Mouse Tcf19 Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Tcf19 Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Tcf19 Knockout Project (CRISPR/Cas9) Objective: To create a Tcf19 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tcf19 gene (NCBI Reference Sequence: NM_001163763 ; Ensembl: ENSMUSG00000050410 ) is located on Mouse chromosome 17. 4 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 4 (Transcript: ENSMUST00000160885). Exon 3 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 3 starts from about 30.29% of the coding region. Exon 3 covers 69.33% of the coding region. The size of effective KO region: ~547 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 3 4 Legends Exon of mouse Tcf19 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 857 bp section upstream of Exon 3 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1289 bp section downstream of Exon 3 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Page 3 of 9 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(857bp) | A(25.9% 222) | C(23.69% 203) | T(26.84% 230) | G(23.57% 202) Note: The 857 bp section upstream of Exon 3 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(1289bp) | A(26.14% 337) | C(22.81% 294) | T(25.45% 328) | G(25.6% 330) Note: The 1289 bp section downstream of Exon 3 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 857 1 857 857 100.0% chr17 - 35515021 35515877 857 browser details YourSeq 32 548 580 857 100.0% chr9 + 58370166 58370200 35 browser details YourSeq 31 549 587 857 97.1% chr17 - 74730926 74730967 42 browser details YourSeq 31 549 589 857 89.8% chr7 + 45997826 45997868 43 browser details YourSeq 31 548 589 857 91.9% chr10 + 69811531 69811574 44 browser details YourSeq 30 548 580 857 96.9% chr12 + 27305395 27305429 35 browser details YourSeq 28 547 579 857 94.0% chr11 - 61750980 61751013 34 browser details YourSeq 26 500 526 857 100.0% chr12 + 72301288 72301318 31 browser details YourSeq 24 550 577 857 80.0% chr10 - 88517705 88517729 25 browser details YourSeq 22 548 572 857 95.9% chr1 - 61977210 61977236 27 browser details YourSeq 22 548 572 857 96.0% chr12 + 54887660 54887685 26 browser details YourSeq 21 567 587 857 100.0% chr11 + 54350943 54350963 21 browser details YourSeq 20 784 803 857 100.0% chr1 - 28445353 28445372 20 browser details YourSeq 20 109 140 857 81.3% chr5 + 128371186 128371217 32 browser details YourSeq 20 511 530 857 100.0% chr12 + 54042479 54042498 20 browser details YourSeq 20 564 587 857 91.7% chr12 + 32980306 32980329 24 browser details YourSeq 20 86 105 857 100.0% chr1 + 15287895 15287914 20 Note: The 857 bp section upstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 1289 1 1289 1289 100.0% chr17 - 35513185 35514473 1289 browser details YourSeq 93 950 1231 1289 82.4% chr10 - 75979106 75979367 262 browser details YourSeq 85 950 1085 1289 87.1% chr4 + 118619494 118619632 139 browser details YourSeq 84 910 1061 1289 93.0% chr10 - 82765786 82766119 334 browser details YourSeq 80 973 1092 1289 91.0% chr2 + 179884456 179884577 122 browser details YourSeq 79 950 1086 1289 82.3% chr10 - 23730881 23731002 122 browser details YourSeq 78 950 1061 1289 88.3% chr10 - 117713955 117714069 115 browser details YourSeq 78 950 1101 1289 88.4% chr5 + 107860109 107860266 158 browser details YourSeq 76 950 1102 1289 91.4% chr7 - 12913704 12913858 155 browser details YourSeq 76 976 1085 1289 86.5% chr15 + 37922534 37922647 114 browser details YourSeq 74 950 1188 1289 93.2% chr2 + 164172735 164173220 486 browser details YourSeq 73 950 1070 1289 94.1% chr4 - 100725531 100725654 124 browser details YourSeq 73 950 1061 1289 89.4% chr10 + 80289692 80289806 115 browser details YourSeq 72 973 1076 1289 89.2% chr4 + 116642273 116642381 109 browser details YourSeq 71 973 1085 1289 85.2% chr7 - 80885864 80885974 111 browser details YourSeq 71 976 1204 1289 91.0% chr1 - 87962915 88167213 204299 browser details YourSeq 71 950 1085 1289 80.8% chr1 - 7200654 7200792 139 browser details YourSeq 70 950 1102 1289 88.1% chr14 - 123514992 123515147 156 browser details YourSeq 70 950 1102 1289 89.8% chr2 + 168937039 168937192 154 browser details YourSeq 69 950 1059 1289 88.8% chr1 - 181327060 181327172 113 Note: The 1289 bp section downstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 https://www.alphaknockout.com Gene and protein information: Tcf19 transcription factor 19 [ Mus musculus (house mouse) ] Gene ID: 106795, updated on 10-Oct-2019 Gene summary Official Symbol Tcf19 provided by MGI Official Full Name transcription factor 19 provided by MGI Primary source MGI:MGI:103180 See related Ensembl:ENSMUSG00000050410 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as AW495861; 5730403J10Rik Expression Broad expression in limb E14.5 (RPKM 21.9), thymus adult (RPKM 20.3) and 25 other tissuesS ee more Orthologs human all Genomic context Location: 17; 17 B1 See Tcf19 in Genome Data Viewer Exon count: 4 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 17 NC_000083.6 (35512730..35516837, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 17 NC_000083.5 (35649680..35653769, complement) Chromosome 17 - NC_000083.6 Page 6 of 9 https://www.alphaknockout.com Transcript information: This gene has 4 transcripts Gene: Tcf19 ENSMUSG00000050410 Description transcription factor 19 [Source:MGI Symbol;Acc:MGI:103180] Gene Synonyms 5730403J10Rik Location Chromosome 17: 35,512,734-35,516,824 reverse strand. GRCm38:CM001010.2 About this gene This gene has 4 transcripts (splice variants), 166 orthologues, is a member of 1 Ensembl protein family and is associated with 6 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Tcf19-202 ENSMUST00000160885.1 1732 263aa ENSMUSP00000125167.1 Protein coding CCDS50089 G3XA31 TSL:1 GENCODE basic APPRIS P1 Tcf19-203 ENSMUST00000161012.7 1665 263aa ENSMUSP00000125310.1 Protein coding CCDS50089 G3XA31 TSL:1 GENCODE basic APPRIS P1 Tcf19-201 ENSMUST00000159009.1 982 201aa ENSMUSP00000124449.1 Protein coding - E0CY69 CDS 3' incomplete TSL:2 Tcf19-204 ENSMUST00000162683.1 873 147aa ENSMUSP00000125659.1 Protein coding - E0CZ64 CDS 3' incomplete TSL:1 Page 7 of 9 https://www.alphaknockout.com 24.09 kb Forward strand 35.505Mb 35.510Mb 35.515Mb 35.520Mb 35.525Mb Genes Pou5f1-201 >protein coding Cchcr1-202 >protein coding (Comprehensive set... Pou5f1-205 >protein coding Cchcr1-207 >retained intron Cchcr1-204 >retained intron Pou5f1-202 >protein coding Cchcr1-201 >protein coding Pou5f1-204 >protein coding Cchcr1-205 >protein coding Pou5f1-203 >protein coding Cchcr1-206 >lncRNA Pou5f1-206 >protein coding Contigs CR974473.23 > Genes (Comprehensive set... < Gm19553-201lncRNA < Tcf19-203protein coding < Tcf19-202protein coding < Tcf19-201protein coding < Tcf19-204protein coding Regulatory Build 35.505Mb 35.510Mb 35.515Mb 35.520Mb 35.525Mb Reverse strand 24.09 kb Regulation Legend CTCF Promoter Promoter Flank Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding processed transcript RNA gene Page 8 of 9 https://www.alphaknockout.com Transcript: ENSMUST00000160885 < Tcf19-202protein coding Reverse strand 4.05 kb ENSMUSP00000125... MobiDB lite Low complexity (Seg) Superfamily SMAD/FHA domain superfamily SMART Forkhead-associated (FHA) domain Pfam Forkhead-associated (FHA) domain PROSITE profiles Forkhead-associated (FHA) domain PANTHER PTHR15464 Gene3D 2.60.200.20 CDD Forkhead-associated (FHA) domain All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend frameshift variant missense variant synonymous variant Scale bar 0 40 80 120 160 200 263 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 9 of 9.
