Space Exploration Review 3 4.4 Resources Required

Total Page:16

File Type:pdf, Size:1020Kb

Space Exploration Review 3 4.4 Resources Required Foreword This report provides advice to Ministers on the options open to the UK in the field of space exploration. It was agreed by the Minister for Science and Innovation and the Terms of Reference were approved by the Secretary of State for Innovation, Universities and Skills in May 2008. The report builds on the advice offered to BNSC by the UK Space Exploration Working Group in September 2007 and takes account of reports from other expert bodies and discussions with international partners and other experts. The work was carried out by a small team seconded in to BNSC. The economic analysis was carried out by London Economics who were selected by a competitive bid. The review was overseen by a Steering Committee taken from BNSC, STFC and DIUS 1, and including an independent member. Review team Jeremy Curtis (STFC) – Review Leader Prof Louise Harra (Mullard Space Science Laboratory, UCL) Prof John Zarnecki (Open University) Prof Monica Grady (Open University) For London Economics Charlotte Duke – Economics Team Leader Rodney Buckland (independent consultant) Steering Committee Prof Keith Mason (Chairman UK Space Board, CEO STFC) – Chairman Dr David Williams (DG BNSC) Dr David Parker (Director Space Science and Exploration, BNSC) Mark Beatson (Head of Science and Innovation Analysis, DIUS, now BIS) Lord Alec Broers (independent member) 1 DIUS merged with BERR in June 2009 to create the Department of Business Innovation and Skills (BIS) 2 IN CONFIDENCE Table of contents 1 Executive Summary ........................................................................................... 7 1.1 The issue .................................................................................................... 7 1.2 Timing ....................................................................................................... 7 1.3 Options ...................................................................................................... 7 1.4 Background and Rationale ......................................................................... 8 1.5 Analysis ..................................................................................................... 8 1.6 Option 1 – Reduced option ....................................................................... 10 1.7 Option 2 – The current position ................................................................ 12 1.8 Option 3 – Enhanced robotic programme ................................................. 12 1.9 Option 4 – Integrated human and robotic programme ............................... 13 1.10 Conclusions ............................................................................................. 15 2 Background and issues for the UK ................................................................... 16 2.1 Introduction ............................................................................................. 16 2.2 Overview of this report ............................................................................ 18 2.3 The wider space scene and the UK's role .................................................. 19 2.4 What is space exploration? ....................................................................... 21 2.5 International space exploration scene ....................................................... 25 2.6 Plans of other nations ............................................................................... 28 2.7 Commercial players ................................................................................. 31 2.8 Opportunities for the UK and UK strengths .............................................. 33 2.9 Use of space for skills and education ........................................................ 34 2.10 Current UK space policy and opportunities .............................................. 37 2.11 Choices for the UK .................................................................................. 38 2.12 Summary Points ....................................................................................... 38 3 Options for UK investment in space exploration .............................................. 40 3.1 Implementation of options ....................................................................... 41 3.2 Option 1: Reduced option ........................................................................ 44 3.3 Option 2: Current baseline option ............................................................. 46 3.4 Option 3: Enhanced robotic option ........................................................... 50 3.5 Option 4: Human and robotic option ........................................................ 57 4 Summary ......................................................................................................... 68 4.1 Options considered .................................................................................. 68 4.2 Synthesis of benefits ................................................................................ 69 4.3 Meeting Government aims ....................................................................... 77 UK Space Exploration Review 3 4.4 Resources required ................................................................................... 79 4.5 Delivery ................................................................................................... 81 4.6 Timing ..................................................................................................... 81 4.7 Partners .................................................................................................... 82 4.8 Conclusions ............................................................................................. 84 Appendix A Terms of Reference .................................................................. 86 A.1 Summary .......................................................................................... 86 A.2 Purpose ............................................................................................ 86 A.3 Background ...................................................................................... 87 A.4 Global context .................................................................................. 87 A.5 Timing ............................................................................................. 89 A.6 Objectives ........................................................................................ 89 A.7 Methodology .................................................................................... 