Delaware River Basin

Total Page:16

File Type:pdf, Size:1020Kb

Delaware River Basin Water Supply/Demand Status Report for the Delaware River Basin September 2005 EXECUTIVE SUMMARY................................................................................................................IV PURPOSE STATEMENT .................................................................................................................. V STUDY LIMITATIONS..................................................................................................................... V REPORT OVERVIEW......................................................................................................................VI I. INTRODUCTION TO THE DELAWARE RIVER BASIN........................................................1 1.1 OVERVIEW OF THE DELAWARE RIVER BASIN ..............................................................................1 II. WATER SUPPLY BACKGROUND AND THE DELAWARE RIVER BASIN COMMISSION (DRBC)......................................................................................................................3 2.1 DEFINITION OF “WATER SUPPLY” ................................................................................................3 2.2 DELAWARE RIVER BASIN COMMISSION .......................................................................................3 2.2.1 The Delaware River Basin Compact....................................................................................3 2.2.2 Rules of Practice and Procedure..........................................................................................3 2.2.3 Water Code............................................................................................................................3 2.2.4 Comprehensive Water Resources Plan for the Delaware River Basin...............................4 2.3 THE U.S. SUPREME COURT DECREE OF 1954 ...............................................................................4 2.4 “GOOD-FAITH”RECOMMENDATIONS/DROUGHT OPERATING PLANS ..........................................5 III. STUDY PURPOSE, METHODOLOGY AND DATA SOURCES ...........................................7 3.1 STUDY PURPOSE ...........................................................................................................................7 3.2 METHODOLOGY ............................................................................................................................7 3.2.1 Demand Forecasting Model.................................................................................................8 3.2.2 Delineation of Delaware River Basin into Sub-basins........................................................8 3.2.3 Alternative Climate Conditions............................................................................................8 3.2.4 Basis for Water Use Assessment and Demand Projections.................................................8 IV. WATER AVAILABILITY..........................................................................................................11 4.1 SURFACE WATER SUPPLY...........................................................................................................11 4.1.1 Reservoir Storage in the Basin...........................................................................................11 4.1.2 Consumptive Use Replacement ..........................................................................................11 4.1.3 Surface Water Storage and Availability Calculations.......................................................13 4.2 GROUND WATER STORAGE ........................................................................................................14 4.2.1 Physiographic provinces/generalized geology...................................................................14 4.2.2 “Safe yield”.........................................................................................................................14 4.2.2.1 Base flow Recurrence Intervals....................................................................................14 4.2.2.2 Percentage of Average Annual Recharge.....................................................................14 4.2.3 Critical/Protected Areas .....................................................................................................15 4.2.3.1 Potomac-Raritan-Magothy (PRM) Aquifer: Critical Area No. 2 .................................15 4.2.3.2 Ground Water Protected Area (GWPA).......................................................................15 4.2.4 Contaminated Aquifers.......................................................................................................15 4.2.5 Ground Water Storage/Yield..............................................................................................17 4.2.6 Surface Water Storage and Availability Calculations.......................................................17 V. ANALYSIS OF CURRENT AND PROJECTED WATER DEMANDS..................................18 