 0. Box 2072, Balboa, Canal Zone G. Gene Montgomery' National Zoological Park, Smithsonian Institution,Washington, D.C. 20009, U.S.A. and Orrey P. Young Department of Zoology, Universityof Maryland, College Park, Maryland 20742, U.S.A. ABSTRACT Arboreal carton nests of four speces of termites(Nasutitermes corniger, N. columbicus, N. -
Complementary Symbiont Contributions to Plant Decomposition in a Fungus-Farming Termite
Complementary symbiont contributions to plant decomposition in a fungus-farming termite Michael Poulsena,1,2, Haofu Hub,1, Cai Lib,c, Zhensheng Chenb, Luohao Xub, Saria Otania, Sanne Nygaarda, Tania Nobred,3, Sylvia Klaubaufe, Philipp M. Schindlerf, Frank Hauserg, Hailin Panb, Zhikai Yangb, Anton S. M. Sonnenbergh, Z. Wilhelm de Beeri, Yong Zhangb, Michael J. Wingfieldi, Cornelis J. P. Grimmelikhuijzeng, Ronald P. de Vriese, Judith Korbf,4, Duur K. Aanend, Jun Wangb,j, Jacobus J. Boomsmaa, and Guojie Zhanga,b,2 aCentre for Social Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; bChina National Genebank, BGI-Shenzen, Shenzhen 518083, China; cCentre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark; dLaboratory of Genetics, Wageningen University, 6708 PB, Wageningen, The Netherlands; eFungal Biodiversity Centre, Centraalbureau voor Schimmelcultures, Royal Netherlands Academy of Arts and Sciences, NL-3584 CT, Utrecht, The Netherlands; fBehavioral Biology, Fachbereich Biology/Chemistry, University of Osnabrück, D-49076 Osnabrück, Germany; gCenter for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; hDepartment of Plant Breeding, Wageningen University and Research Centre, NL-6708 PB, Wageningen, The Netherlands; iDepartment of Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria SA-0083, South Africa; and jDepartment of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark Edited by Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Jena, Germany, and approved August 15, 2014 (received for review October 24, 2013) Termites normally rely on gut symbionts to decompose organic levels-of-selection conflicts that need to be regulated (12). -
14128 JGI CR 07:2007 JGI Progress Report
U.S. JOINT DEPARTMENT GENOME OF ENERGY INSTITUTE PROGRESS REPORT 2007 On the cover: The eucalyptus tree was selected in 2007 for se- quencing by the JGI. The microbial community in the termite hindgut of Nasutitermes corniger was the subject of a study published in the November 22, 2007 edition of the journal, Nature. JGI Mission The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, unites the expertise of five national laboratories—Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest — along with the Stanford Human Genome Center to advance genomics in support of the DOE mis- sions related to clean energy generation and environmental char- acterization and cleanup. JGI’s Walnut Creek, CA, Production Genomics Facility provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. U.S. DEPARTMENT OF ENERGY JOINT GENOME INSTITUTE PROGRESS REPORT 2007 JGI PROGRESS REPORT 2007 Director’s Perspective . 4 JGI History. 7 Partner Laboratories . 9 JGI Departments and Programs . 13 JGI User Community . 19 Genomics Approaches to Advancing Next Generation Biofuels . 21 JGI’s Plant Biomass Portfolio . 24 JGI’s Microbial Portfolio . 30 Symbiotic Organisms . 30 Microbes That Break Down Biomass . 32 Microbes That Ferment Sugars Into Ethanol . 34 Carbon Cycling . 39 Understanding Algae’s Role in Photosynthesis and Carbon Capture . 39 Microbial Bioremediation . 43 Microbial Managers of the Nitrogen Cycle . 43 Microbial Management of Wastewater . 44 Exploratory Sequence-Based Science . 47 Genomic Encyclopedia for Bacteria and Archaea (GEBA) . 47 Functional Analysis of Horizontal Gene Transfer . 47 Anemone Genome Gives Glimpse of Multicelled Ancestors . -
Termite Prevention and Control by Design in Florida
Termite Prevention and Control by Design in the Southeast Presented by Faith Oi, Ph.D., University of Florida, Entomology and Nematology Dept., Gainesville, FL 32611. email: [email protected] Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board. “The Wood Products Council” is a This course is registered with AIA CES Registered Provider with The American for continuing professional education. Institute of Architects Continuing As such, it does not include content Education Systems (AIA/CES), Provider that may be deemed or construed to #G516. be an approval or endorsement by the AIA of any material of construction or Credit(s) earned on completion of this any method or manner of handling, course will be reported to AIA CES for using, distributing, or dealing in any AIA members. Certificates of Completion material or product. for both AIA members and non-AIA ______________________________ members are available upon request. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation. Course Description Building enclosures are responsible for controlling heat flow, air flow, vapor flow and a number of other elements. In the southern US, they are also essential for termite prevention. This presentation will explore design considerations associated with wood- frame building enclosures and the role of control layers in addressing items such as durability, termite prevention and control, and thermal continuity. Beginning with a review of building enclosure design fundamentals and considerations, it will then cover best practices for a variety of wood-frame building enclosure assemblies and details. -