90 Appendix B Plans of other nations ............................................................... 92 B.1 Europe ............................................................................................. 92 B.2 France .............................................................................................. 93 B.3 Germany .......................................................................................... 93 B.4 Italy .................................................................................................. 93 B.5 United States .................................................................................... 93 B.6 Canada ............................................................................................. 95 B.7 Japan ................................................................................................ 95 B.8 China ............................................................................................... 96 B.9 Russia .............................................................................................. 97 B.10 India ................................................................................................. 97 Appendix C Details of options and costs ...................................................... 98 C.1 Options for UK investment in space exploration ............................... 98 C.2 Component elements of each option ................................................. 98 C.3 Detailed cost figures ........................................................................ 102 Appendix D Economic analysis ................................................................... 107 D.1 Business opportunities enabled by each option ................................ 107 D.2 Case studies .................................................................................... 111 Case study 1: Lunar drilling .................................................................... 111 Case Study 2: Low-cost launch technology ............................................. 112 Case Study 3: Lunar communications and navigation .............................. 113 Case Study 4: Oxygen production on the Moon....................................... 114 Case Study 5: Autonomous robots........................................................... 115 Case Study 6: Medical applications ......................................................... 116 Case Study 7: Mini magnetospheres for radiation protection ................... 116 Appendix E Meeting the Government's Public Service Agreements ............ 118 Appendix F Abbreviations .......................................................................... 123 Appendix G Acknowledgements ................................................................. 124 4 IN CONFIDENCE Image: ESA UK Space Exploration Review 5 6 1 Executive Summary 1.1 The issue A number of countries have developed new plans for exploring the Moon, Mars and near- Earth objects using both robotic spacecraft and humans. These plans are coalescing into
Recommended publications
  • MOONLITE : the SCIENTIFIC CASE. IA Crawford1, AJ Ball2, L. Wilson3
    Lunar and Planetary Science XXXIX (2008) 1069.pdf * MOONLITE : THE SCIENTIFIC CASE. I.A. Crawford1, A.J. Ball2, L. Wilson3, A. Smith4, Y. Gao5 and the UK Pene- trator Consortium6. 1School of Earth Sciences, Birkbeck College, London, WC1E 7HX, UK. 2Planetary and Space Sciences Research Institute, Open University, Milton Keynes, UK. 3Department of Environmental Science, Lancaster University, UK. 4Mullard Space Science Laboratory, University College London, UK. 5Surrey Space Centre, University of Surrey, UK.6www.mssl.ucl.ac.uk/pages/general/news/UKLPC/UKLPC.pdf. *MoonLITE is a UK-led initiative which is currently the focus of a joint UK-NASA study. (Email: [email protected]). Introduction: The principal scientific importance the lunar crust and upper mantle [4,5]. However, the of the Moon is as a recorder of geological processes deep interior of the Moon was only very loosely con- active in the early history of terrestrial planets (e.g. strained by Apollo seismology due to the geographi- planetary differentiation, magma ocean formation and cally limited coverage of the network (essentially a evolution, etc), and of the near-Earth cosmic environ- triangle between the Apollo 12/14, 15 and 16 sites), so ment throughout Solar System history [1,2]. Although the information obtained on crustal thickness and man- the Clementine and Lunar Prospector missions have in tle structure may not be globally representative. There recent years greatly added to our knowledge of the is now a pressing need for a more widely-spaced net- geochemical and mineralogical makeup of the lunar work of lunar seismic stations, including stations at surface, and these observations will soon be supple- high latitudes and on the farside.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Moonlite: a UK-Led Mission to the Moon Downloaded from by Guest on 24 September 2021
    CRAWFORD, SMITH: MOONLITE MoonLITE: A UK-led mission to the Moon Downloaded from https://academic.oup.com/astrogeo/article/49/3/3.11/218588 by guest on 24 September 2021 Ian 1: Farside view of the Moon Crawford as seen by the and Alan Clementine spacecraft. Smith Penetrators discuss the launched by the MoonLITE orbiter scientific would allow surface objectives of investigations in areas not visited by Luna, the proposed Surveyor or Apollo missions. MoonLITE mission. (NASA/JPL/USGS) hile the surface missions to during the Apollo programme (see Wiec- the Moon of the 1960s and 1970s zorek et al. 2006, for a review). Moreover, the Wachieved a great deal, scientifically recent remote-sensing missions have themselves much was also left unresolved. The recent ABSTRACT raised questions that will require new surface plethora of lunar missions (flown or proposed) measurements for their resolution, of which reflects a resurgence in interest in the Moon, not MoonLITE is a proposal for a UK-led one of the most important is the circumstantial only in its own right, but also as a recorder of mission to the Moon that will place four evidence for water ice, and by implication other the early history of the Earth–Moon system and penetrators in the lunar surface in order volatiles, within permanently shaded craters at of the interplanetary environment 1 AU from the to make geochemical and geophysical the lunar poles (Feldman et al. 1998). Sun (e.g. Spudis 1996, Crawford 2004, Jolliff measurements that are impossible from In order to make significant further progress et al.