5.1 EXISTING SURFACE AND GROUND WATER DEMANDS ...............................................................18 5.1.1 Uses by Sector .....................................................................................................................18 5.2 EFFECTS OF CLIMATE AND PEAKING FACTORS ON DEMAND .....................................................18 DRBC Water Supply/Demand Status Report for the Delaware River Basin i 5.3 USES BY SUB-BASIN....................................................................................................................19 5.4 TOTAL WITHDRAWALS CONSUMPTIVE USE &DELAWARE RIVER BASIN EXPORTS .................20 5.5 CONSUMPTIVE USE AND EQUIVALENT IMPACT FACTOR............................................................22 5.6 SENSITIVITY TESTING OF CONSUMPTIVE USE ESTIMATES.........................................................24 5.7 CURRENT AND FORECAST WATER USE BY SECTOR ...................................................................25 VI. RESOURCE ASSESSMENT......................................................................................................30 6.1 DELAWARE RIVER BASIN ...........................................................................................................30 6.1.1 Surface Water Assessment .................................................................................................30 6.1.2 Ground Water Assessment .................................................................................................30 6.2 INDIVIDUAL SUB-BASINS ............................................................................................................33 6.1.1 Surface Water Assessment .................................................................................................33 6.1.2 Ground Water Assessment .................................................................................................34 VII. RECOMMENDATIONS ...........................................................................................................35 7.1 IMPROVE THE COLLECTION AND MANAGEMENT OF WATER USE DATA ...................................35 7.2 ADDRESS KEY AREAS OF UNCERTAINTY ...................................................................................35 7.3 FOCUS ON MOST STRESSED SUB-BASINS....................................................................................35 7.4 MITIGATE CONSUMPTIVE USE IMPACTS.....................................................................................36 7.5 IMPROVE DEMAND PROJECTIONS FOR THE POWER SECTOR ......................................................36 7.6 DEVELOP AND INTEGRATE INSTREAM FLOW CRITERIA .............................................................36 APPENDICES ....................................................................................................................................38 DRBC Water Supply/Demand Status Report for the Delaware River Basin ii LIST OF FIGURES: FIGURE 1.1 THE DELAWARE RIVER BASIN (DRB) ..................................................................................................2 FIGURE 3.1 DELAWARE RIVER BASIN (DRB) SUB-BASIN DELINEATIONS ................................................................9 FIGURE 4.1 GENERALIZED GEOLOGIC PROVINCES IN THE DELAWARE RIVER BASIN .............................................16 FIGURE 5.1 WITHDRAWALS,CONSUMPTIVE USE AND MAJOR EXPORTS FROM THE DELAWARE RIVER BASIN .....21 FIGURE 5.2 LOCATION OF POWER GENERATING FACILITIES IN THE DELAWARE RIVER BASIN ...............................23 FIGURE 5.3 TOTAL WATER USE (DRY YEAR) - 1995, 2020 AND 2040 PROJECTED WATER DEMAND BY SECTOR....26 FIGURE 5.4 CONSUMPTIVE WATER USE (DRY YEAR) - 1995, 2020 AND 2040 PROJECTED WATER DEMAND BY SECTOR.........................................................................................................................................................27 FIGURE 6.1 CONSUMPTIVE SURFACE WATER WITHDRAWALS (DRY YEAR): AVERAGE AND PEAK MONTH (JULY) VALUES.........................................................................................................................................................31 FIGURE 6.2 GROUND WATER WITHDRAWALS (DRY YEAR): AVERAGE AND PEAK MONTH (JULY) VALUES ..........32 LIST OF TABLES: TABLE 2.1 INTERSTATE OPERATION FORMULAS DURING PERIODS OF DROUGHT....................................................5 TABLE 3.1 PRECIPITATION STATISTICS FOR 1995 AND 1996 IN THE DELAWARE RIVER BASIN................................8 TABLE 4.1 RESERVOIRS IN THE DELAWARE RIVER BASIN: CAPACITY, LOCATION AND PURPOSE. .........................12 TABLE
Recommended publications
  • Enhancing Multi-Jurisdictional Use and Management of Water Resources for the Delaware River Basin, NY, NJ, PA, and DE December 2008
