New Mineral Names*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Mineral Names*
American Mineralogist, Volume 75, pages 240-246, 1990 NEW MINERAL NAMES* JOHN L. JAMBOR CANMET, 555 Booth Street, Ottawa, Ontario KIA OGI, Canada EDWARD S. GREW Department of Geological Sciences, University of Maine, Orono, Maine 04469, U.S.A. Baiyuneboite-(Ce) the formula for cordylite-(Ce) requires revision such that Pigqiu Fu, Xlanze Su (1987) Baiyuneboite-A new min- cordylite-(Ce) and baiyuneboite-(Ce) may be identical. The eral. Acta Mineralogica Sinica, 7, 289-297 (in Chinese, Chairman therefore withdrew the approval and asked that English abstract). the authors withhold publication of their description of Pingqiu Fu, Youhua Kong, Guohong Gong, Meicheng baiyuneboite-(Ce) until the matter could be resolved. The Shao, Jinzi Qian (1987) The crystal structure of bai- request, unfortunately, was ignored. J.L.J. yuneboite-(Ce). Acta Mineralogica Sinica, 7, 298-304 (in Chinese, English abstract). Diaoyudaoite* Electron-microprobe analyses of ten grains, whose va- lidity was checked by single-crystal X-ray methods prior Shunxi Shen, Lirong Chen, Anchun Li, Tailu Dong, Qiu- to analysis, gave an average ofNa20 4.73, CaO 1.04, BaO huo Huang, Wenqiang Xu (1986) Diaoyudaoite-A new 20.38, Ce20, 24.21, La20, 10.92, Pr20, 0.62, Nd20, 10.04, mineral. Acta Mineralogica Sinica, 6, 224-227 (in Gd20, 0.13, F 2.50, C02 (by gas chromatography) 24.64, Chinese, English abstract). o == F 1.05, sum 98.16 wt%, corresponding to Nal.OS- The average of 13 electron-microprobe analyses gave (BaO.94CaO.I,)n07( Ce I.OSLao.4sN do.42Pr 0.0'Gdo.OI)"1.99F 0.9'C,.97- Na20 4.54, AI20, 93.00, Cr20, 1.95, MgO 0.10, CaO 0.10, 012.07'ideally NaBaCe2F(CO')4' The mineral occurs as yel- SiOz 0.23, K20 0.12, sum 100.04 wt%, corresponding to low, irregular grains 0.3 to 3 mm in size, frequently as (N ao.87Ko.ozMgo.02CaO.01)ro.92(AllO.84CrO.lsSio.02)"'1.01 0,7, ide- thin hexagonal tablets. -
Chemistry, Geochemistry, and Geology of Chromium and Chromium Compounds
L1608_C02.fm Page 23 Thursday, July 15, 2004 6:57 PM 2 Chemistry, Geochemistry, and Geology of Chromium and Chromium Compounds William E. Motzer and Todd Engineers CONTENTS 2.1 Chromium Chemistry .................................................................................24 2.1.1 Background ......................................................................................24 2.1.2 Elemental/Metallic Chromium Characteristics .........................25 2.1.3 Ionic Radii ........................................................................................29 2.1.4 Oxidation States...............................................................................30 2.1.5 Stable and Radioactive Isotopes ...................................................31 2.1.6 Characteristics of Chromium Compounds.................................34 2.2 Natural Chromium Concentrations..........................................................34 2.2.1 Mantle ...............................................................................................46 2.2.2 Chromium Minerals........................................................................46 2.2.3 Chromium Ore Deposits................................................................46 2.2.3.1 Stratiform Mafic-Ultramafic Chromite Deposits .........62 2.2.3.2 Podiform- or Alpine-Type Chromite Deposits ............63 2.2.4 Crude Oil, Tars and Pitch, Asphalts, and Coal..........................63 2.2.5 Rock ...................................................................................................64 -