    [Show full text]
  • Space Almanac 2007
    2007 Space Almanac The US military space operation in facts and figures. Compiled by Tamar A. Mehuron, Associate Editor, and the staff of Air Force Magazine 74 AIR FORCE Magazine / August 2007 Space 0.05g 60,000 miles Geosynchronous Earth Orbit 22,300 miles Hard vacuum 1,000 miles Medium Earth Orbit begins 300 miles 0.95g 100 miles Low Earth Orbit begins 60 miles Astronaut wings awarded 50 miles Limit for ramjet engines 28 miles Limit for turbojet engines 20 miles Stratosphere begins 10 miles Illustration not to scale Artist’s conception by Erik Simonsen AIR FORCE Magazine / August 2007 75 US Military Missions in Space Space Support Space Force Enhancement Space Control Space Force Application Launch of satellites and other Provide satellite communica- Ensure freedom of action in space Provide capabilities for the ap- high-value payloads into space tions, navigation, weather infor- for the US and its allies and, plication of combat operations and operation of those satellites mation, missile warning, com- when directed, deny an adversary in, through, and from space to through a worldwide network of mand and control, and intel- freedom of action in space. influence the course and outcome ground stations. ligence to the warfighter. of conflict. US Space Funding Millions of constant Fiscal 2007 dollars 60,000 50,000 40,000 30,000 20,000 10,000 0 Fiscal Year 59 62 65 68 71 74 77 80 83 86 89 92 95 98 01 04 Fiscal Year NASA DOD Other Total Fiscal Year NASA DOD Other Total 1959 1,841 3,457 240 5,538 1983 13,051 18,601 675 32,327 1960 3,205 3,892
    [Show full text]
  • The Delta Launch Vehicle- Past, Present, and Future
    The Space Congress® Proceedings 1981 (18th) The Year of the Shuttle Apr 1st, 8:00 AM The Delta Launch Vehicle- Past, Present, and Future J. K. Ganoung Manager Spacecraft Integration, McDonnell Douglas Astronautics Co. H. Eaton Delta Launch Program, McDonnell Douglas Astronautics Co. Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Ganoung, J. K. and Eaton, H., "The Delta Launch Vehicle- Past, Present, and Future" (1981). The Space Congress® Proceedings. 7. https://commons.erau.edu/space-congress-proceedings/proceedings-1981-18th/session-6/7 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. THE DELTA LAUNCH VEHICLE - PAST, PRESENT AND FUTURE J. K. Ganoung, Manager H. Eaton, Jr., Director Spacecraft Integration Delta Launch Program McDonnell Douglas Astronautics Co. McDonnell Douglas Astronautics Co. INTRODUCTION an "interim space launch vehicle." The THOR was to be modified for use as the first stage, the The Delta launch vehicle is a medium class Vanguard second stage propulsion system, was used expendable booster managed by the NASA Goddard as the Delta second stage and the Vanguard solid Space Flight Center and used by the U.S. rocket motor became Delta's third stage. Government, private industry and foreign coun­ Following the eighteen month development program tries to launch scientific, meteorological, and failure to launch its first payload into or­ applications and communications satellites.