    Enhancing Multi-jurisdictional Use and Management of Water Resources for the Delaware River Basin, NY, NJ, PA, and DE December 2008 Milford Montague Prepared by: USACE Philadelphia District 1 TABLE OF CONTENTS Multi-jurisdictional Use and Management of Water Resources for the Delaware River Basin, NY, PA, NJ and DE TABLE OF CONTENTS EXECUTIVE SUMMARY. 10-13 1.0 INTRODUCTION 1.1 Study Purpose . ..14 1.2 Study Authority. .14 1.3 Stakeholder Involvement. 14-15 1.4 Study Proposal. 15-16 1.5 Managing Water Resources in the Basin. ..16-17 1.6 Evolution of Objectives. .18 1.7 Study Area . 19-20 2.0 LONG TERM SUFFICIENCY OF WATER SUPPLY THROUGH 2030. ..21-22 2.1 Water Availability Analysis. .22 2.1.1 Basin Delineation. 22-30 2.1.2 Ground Water Availability. 31-36 2.1.3 Surface Water Availability. 37-40 2.1.4 Affects of Climate Variability. .41-42 2.2 Water Demand. 43 2.2.1 Existing Conditions. .43 2.2.2 Forecasting Future Demand . 43-45 2.2.2.1 Methodology Used For Watershed Analysis . 45 2.2.2.1.1 Population Growth. 45-47 2.2.2.1.2 Water Conservation. 48 2.2.3 Results of Water Demand Forecasting and Availability Analysis 49-54 2.2.4 Sensitivity Analysis. 55 2.2.5 Summary of Total Withdrawals and Consumptive Use by Watershed 55-57 2.2.6 River Analysis for Surface Water Withdrawals. 58-59 2.3 Calculating Water Supply Deficits. .60 2.3.1 Water Supply Deficits in Watersheds Identified for Further Study 60-66 2.3.2 Calculating Water Deficiencies for the Delaware, Schuylkill and Lehigh Rivers 67-69 2.3.2.1 Deficiencies in the Year 2003 .
    [Show full text]
  • Section 9.3 Town of Bovina
    SECTION 9.3: TOWN OF BOVINA 9.3 TOWN OF BOVINA This section presents the jurisdictional annex for the Town of Bovina. A.) HAZARD MITIGATION PLAN POINT OF CONTACT Primary Point of Contact Alternate Point of Contact Tina Molé, Town Supervisor 1866 County Hwy. 6 Edward Weber, Highway Superintendent PO Box 6 1580 County Hwy 6, Bovina Center, NY 13740 Bovina Center, NY 13740 607.832.4220 607.832.4302 [email protected] [email protected] B.) TOWN PROFILE The Town of Bovina is located in the eastern central portion of Delaware County. Hamlets within the Town include Bovina and Bovina Center1. The Town covers approximately 42 square miles2. According to the U.S. Census, the 2010 population for the Town was 6333. State Route 28 bisects the southern portion of the Town and connects the Town to other parts of the County1. The relief of the Town of Bovina was formed by glaciers and is characterized by both steep slopes and depressions. The Town is part of the glaciated low plateau section of the Appalachian Plateau Province. The Town of Bovina lies entirely within the Delaware River Basin. Most of the Town drains into the Little Delaware River, which is a tributary to the New York City-owned Cannonsville Reservoir. Small areas in the southern portion of the Town, and along the eastern ridge drain into the Pepacton Reservoir1. Hazard Vulnerabilities in the Town The following section discusses vulnerabilities from high-ranked hazards within the Town of Bovina. Complete profiles of all hazards of concern are included in Section 5 of this Plan.
    [Show full text]
  • Assessment of Public Comment on Draft Trout Stream Management Plan
    Assessment of public comments on draft New York State Trout Stream Management Plan OCTOBER 27, 2020 Andrew M. Cuomo, Governor | Basil Seggos, Commissioner A draft of the Fisheries Management Plan for Inland Trout Streams in New York State (Plan) was released for public review on May 26, 2020 with the comment period extending through June 25, 2020. Public comment was solicited through a variety of avenues including: • a posting of the statewide public comment period in the Environmental Notice Bulletin (ENB), • a DEC news release distributed statewide, • an announcement distributed to all e-mail addresses provided by participants at the 2017 and 2019 public meetings on trout stream management described on page 11 of the Plan [353 recipients, 181 unique opens (58%)], and • an announcement distributed to all subscribers to the DEC Delivers Freshwater Fishing and Boating Group [138,122 recipients, 34,944 unique opens (26%)]. A total of 489 public comments were received through e-mail or letters (Appendix A, numbered 1-277 and 300-511). 471 of these comments conveyed specific concerns, recommendations or endorsements; the other 18 comments were general statements or pertained to issues outside the scope of the plan. General themes to recurring comments were identified (22 total themes), and responses to these are included below. These themes only embrace recommendations or comments of concern. Comments that represent favorable and supportive views are not included in this assessment. Duplicate comment source numbers associated with a numbered theme reflect comments on subtopics within the general theme. Theme #1 The statewide catch and release (artificial lures only) season proposed to run from October 16 through March 31 poses a risk to the sustainability of wild trout populations and the quality of the fisheries they support that is either wholly unacceptable or of great concern, particularly in some areas of the state; notably Delaware/Catskill waters.