ISBN 5 900395 50 2 UDK 549 New Data on Minerals. Moscow
#00_firstPpages_en_0727:#00_firstPpages_en_0727.qxd 21.05.2009 19:38 Page 2 ISBN 5900395502 UDK 549 New Data on Minerals. Moscow.: Ocean Pictures, 2003. volume 38, 172 pages, 66 color photos. Articles of the volume are devoted to mineralogy, including descriptions of new mineral species (telyushenkoite – a new caesium mineral of the leifite group, neskevaaraite-Fe – a new mineral of the labuntsovite group) and new finds of min- erals (pabstite from the moraine of the Dara-i-Pioz glacier, Tadjikistan, germanocolusite from Kipushi, Katanga, min- erals of the hilairite group from Khibiny and Lovozero massifs). Results of study of mineral associations in gold-sulfide- tellyride ore of the Kairagach deposit, Uzbekistan are presented. Features of rare germanite structure are revealed. The cavitation model is proposed for the formation of mineral microspherulas. Problems of isomorphism in the stannite family minerals and additivity of optical properties in minerals of the humite series are considered. The section Mineralogical Museums and Collections includes articles devoted to the description and history of Museum collections (article of the Kolyvan grinding factory, P.A.Kochubey's collection, new acquisitions) and the geographical location of mineral type localities is discussed in this section. The section Mineralogical Notes includes the article about photo- graphing minerals and Reminiscences of the veteran research worker of the Fersman Mineralogical Museum, Doctor in Science M.D. Dorfman about meetings with known mineralogists and geochemists – N.A. Smoltaninov, P.P. Pilipenko, Yu.A. Bilibin. The volume is of interest for mineralogists, geochemists, geologists, and to museum curators, collectors and amateurs of minerals. EditorinChief Margarita I .Novgorodova, Doctor in Science, Professor EditorinChief of the volume: Elena A.Borisova, Ph.D Editorial Board Moisei D. -
Skaergaardite, Pdcu, a New Platinum-Group Intermetallic Mineral from the Skaergaard Intrusion, Greenland
Mineralogical Magazine, August 2004, Vol. 68(4), pp. 615–632 Skaergaardite, PdCu, a new platinum-group intermetallic mineral from the Skaergaard intrusion, Greenland 1, 2 3,4 5 6 1 N. S. RUDASHEVSKY *, A. M. MCDONALD , L. J. CABRI , T. F. D. NIELSEN , C. J. STANLEY , YU. L. KRETZER 1 AND V. N. RUDASHEVSKY 1 Centre for New Technologies, Svetlanovsky ave. 75-41, St. Petersburg, 195427 Russia 2 Department of Earth Sciences, Laurentian University, Ramsy Lake Road, Sudbury, Ontario, Canada 3 Cabri Consulting Inc., 99, Fifth Avenue, Suite 122, Ottawa, Ontario, Canada K1S 5P5 4 CANMET/MMSL, Ottawa, Canada K1A 0G1 5 Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark 6 The Natural History Museum, Cromwell Road, London SW7 5BD, UK ABSTRACT Skaergaardite, PdCu, is a new mineral discovered in the Skaergaard intrusion, Kangerdlugssuaq area, East Greenland. It occurs in a tholeitiic gabbro associated with plagioclase, clinopyroxene, orthopyroxene, ilmenite, titanian magnetite, fayalite and accessory chlorite-group minerals, ferrosapo- nite, a member of the annite–phlogopite series, hornblende, actinolite, epidote, calcite, ankerite, apatite and baddeleyite. The mineral is found in composite microglobules composed of bornite, chalcocite, digenite, chalcopyrite, with rare cobalt pentlandite, cobaltoan pentlandite, sphalerite, keithconnite, vasilite, zvyagintsevite, (Cu,Pd,Au) and Pt-Fe-Cu-Pd alloys, unnamed PdCu3, (Pd,Cu,Sn), Au3Cu and PdAuCu. Skaergaardite occurs as droplets, equant grains with rounded outlines, subhedral to euhedral crystals and as irregular grains that vary in size from 2 to 75 mm, averaging 22 mm. It is steel grey with a bronze tint, has a black streak, a metallic lustre and is sectile. -