    [Show full text]
  • Annual Report
    The 2008 Annual Report of the International Space Exploration Coordination Group Released March 2009 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 THIS PAGE INTENTIONALLY BLANK 1 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 CONTENTS Introduction …………………………………………………………………………… 4 Part 1: The Role of the ISECG 1.1 Overview …………………………………………………………………………. 6 1.2 Working Groups of the ISECG …………………………………………………… 7 1.2.1 Enhancement of Public Engagement …………………………………………… 7 1.2.2 Establishment of Relationships with Existing International Working Groups …. 7 1.2.3 The International Space Exploration Coordination Tool (INTERSECT) ……. 8 1.2.4 The Space Exploration Interface Standards Working Group (ISWG) ………….. 8 1.2.5 Mapping the Space Exploration Journey ………………………………………... 8 Part 2: Current and Near-Term Activities of ISECG Members 2.1 Low Earth Orbit (LEO) …………………………………………………………… 10 2.1.1 The International Space Station (ISS) …………………………………………… 10 2.1.2 Emerging Government Capabilities …………………………………………….. 10 2.1.3 Emerging Commercial Providers ……………………………………………….. 11 2.2 Beyond LEO – The Moon and Mars ……………………………………………….. 11 2.2.1 Moon ……………………………………………………………………………… 11 2.2.2 Mars ………………………………………………………………………………. 12 Part 3: Progress in 2008 towards Opportunities for Integrated and Collaborative Space Exploration 3.1 Robotic Network Science – The International Lunar Network ……………………… 16 3.2 Joint Development for Robotic Exploration – Mars Sample Return ………………………… 17 3.3 Collaborative
    [Show full text]
  • Satellite Data Communications Link Requirements for a Proposed Flight Simulation System
    Theses - Daytona Beach Dissertations and Theses 4-1994 Satellite Data Communications Link Requirements for a Proposed Flight Simulation System Gerald M. Kowalski Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/db-theses Part of the Aviation Commons Scholarly Commons Citation Kowalski, Gerald M., "Satellite Data Communications Link Requirements for a Proposed Flight Simulation System" (1994). Theses - Daytona Beach. 266. https://commons.erau.edu/db-theses/266 This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University – Daytona Beach at ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an authorized administrator of ERAU Scholarly Commons. For more information, please contact [email protected]. Gerald M. Kowalski A Thesis Submitted to the Office of Graduate Programs in Partial Fulfillment of the Requirements for the Degree of Master of Aeronautical Science Embry-Riddle Aeronautical University Daytona Beach, Florida April 1994 UMI Number: EP31963 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI® UMI Microform EP31963 Copyright 2011 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • RAENG Satellite Age: Teacher Guide
    2018 Royal Academy of Engineering As the UK’s national academy for engineering, we bring together the most 1918 successful and talented engineers for a shared purpose: to advance and promote excellence in engineering. We have four strategic challenges: Make the UK the leading nation for Position engineering at engineering innovation the heart of society Supporting the development of successful Improving public awareness and engineering innovation and businesses in the recognition of the crucial role of UK in order to create wealth, employment and engineers everywhere. benefi t for the nation. Lead the profession Address the engineering skills crisis Harnessing the expertise, energy Meeting the UK’s needs by inspiring a and capacity of the profession generation of young people from all to provide strategic direction for backgrounds and equipping them with the high engineering and collaborate on quality skills they need for a rewarding career in solutions to engineering grand engineering. challenges. Satellite The RAF 100 Youth & STEM programme has been designed to engage and inspire young people by building their interest in engineering and technical career pathways. From cyber specialists to aerospace, aviation, electronics and mechanical disciplines, the Teacher's RAF is committed to using our centenary celebrations to extend opportunity to all and to age encourage greater diversity in this critical area of national skills shortages. Guide Royal Academy of Engineering Prince Philip House, 3 Carlton House Terrace, London SW1Y 5DG Front/back cover images: MoD/Crown copyright Tel: +44 (0)20 7766 0600 The images in this resource are licensed under the Open Government Licence v3.0.
    [Show full text]
  • Loral Space & Communications Inc
    Table of Contents UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 Form 10-K ☒ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 FOR THE FISCAL YEAR ENDED DECEMBER 31, 2020 OR ☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 Commission file number 1-14180 LORAL SPACE & COMMUNICATIONS INC. (Exact name of registrant specified in its charter) Jurisdiction of incorporation: Delaware IRS identification number: 87-0748324 600 Fifth Avenue New York, New York 10020 Telephone: (212) 697-1105 Securities registered pursuant to Section 12(b) of the Act: Title of each class Trading Symbol Name of each exchange on which registered Common stock, $.01 par value LORL Nasdaq Global Select Market Preferred Stock Purchase Rights Nasdaq Global Select Market Securities registered pursuant to Section 12(g) of the Act: None Indicate by check mark if the registrant is well-known seasoned issuer, as defined in Rule 405 of the Securities Act. Yes ◻ No ☒ Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act. Yes ◻ No ☒ Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. Yes ☒ No ◻ Indicate by check mark whether the registrant has submitted electronically every Interactive Data File required to be submitted pursuant to Rule 405 of Regulation S-T (§ 232.405 of this chapter) during the preceding 12 months (or for such shorter period that the registrant was required to submit such files).