    [Show full text]
  • Estimates of Natural Streamflow at Two Streamgages on the Esopus Creek, New York, Water Years 1932 to 2012
    Prepared in cooperation with the New York City Department of Environmental Protection Estimates of Natural Streamflow at Two Streamgages on the Esopus Creek, New York, Water Years 1932 to 2012 Scientific Investigations Report 2015–5050 U.S. Department of the Interior U.S. Geological Survey Cover. The West Basin of Ashokan Reservoir at sunset. Photograph by Elizabeth Nystrom, 2013. Estimates of Natural Streamflow at Two Streamgages on the Esopus Creek, New York, Water Years 1932 to 2012 By Douglas A. Burns and Christopher L. Gazoorian Prepared in cooperation with the New York City Department of Environmental Protection Scientific Investigations Report 2015–5050 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Burns, D.A., and Gazoorian, C.L., 2015, Estimates of natural streamflow at two streamgages on the Esopus Creek, New York, water years 1932–2012: U.S.
    [Show full text]
  • 3. Water Quality
    Table of Contents Table of Contents Table of Contents.................................................................................................................. i List of Tables ........................................................................................................................ v List of Figures....................................................................................................................... vii Acknowledgements............................................................................................................... xi Errata Sheet Issued May 4, 2011 .......................................................................................... xiii 1. Introduction........................................................................................................................ 1 1.1 What is the purpose and scope of this report? ......................................................... 1 1.2 What constitutes the New York City water supply system? ................................... 1 1.3 What are the objectives of water quality monitoring and how are the sampling programs organized? ........................................................................... 3 1.4 What types of monitoring networks are used to provide coverage of such a large watershed? .................................................................................................. 5 1.5 How do the different monitoring efforts complement each other? .......................... 9 1.6 How many water samples did DEP collect
    [Show full text]
  • Catskill Trends
    Catskill Trends Mike McHale, Doug Burns, Jason Siemion, Mike Antidormi, Greg Lawrence U.S. Geological Survey, Troy NY New York Catskill LTM Network New York NADP and MDN Station Mean Acidity 1991-2014 60 40 Neversink River 20 Biscuit Brook 0 Rondout Creek -20 Tison's Creek in micromoles per liter Acid Neutralizing Capacity, Winnisook -40 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 pH, in pH units Catskill Sampling Water sampling at 5 streams in the Catskill Mountains Monthly sampling plus storms ~ 35 samples per year Winnisook soils were sampled in 1993 (Javier Ruiz) and 2012 (McHale). Fall Brook Soils were sampled in 2001 (Lawrence) and 2011 (Lawrence and others). There is an NADP site at Biscuit Brook Rondout Creek above Peekamoose (RC) Winnisook Watershed (WN) on the slopes of Slide Mountain in the headwaters of the Neversink River basin Biscuit Brook eq/L) 16 50140 eq/L) ARP Emmissions 14 NY68 Deposition 120 Biscuit Brook ( conc. 40 2- 4 12 100 30 10 80 8 60 20 6 40 10 4 20 2 0 1990 1995 2000 2005 2010 20152015 Biscuit NTN annual volume-weighted SO annual volume-weighted NTN Biscuit Biscuit NTN annual volume-weighted ( SO42- conc. annual volume-weighted NTN Biscuit EPA Acid Rain Program SO2 annual emissions (million tons) SO2(million EPA annual emissions Rain Program Acid EPA Acid Rain Program SO2 annual emissions (million tons) EPA Acid Rain Program SO2 annual emissions (million tons)EPASO2 (million annual Rain Program emissions Acid Year Biscuit Brook 7 2860 eq/L) ARP Emmissions 26 NY68 Deposition 6 Biscuit Brook 50 conc.