Recommended publications
  • Global-Scale Analysis of the Dynamic Transcriptional Adaptations Within Skeletal Muscle During Hypertrophic Growth
    University of Kentucky UKnowledge Theses and Dissertations--Physiology Physiology 2015 GLOBAL-SCALE ANALYSIS OF THE DYNAMIC TRANSCRIPTIONAL ADAPTATIONS WITHIN SKELETAL MUSCLE DURING HYPERTROPHIC GROWTH Tyler Kirby University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Kirby, Tyler, "GLOBAL-SCALE ANALYSIS OF THE DYNAMIC TRANSCRIPTIONAL ADAPTATIONS WITHIN SKELETAL MUSCLE DURING HYPERTROPHIC GROWTH" (2015). Theses and Dissertations--Physiology. 22. https://uknowledge.uky.edu/physiology_etds/22 This Doctoral Dissertation is brought to you for free and open access by the Physiology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Physiology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • CCHCR1 Interacts Specifically with the E2 Protein of Human Papillomavirus Type 16 on a Surface Overlapping BRD4 Binding Mandy Muller, Caroline Demeret
    CCHCR1 Interacts Specifically with the E2 Protein of Human Papillomavirus Type 16 on a Surface Overlapping BRD4 Binding Mandy Muller, Caroline Demeret To cite this version: Mandy Muller, Caroline Demeret. CCHCR1 Interacts Specifically with the E2 Protein of Human Papillomavirus Type 16 on a Surface Overlapping BRD4 Binding. PLoS ONE, Public Library of Science, 2014, 9 (3), pp.e92581. 10.1371/journal.pone.0092581. pasteur-01971541 HAL Id: pasteur-01971541 https://hal-pasteur.archives-ouvertes.fr/pasteur-01971541 Submitted on 7 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License CCHCR1 Interacts Specifically with the E2 Protein of Human Papillomavirus Type 16 on a Surface Overlapping BRD4 Binding Mandy Muller1,2¤b, Caroline Demeret1*¤a 1 Unite´ Ge´ne´tique Papillomavirus et Cancer Humain, Institut Pasteur, Paris, France, 2 Universite´ Paris Diderot, Sorbonne Paris Cite´, Cellule Pasteur, Paris, France Abstract The Human Papillomavirus E2 proteins are key regulators of the viral life cycle, whose functions are commonly mediated through protein-protein interactions with the host cell proteome. We identified an interaction between E2 and a cellular protein called CCHCR1, which proved highly specific for the HPV16 genotype, the most prevalent in HPV-associated cancers.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Bioinformatics Analyses of Genomic Imprinting
    Bioinformatics Analyses of Genomic Imprinting Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes von Barbara Hutter Saarbrücken 2009 Tag des Kolloquiums: 08.12.2009 Dekan: Prof. Dr.-Ing. Stefan Diebels Berichterstatter: Prof. Dr. Volkhard Helms Priv.-Doz. Dr. Martina Paulsen Vorsitz: Prof. Dr. Jörn Walter Akad. Mitarbeiter: Dr. Tihamér Geyer Table of contents Summary________________________________________________________________ I Zusammenfassung ________________________________________________________ I Acknowledgements _______________________________________________________II Abbreviations ___________________________________________________________ III Chapter 1 – Introduction __________________________________________________ 1 1.1 Important terms and concepts related to genomic imprinting __________________________ 2 1.2 CpG islands as regulatory elements ______________________________________________ 3 1.3 Differentially methylated regions and imprinting clusters_____________________________ 6 1.4 Reading the imprint __________________________________________________________ 8 1.5 Chromatin marks at imprinted regions___________________________________________ 10 1.6 Roles of repetitive elements ___________________________________________________ 12 1.7 Functional implications of imprinted genes _______________________________________ 14 1.8 Evolution and parental conflict ________________________________________________
    [Show full text]
  • A Flexible Microfluidic System for Single-Cell Transcriptome Profiling
    www.nature.com/scientificreports OPEN A fexible microfuidic system for single‑cell transcriptome profling elucidates phased transcriptional regulators of cell cycle Karen Davey1,7, Daniel Wong2,7, Filip Konopacki2, Eugene Kwa1, Tony Ly3, Heike Fiegler2 & Christopher R. Sibley 1,4,5,6* Single cell transcriptome profling has emerged as a breakthrough technology for the high‑resolution understanding of complex cellular systems. Here we report a fexible, cost‑efective and user‑ friendly droplet‑based microfuidics system, called the Nadia Instrument, that can allow 3′ mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure‑based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efciencies that compare favorably in the feld. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of diferent bufers and barcoded bead confgurations to facilitate diverse applications. Finally, by 3′ mRNA profling asynchronous human and mouse cells at diferent phases of the cell cycle, we demonstrate the system’s ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and fexible technology for future transcriptomic studies, and other related applications, at cell resolution. Single cell transcriptome profling has recently emerged as a breakthrough technology for understanding how cellular heterogeneity contributes to complex biological systems. Indeed, cultured cells, microorganisms, biopsies, blood and other tissues can be rapidly profled for quantifcation of gene expression at cell resolution.