    [Show full text]
  • Phd Projects at the Institute of Origins
    PhD projects at the Institute of Origins. A list of possible PhD projects at the Institute of Origins appear in the following pages. If you have any questions regarding any projects please contact the individual supervisors. Also if you have other suggestions for a project please contact us as well. The chemical composition of star forming regions near and far .................................... 3 ! Modelling the solubilities of organic solids in hydrocarbon liquids: application to the geology and astrobiology of Titan. .................................................................................... 4! Modeling turbulent flows in solar quiescent prominences ...............................................5! The zoo of exo-planets..................................................................................................8! Understanding the formation of heavy negative ions at Titan and Enceladus................9! Mapping anthropogenic versus natural sources of atmospheric CO2 ............................11! Probing Large Scale Structure with High Energy Neutrinos.........................................13! Future Moon Missions and High Energy Neutrinos ......................................................15! Measuring Cosmic Particles and the Upper Atmosphere with LOFAR.........................17! Mimicking planetary environments for assessing the survivability of bacterial organisms within an artificial environmental chamber. A combined planetary atmosphere and microbiological study for exploring panspermia................................
    [Show full text]
  • Moonlite Pendine Impact Trials
    Penetrators for Planetary Exploration and Science Professor Alan Smith University College London’s Mullard Space Science Laboratory [email protected] 1 Landers and Impactors NASA Viking, 600kg, 1975, $1b NASA Spirit, 174kg, 2004, $820m NASA LCROSS, 2009, $79m NASA Deep Impact, 370kg, 2005 Penetrators . Low mass projectiles (<15kg) Detachable . High impact speed Propulsion Stage ~ up to 400 ms-1 Point of . Very tough ~10-50kgee Separation Payload . Penetrate surface and Instruments imbed therein . Undertake science- PDS bases measurements (Penetrator Delivery System) . Transmit results Penetrator Penetrator delivery Spin-Down Release from Spin-up & Orbiter Decelerate Reorient Penetrator Separation Penetrator & PDS surface Impact Delivery sequence courtesy SSTL Operate from below surface Why penetrators ? Advantages: Limitations: • Simpler architecture • Low mass limits payload • Low mass options • Low cost • Impact survival limits payload • Explore multiple sites option • Natural redundancy • Limited lifetime • Direct contact with sub-regolith • Limited telemetry capacity (drill, sampling) • Protected from environment (wind, radiation) Complementary to Soft Landers for in situ studies Heritage Military Heritage in instrumented impact projectiles Numerous laboratories looking at high velocity impacts with gas guns QinetiQ 1996: Mars96 (Russia/Lavochkin), 2 off, 60-80 ms-1 impact, each 65kg incl braking system. Lost when Mars96 failed to leave Earth orbit. 1999: Deep Space-2 (NASA/JPL), 2 off, 140-210ms-1 impact, each 3.6kg with entry shell.
    [Show full text]
  • KISS Lunar Volatiles Workshop 7-22-2013
    Future Lunar Missions: Plans and Opportunities Leon Alkalai, JPL New Approaches to Lunar Ice Detection and Mapping Workshop Keck Institute of Space Studies July 22nd – July 25th, 2013 California Institute of Technology Some Lunar Robotic Science & Exploration Mission Formulation Studies at JPL (2003 – 2013) MoonRise New Frontiers GRAIL (2005-2007) Moonlight (2003-2004) (2005-2012) Lunette – Discovery Proposal Pre-Phase A Network of small landers (2005-2011) MIRANDA: cold trap access (2010) Lunar Impactor (2006) Other Lunar Science & Exploration Studies at JPL (2003 – 2013) • Sample Acquisition and Transfer Systems (SATS) • Landers: hard landers, soft landers, powered descent, hazard avoidance, nuclear powered lander and rover • Sub-surface access: penetrators deployed from orbit, drills, heat- flow probe, etc. • Surface mobility: Short-range, long-range, access to cold traps in deep craters • CubeSats and other micro-spacecraft deployed e.g. gravity mapping • International Studies & Discussions: – MoonLITE lunar orbiter and probes with UKSA – Farside network of lunar landers, with ESA, CNES, IPGP – Lunar Exploration Orbiter (LEO) with DLR – Lunar Com Relay Satellite with ISRO – Canadian Space Agency: robotics, surface mobility – In-situ science with RSA, landers, rovers – JAXA lunar landers, rovers – Korean Space Agency 7/23/2013 L. Alkalai, JPL 3 Robotic Missions to the Moon: Just in the last decade: 2003 - 2013 • Smart-1 ESA September 2003 • Chang’e-1 China October 2007 • SELENE-1 Japan September 2007 • Chandrayaan-1 India October 2008 – M3, Mini-SAR USA • LRO USA June 2009 • LCROSS USA June 2009 • Chang’e-2 China October 2010 • GRAIL USA September 2011 • LADEE USA September 6 th , 2013 7/23/2013 L.
    [Show full text]