New Data on Minerals
Russian Academy of Science Fersman Mineralogical Museum Volume 39 New Data on Minerals Founded in 1907 Moscow Ocean Pictures Ltd. 2004 ISBN 5900395626 UDC 549 New Data on Minerals. Moscow.: Ocean Pictures, 2004. volume 39, 172 pages, 92 color images. EditorinChief Margarita I. Novgorodova. Publication of Fersman Mineralogical Museum, Russian Academy of Science. Articles of the volume give a new data on komarovite series minerals, jarandolite, kalsilite from Khibiny massif, pres- ents a description of a new occurrence of nikelalumite, followed by articles on gemnetic mineralogy of lamprophyl- lite barytolamprophyllite series minerals from IujaVritemalignite complex of burbankite group and mineral com- position of raremetaluranium, berrillium with emerald deposits in Kuu granite massif of Central Kazakhstan. Another group of article dwells on crystal chemistry and chemical properties of minerals: stacking disorder of zinc sulfide crystals from Black Smoker chimneys, silver forms in galena from Dalnegorsk, tetragonal Cu21S in recent hydrothermal ores of MidAtlantic Ridge, ontogeny of spiralsplit pyrite crystals from Kursk magnetic Anomaly. Museum collection section of the volume consist of articles devoted to Faberge lapidary and nephrite caved sculp- tures from Fersman Mineralogical Museum. The volume is of interest for mineralogists, geochemists, geologists, and to museum curators, collectors and ama- teurs of minerals. EditorinChief Margarita I .Novgorodova, Doctor in Science, Professor EditorinChief of the volume: Elena A.Borisova, Ph.D Editorial Board Moisei D. Dorfman, Doctor in Science Svetlana N. Nenasheva, Ph.D Marianna B. Chistyakova, Ph.D Elena N. Matvienko, Ph.D Мichael Е. Generalov, Ph.D N.A.Sokolova — Secretary Translators: Dmitrii Belakovskii, Yiulia Belovistkaya, Il'ya Kubancev, Victor Zubarev Photo: Michael B. -
Download the Scanned
American Mineralogist, Volume 75, pages240-246, 1990 NEW MINERAL NAMES JosN L. JAvrnon CANMET, 555 Booth Street,Ottawa, Ontario KIA 0G1, Canada Enwlnn S. Gnnw Department of GeologicalSciences, University of Maine, Orono, Maine 04469, U.S.A. Baiyuneboite-(Ce) the formula for cordylite-(Ce)requires revision such that Pigqiu Fu, Xlanze Su (1987)Baiyuneboite-A new min- cordylite-(Ce)and baiyuneboite-(Ce)may be identical. The eral. Acta Mineralogica Sinica, 7,289-297 (in Chinese, Chairman thereforewithdrew the approval and askedthat English abstract). the authors withhold publication of their description of Pingqiu Fu, Youhua Kong, Guohong Gong, Meicheng baiyuneboite-(Ce)until the matter could be resolved.The Shao, Jinzi Qian (1987) The crystal structure of bai- request,unfortunately, was ignored. J.L.J. yuneboite-(Ce).Acta Mineralogica Sinica, 7, 298-304 (in Chinese,English abstract). Diaoyudaoite* Electron-microprobe analysesof ten grains, whose va- lidity was checkedby single-crystalX-ray methods prior Shunxi Shen,Lirong Chen, Anchun Li, Tailu Dong, Qiu- to analysis,gave an averageof NarO 4.73, CaO 1.04,BaO huo Huang,Wenqiang Xu (1986)Diaoyudaoite-A new Acta Mineralogica 6, 224-227 (in 20.3 8, CerO,24.21, I-a2O 3 10.92,Pr rO,0.62, NdrO3 I 0.04, mineral. Sinica, GdrO30.13, F 2.50,CO, (by gaschromatography) 24.64, Chinese,English abstract). = O F 1.05, sum 98.16 wt0/0,corresponding to Nalo8- The averageof l3 electron-microprobe analysesgave (Bao ,oCao ,r)", or(Ce, 05La048Ndo o2ProorGdo o,)", nnFonrC, nr- NarO4.54,AlrO3 93.00, CrrO, 1.95,MgO 0.10,CaO 0.10, O,, or,ideally NaBaCerF(COr)0.The mineral occursas yel- SiOr 0.23, KrO 0. -