    [Show full text]
  • Public Fishing Rights Neversink River
    Public Fishing Rights Maps Neversink River Photo taken by Ed Ostapczuk About Public Fishing Rights Public Fishing Rights (PFR’s) are perma- nent easements purchased by the NYSDEC from willing landowners, giving anglers the right to fish and walk along the bank (usually a 33’ strip on one or both banks of the stream). This right is for the purpose of fishing only and no other purpose. Treat the land with respect to insure the continu- ation of this right and privilege. Fishing privileges may be available on some other private lands with permission of the land owner. Courtesy toward the land-owner and respect for their property will insure their continued use. Description of Fishery These generalized location maps are in- tended to aid anglers in finding PFR seg- The Neversink River contains a quality wild brown trout population, and ments and are not survey quality. Width of is stocked annually with over 5,000 brown trout. This tail-water fishery displayed PFR may be wider than reality to contains good coldwater habitat throughout the summer, providing anglers make it more visible on the maps. Please an opportunity to catch quality fish during the summer months when other look for this PFR sign to ensure that you streams are too warm to fish. are in the right location and have legal ac- Note: cess to the stream bank. Special regulations apply. See Fishing Regulations Guide. Fish Species Present Brown Trout Location Brook Trout For more information on this creek or if Sullivan Rainbow Trout you believe PFR marked areas on these County maps are incorrect or missing PFR signs, please call the Region 3 Fisheries office: (845) 256-3161.
    [Show full text]
  • Section 5.4.3 Flood Profile
    SECTION 5.4.3: RISK ASSESSMENT – FLOOD 5.4.3 FLOOD This section provides a profile and vulnerability assessment for the flood hazard. HAZARD PROFILE This section provides profile information including description, location, extent, previous occurrences and losses and the probability of future occurrences. Description Floods are one of the most common natural hazards in the U.S. They can develop slowly over a period of days or develop quickly, with disastrous effects that can be local (impacting a neighborhood or community) or regional (affecting entire river basins, coastlines and multiple counties or states) (Federal Emergency Management Agency [FEMA], 2010). Most communities in the U.S. have experienced some kind of flooding, after spring rains, heavy thunderstorms, coastal storms, or winter snow thaws (George Washington University, 2001). Floods are the most frequent and costly natural hazards in New York State in terms of human hardship and economic loss, particularly to communities that lie within flood prone areas or flood plains of a major water source. As defined in the NYS HMP, flooding is a general and temporary condition of partial or complete inundation on normally dry land from the following: Riverine flooding, including overflow from a river channel, flash floods, alluvial fan floods, dam- break floods and ice jam floods; Local drainage or high groundwater levels; Fluctuating lake levels; Coastal flooding; Coastal erosion (NYS HMP 2011) Unusual and rapid accumulation or runoff of surface waters from any source; Mudflows (or mudslides); Collapse or subsidence of land along the shore of a lake or similar body of water caused by erosion, waves or currents of water exceeding anticipated cyclical levels that result in a flood as defined above (Floodsmart.gov, 2012); Sea Level Rise; or Climate Change (USEPA, 2012).
    [Show full text]
  • Flood of April 2-3, 2005, Neversink River Basin, New York
    Prepared in cooperation with the Federal Emergency Management Agency Flood of April 2–3, 2005, Neversink River Basin, New York Open-File Report 2006–1319 U.S. Department of the Interior U.S. Geological Survey Cover. Center photo: Neversink River flow over Guymard Turnpike at Myers Grove, New York. Left photo: Neversink River at upstream side of Guymard Turnpike bridge at Myers Grove, New York. Right photo: Neversink River overflow at intersection of Guymard Turnpike and Shore Drive at Myers Grove, New York, taken April 3, 2005. Flood of April 2–3, 2005, Neversink River Basin, New York By Thomas P. Suro and Gary D. Firda Prepared in cooperation with the Federal Emergency Management Agency Open-File Report 2006–1319 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Suro, T.P.