    [Show full text]
  • Genome-Wide Identification of Genes Regulating DNA Methylation Using Genetic Anchors for Causal Inference
    bioRxiv preprint doi: https://doi.org/10.1101/823807; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genome-wide identification of genes regulating DNA methylation using genetic anchors for causal inference Paul J. Hop1,2, René Luijk1, Lucia Daxinger3, Maarten van Iterson1, Koen F. Dekkers1, Rick Jansen4, BIOS Consortium5, Joyce B.J. van Meurs6, Peter A.C. ’t Hoen 7, M. Arfan Ikram8, Marleen M.J. van Greevenbroek9,10, Dorret I. Boomsma11, P. Eline Slagboom1, Jan H. Veldink2, Erik W. van Zwet12, Bastiaan T. Heijmans1* 1 Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands 2 Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, Utrecht 3584 CG, Netherlands 3 Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands 4 Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands 5 Biobank-based Integrated Omics Study Consortium. For a complete list of authors, see the acknowledgements. 6 Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands. 7 Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University
    [Show full text]
  • The Alopecia Areata Phenotype Is Induced by the Water Avoidance Stress Test in Cchcr1-Deficient Mice
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423031; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The alopecia areata phenotype is induced by the water avoidance stress test in cchcr1- deficient mice. Qiao-Feng Zhao1, Nagisa Yoshihara1, Atsushi Takagi1, Etsuko Komiyama1, Akira Oka3, Shigaku Ikeda*1, 2 1Department of Dermatology and Allergology, and 2Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan 3The Institute of Medical Sciences, Tokai University, Kanagawa, Japan *Corresponding author: Shigaku Ikeda, MD, PhD, Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo- ku, Tokyo 113-8421, Japan Tel: 81-3-5802-1089, Fax: 81-3-3813-2205, E-mail: [email protected] Running title: AA phenotype induced in cchcr1-deficient mice COI: The authors have no conflicts of interest to declare. p. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423031; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT Background: We recently discovered a nonsynonymous variant in the coiled-coil alpha- helical rod protein 1 (CCHCR1) gene within the alopecia areata (AA) risk haplotype; mice engineered to carry the risk allele displayed a hair loss phenotype.