39Th RMS Program Notes
39th Rochester Mineralogical Symposium Chairman & Emcee - Steve Chamberlain Registrar - Helen Chamberlain Treasurer - Dan Imel Technical Session - Steve Chamberlain Technical Session Moderator - Carl Francis Program Notes, Publicity - Steve Chamberlain Exhibits - Bruce Gaber Program Notes Cover Art - Susan Robinson Dealers - Helen Chamberlain Facilities - Cindi and Keith Newman, Brian McGrath Set-Up/Take-Down Crew - John Diaz, Chuck Hiler, Bob Morgan, Ed Smith, Lee Tutt, Ken Wolff What’s New In Minerals – Jeff Scovil Auction Solicitors General – Bruce Gaber, Gloria Staebler Auctioneers – Bruce Gaber, Carl Miller Auction Technical Support Wizards - Dan Sperber, Dan Imel Auction Preparation and Support Team - George Robinson, Betty Fetter, Charlene Freundlich, Bill Freundlich, Alicia Imel, Lauren Imel, Dan Sperber, Phyllis Sperber, Laurie Steele-Sperber Registration Desk - Betty Fetter, Elizabeth Von Bacho, Susan Robinson Worthy Keeper of the Micromounters’ Playroom - Quintin Wight Technical and Web Site Support - Dan Imel, Paul Dudley Video - Tom White Security - Bell Security and Investigations Symposium Committee - Helen Chamberlain, Steve Chamberlain, Betty Fetter, Bruce Gaber, Dan Imel, Bob Morgan, Cindi Newman, Keith Newman, Brian McGrath Special thanks to Don Gilmore for the elegant lucite logo and sign on the registration desk! Table of Contents Program . 1 Biographical Information for our Speakers . 6 Abstracts of Contributed Papers . 14 Native Brass and other Wonderful Things from Japanese Volcanoes by Alfredo Petrov . 39 Minerals from a Natural Shale Fire by R. Peter Richards, Will Shewfelt & Ernest Carlson. 41 Historic Oriented Crystal Preparation by the Firm of Steeg And Reuter, with Notes on a Few American Makers by Daniel Kile. 42 Dr. Andrew Fernando Holmes (1797-1860): An Early Canadian Mineral Collector and his Collection by Peter Tarasoff . -
New Mineral Names*
American Mineralogist, Volume 85, pages 263–266, 2000 NEW MINERAL NAMES* JOHN L. JAMBOR1 AND ANDREW C. ROBERTS2 1Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada 2Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada Esperanzaite* H3.10O7. Crystals are elongate [101] or [100], flattened {010}, E.E. Foord, J.M. Hughes, F. Cureton, C.H. Maxwell, A.U. Falster, showing {100}, {010}, {001}, and {101}. Vitreous luster, trans- A.J. Sommer, P.F. Hlava (1999) Esperanzaite, NaCa2Al2 parent, blue-green streak, brittle, irregular fracture, H = 3, 5+ ⋅ 3 (As O4)2F4(OH) 2H2O, a new mineral species from the La nonfluorescent, soluble in HCl, Dmeas = 4.2(1), Dcalc = 4.28 g/cm Esperanza mine Mexico: descriptive mineralogy and atomic for Z = 1 and the ideal formula. Optically biaxial negative, arrangement. Can. Mineral., 37, 67–72. α = 1.760(5), β = 1.80(1), γ = 1.83(1), 2Vmeas = 77(4), 2Vcalc = 80(1)°; weak pleochroism, α = β = light green, γ = green; weak Electron microprobe analysis gave As 26.50, Al 10.16, Ca r > v dispersion; on {010} α ∧ c = 33°, β ∧ a = 37.1°; on {100} 14.83, Zn 0.70, Na 2.86, F 13.9, H2O (titration) 8.65, O (calc.) β ∧ a = 34.3°, γ ∧ b = 30.1°; on {101} γ ∧ b = 44°, β′ ∧ [101] = 24.45, sum 102.15 wt%, corresponding to Na0.68Ca2.03Al2.06 36.5°. Single-crystal X-ray structure study (R = 0.062) gave (AsO4)[(As0.94Zn0.07)O3.87]F4.00(OH)⋅2.13H2O.