Encyclopedia of Social Insects
G Guests of Social Insects resources and homeostatic conditions. At the same time, successful adaptation to the inner envi- Thomas Parmentier ronment shields them from many predators that Terrestrial Ecology Unit (TEREC), Department of cannot penetrate this hostile space. Social insect Biology, Ghent University, Ghent, Belgium associates are generally known as their guests Laboratory of Socioecology and Socioevolution, or inquilines (Lat. inquilinus: tenant, lodger). KU Leuven, Leuven, Belgium Most such guests live permanently in the host’s Research Unit of Environmental and nest, while some also spend a part of their life Evolutionary Biology, Namur Institute of cycle outside of it. Guests are typically arthropods Complex Systems, and Institute of Life, Earth, associated with one of the four groups of eusocial and the Environment, University of Namur, insects. They are referred to as myrmecophiles Namur, Belgium or ant guests, termitophiles, melittophiles or bee guests, and sphecophiles or wasp guests. The term “myrmecophile” can also be used in a broad sense Synonyms to characterize any organism that depends on ants, including some bacteria, fungi, plants, aphids, Inquilines; Myrmecophiles; Nest parasites; and even birds. It is used here in the narrow Symbionts; Termitophiles sense of arthropods that associated closely with ant nests. Social insect nests may also be parasit- Social insect nests provide a rich microhabitat, ized by other social insects, commonly known as often lavishly endowed with long-lasting social parasites. Although some strategies (mainly resources, such as brood, retrieved or cultivated chemical deception) are similar, the guests of food, and nutrient-rich refuse. Moreover, nest social insects and social parasites greatly differ temperature and humidity are often strictly regu- in terms of their biology, host interaction, host lated. -
(Hymenoptera, Formicidae) Associated to Arboreal Nests of Nasutitermes Spp. (Isoptera, Termitidae) in a Cacao Plantation in Southeastern Bahia, Brazil
450 Santos et al. Ant fauna (Hymenoptera, Formicidae) associated to arboreal nests of Nasutitermes spp. (Isoptera, Termitidae) in a cacao plantation in southeastern Bahia, Brazil Pollyanna Pereira Santos1,2, Alexandre Vasconcellos3, Benoit Jahyny2,4 & Jacques Hubert Charles Delabie2,5 1Programa de Pós-Graduação em Zoologia, Universidade Estadual de Santa Cruz, Rodovia Ilhéus–Itabuna, km16, 45650-000 Ilhéus-BA, Brazil. [email protected] 2Laboratório de Mirmecologia, Centro de Pesquisas do Cacau, CEPLAC, Caixa Postal 7, 45550-000 Itabuna-BA, Brazil. [email protected] 3Departamento de Botânica, Ecologia e Zoologia da Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil. [email protected] 4Laboratoire d’Ethologie Expérimentale et Comparée, Université Paris XIII, 93400 Villetaneuse, France. [email protected] 5Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Rodovia Ilhéus–Itabuna km16, 45650-000 Ilhéus-BA, Brazil. ABSTRACT. Ant fauna (Hymenoptera, Formicidae) associated to arboreal nests of Nasutitermes spp. (Isoptera, Termitidae) in a cacao plantation in southeastern Bahia, Brazil. Ants are among the most common arthropods that colonize termite nests. The aim of this study was to identify the ant fauna associated to termite nests found in a cacao plantation in the county of Ilhéus, Bahia, Brazil, with emphasis on the fauna that uses the nests as foraging and/or nesting environment. For this purpose, 34 active, decadent and abandoned nests of Nasutitermes corniger, N. ephratae and Nasutitermes sp., with different volumes and degrees of activity, were dissected. A total of 54 ant species, belonging to 23 genera and five subfamilies, was found in the constructions. -
Arima Valley Bioblitz 2013 Final Report.Pdf
Final Report Contents Report Credits ........................................................................................................ ii Executive Summary ................................................................................................ 1 Introduction ........................................................................................................... 2 Methods Plants......................................................................................................... 3 Birds .......................................................................................................... 3 Mammals .................................................................................................. 4 Reptiles and Amphibians .......................................................................... 4 Freshwater ................................................................................................ 4 Terrestrial Invertebrates ........................................................................... 5 Fungi .......................................................................................................... 6 Public Participation ................................................................................... 7 Results and Discussion Plants......................................................................................................... 7 Birds .......................................................................................................... 7 Mammals .................................................................................................