    [Show full text]
  • Role of Genomic Variants in the Response to Biologics Targeting Common Autoimmune Disorders
    Role of genomic variants in the response to biologics targeting common autoimmune disorders by Gordana Lenert, PhD The thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science Ottawa-Carleton Joint Program in Bioinformatics Carleton University Ottawa, Canada © 2016 Gordana Lenert Abstract Autoimmune diseases (AID) are common chronic inflammatory conditions initiated by the loss of the immunological tolerance to self-antigens. Chronic immune response and uncontrolled inflammation provoke diverse clinical manifestations, causing impairment of various tissues, organs or organ systems. To avoid disability and death, AID must be managed in clinical practice over long periods with complex and closely controlled medication regimens. The anti-tumor necrosis factor biologics (aTNFs) are targeted therapeutic drugs used for AID management. However, in spite of being very successful therapeutics, aTNFs are not able to induce remission in one third of AID phenotypes. In our research, we investigated genomic variability of AID phenotypes in order to explain unpredictable lack of response to aTNFs. Our hypothesis is that key genetic factors, responsible for the aTNFs unresponsiveness, are positioned at the crossroads between aTNF therapeutic processes that generate remission and pathogenic or disease processes that lead to AID phenotypes expression. In order to find these key genetic factors at the intersection of the curative and the disease pathways, we combined genomic variation data collected from publicly available curated AID genome wide association studies (AID GWAS) for each disease. Using collected data, we performed prioritization of genes and other genomic structures, defined the key disease pathways and networks, and related the results with the known data by the bioinformatics approaches.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • E-Mutpath: Computational Modelling Reveals the Functional Landscape of Genetic Mutations Rewiring Interactome Networks
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.262386; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. e-MutPath: Computational modelling reveals the functional landscape of genetic mutations rewiring interactome networks Yongsheng Li1, Daniel J. McGrail1, Brandon Burgman2,3, S. Stephen Yi2,3,4,5 and Nidhi Sahni1,6,7,8,* 1Department oF Systems Biology, The University oF Texas MD Anderson Cancer Center, Houston, TX 77030, USA 2Department oF Oncology, Livestrong Cancer Institutes, Dell Medical School, The University oF Texas at Austin, Austin, TX 78712, USA 3Institute For Cellular and Molecular Biology (ICMB), The University oF Texas at Austin, Austin, TX 78712, USA 4Institute For Computational Engineering and Sciences (ICES), The University oF Texas at Austin, Austin, TX 78712, USA 5Department oF Biomedical Engineering, Cockrell School of Engineering, The University oF Texas at Austin, Austin, TX 78712, USA 6Department oF Epigenetics and Molecular Carcinogenesis, The University oF Texas MD Anderson Science Park, Smithville, TX 78957, USA 7Department oF BioinFormatics and Computational Biology, The University oF Texas MD Anderson Cancer Center, Houston, TX 77030, USA 8Program in Quantitative and Computational Biosciences (QCB), Baylor College oF Medicine, Houston, TX 77030, USA *To whom correspondence should be addressed. Nidhi Sahni. Tel: +1 512 2379506; Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.262386; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Analysis of the Coding Sequence and Expression of the Coiled-Coil Α-Helical Rod Protein 1 Gene in Normal and Neoplastic Epithelial Cervical Cells
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 29: 669-676, 2012 Analysis of the coding sequence and expression of the coiled-coil α-helical rod protein 1 gene in normal and neoplastic epithelial cervical cells JOANNA PACHOLSKA-BOGALSKA1, MAGDALENA MYGA-NOWAK2, KATARZYNA CIEPŁUCH3, AGATA JÓZEFIAK4, ANNA KWAŚNIEWSKA5 and ANNA GOŹDZICKA-JÓZEFIAK3 1Department of Animal Physiology and Development, Adam Mickiewicz University, 61-614 Poznan; 2Department of Biotechnology and Microbiology, Jan Dlugosz University, 42-218 Czestochowa; 3Department of Molecular Virology, Adam Mickiewicz University, 61-614 Poznan; 4 Genesis Center for Medical Genetics, 60-601 Poznan; 5Department of Gynaecology and Obstetrics, Medical University of Lublin, 20-081 Lublin, Poland Received October 20, 2011; Accepted December 2, 2011 DOI: 10.3892/ijmm.2012.877 Abstract. The role of the CCHCR1 (coiled-coil α-helical rod control probes. It suggests that CCHCR1 could have a role in protein 1) protein in the cell is poorly understood. It is thought the process of cervical epithelial cell transformation, but this to be engaged in processes such as proliferation and differen- suggestion must be confirmed experimentally. tiation of epithelial cells, tissue-specific gene transcription and steroidogenesis. It is supposed to participate in keratinocyte Introduction transformation. It has also been found that this protein interacts with the E2 protein of human papilloma virus type 16 (HPV16). The oncogenic human papilloma virus (HPV) forms (HPV16, The oncogenic HPV forms, such as HPV16, are known to 18, 31 and 33) are etiological agents in the development of be necessary but not sufficient agents in the development of cervical carcinoma. However, the cell factors engaged in the cervical carcinoma.
    [Show full text]