    [Show full text]
  • USACE HEC-Ressim Model May 2011 Revised Report
    Delaware River Basin Flood Analysis Model Reservoir Operations and Streamflow Routing Component February 2010 (Revised May 2011) Approved for Public Release. Distribution Unlimited. PR-73 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) February 2010 (Rev May 2011) Project Report 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Delaware River Basin Flood Analysis Model Reservoir Operations and Streamflow Routing Component 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Joan Klipsch, CEIWR-HEC-WMS Marilyn Hurst, CEIWR-HEC-WRS 5e. TASK NUMBER Matthew Fleming, CEIWR-HEC-HHT 5F. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER US Army Corps of Engineers PR-73 Institute for Water Resources Hydrologic Engineering Center (HEC) 609 Second Street Davis, CA 95616-4687 9.
    [Show full text]
  • Controls of Stream Chemistry and Fish Populations in the Neversink Watershed, Catskill Mountains, New York
    Prepared in cooperation with the New York City Department of Environmental Protection Controls of Stream Chemistry and Fish Populations in the Neversink Watershed, Catskill Mountains, New York he Neversink Watershed Study was initiated in 1991 to T develop an understanding of the key natural processes that control water quality within the forested, 166 km2 64 mi2), Neversink River watershed; part of the New York City drinking water supply system, in the Catskill Mountain region of New York. The study entailed (1) hydrological investigations of water movement from the atmosphere to streams, (2) biogeochemical investigations of nitrogen and calcium, important nutrients in forest and aquatic ecosystems whose availability has been altered by acidic deposition, (3) an investigation of elevational patterns in atmospheric deposition, and (4) fisheries investigations to determine the relative importance of physical habitat and acidic deposition in controlling the abundance and By Gregory B. Lawrence1, Douglas A. Burns1, Barry P. Baldigo1 diversity of fish species in the watershed. This report summarizes Peter S. Murdoch1 and Gary M. Lovett2 the results of these investigations, which have also been presented, 1U.S. Geological Survey, Troy, New York in detail, in peer-reviewed technical articles and reports that are 2Institute of Ecosystem Studies, Millbrook, New York cited throughout the text. Departmentof the Interior WRIR 00-4040 U.S, Geological Survey January 2001 1 INTRODUCTION water is altered by chemical and biological processes that interact in complicated ways. An understanding of these The City of New York relies on six reservoirs in the processes is essential for discerning the effects of human Catskill Mountains to provide 90% of its water supply to activities from undisturbed conditions, and reducing 8 million residents.
    [Show full text]
  • Relations of Environmental Factors with Mussel-Species Richness in the Neversink River, New York
    1 Prepared in cooperation with The Nature Conservancy and Sullivan County Division of Planning and Environmental Management Relations of Environmental Factors with Mussel-Species Richness in the Neversink River, New York Significant Findings • A 6-year study of mussel communities and their habitat in the Neversink River basin in southeastern New York found that the principal factors apparently affecting mussel-species richness were site (reach) elevation, drainage-area size, channel width, bottom- material composition, water velocity, shear stress at bankfull discharge, and water quality (acid- neutralizing capacity (ANC) and concentrations of calcium, phosphorus, and sulfate). Together these 10 factors explained as much as 94 percent of the variability in mussel-species richness across the watershed. Swollen wedgemussel (Alasmidonta varicosa) from the Neversink River. • The number of species in mussel communities throughout the basin typically increases in a downstream progression from zero or one species in upstream sites to as many as six species in downstream sites. • A recently removed dam in the lower part of the river may have confined populations of two rare mussel species to lower reaches of the Neversink River; its removal in 2004 could allow those species to populate additional reaches in the upper basin. U.S. Department of the Interior Printed on recycled paper Open-File Report 2007–1283 U.S. Geological Survey March 2008 2 Introduction flow patterns have recently been (richness) were quantified through 2-hour proposed by TNC and could benefit snorkeling searches at 28 sites during the Declines in the distribution, the established mussel populations summer of 1997; of these, 17 were on abundance, and diversity of freshwater- and aquatic communities.
    [Show full text]