Recent Trends in Freshwater Influx to the Arctic Ocean from Four Major
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ob' River Discharge from TOPEX/Poseidon Satellite Altimetry
Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002) A. Kouraev, E. A. Zakharova, O. Samain, N. Mognard-Campbell, A. Cazenave To cite this version: A. Kouraev, E. A. Zakharova, O. Samain, N. Mognard-Campbell, A. Cazenave. Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sensing of Environment, Elsevier, 2004, 93 (1-2), pp.238-245. 10.1016/j.rse.2004.07.007. hal-00280276 HAL Id: hal-00280276 https://hal.archives-ouvertes.fr/hal-00280276 Submitted on 6 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002) Alexei V. Kouraeva,b,*, Elena A. Zakharovab, Olivier Samainc, Nelly M. Mognarda, Anny Cazenavea aLaboratoire d’Etudes en Ge´ophysique et Oce´anographie Spatiales (LEGOS), Toulouse, France bState Oceanography Institute, St. Petersburg Branch, St. Petersburg, Russia cMe´te´o-France, CNRM, Toulouse, France The paper discusses an application of the TOPEX/Poseidon (T/P) altimetry data to estimate the discharge of one of the largest Arctic rivers—the Ob’ river. We first discuss the methodology to select and retrieve the altimeter water levels during the various phases of the hydrological regime. -
Evaluating Snowmelt Runoff Generation in a Discontinuous Permafrost
Evaluating snowmelt runoff generation in a discontinuous Nordic Hydrology permafrost catchment using stable isotope, hydrochemical and hydrometric data* S.K. Carey1 and W.L. Quinton2 1Department of Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada K1S 5B6 Vol 35 No 4 pp 309–324 E-mail: [email protected] 2Department of Geography, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6 Received 1 November 2003; accepted in revised form 15 June 2004 Abstract Research on snowmelt runoff generation in discontinuous permafrost subarctic catchments has highlighted the role of: (i) permafrost in restricting deep percolation and sustaining near-surface water tables and (ii) the surface organic layer in rapidly conveying water to the stream. Conceptual models of runoff generation have largely been derived from hydrometric data, with isotope and hydrochemical data having only limited q application in delineating sources and pathways of water. In a small subarctic alpine catchment within the Wolf IWA Publishing 2004 Creek Research Basin, Yukon, Canada, snowmelt runoff generation processes were studied during 2002 using a mixed methods approach. Snowmelt timing varied between basin slopes, with south-facing exposures melting prior to permafrost-underlain north-facing slopes. The streamflow freshet period begain after 90% of snow had melted on the south-facing slope and coincided with the main melt period on the north-facing slope, indicating that contributing areas were largely defined by permafrost distribution. Stable isotope (d18O) and hydrochemical parameters (dissolved organic carbon, specific conductivity, pH) suggest that, at the beginning of the melt period, meltwater infiltrates soil pores and resides in temporary storage. As melt progresses and bare ground appears, thawing of soils and continued meltwater delivery to the slopes allows rapid drainage of this meltwater through surface organic layers. -
Provincial Freshet and Flood Status
Dashboard # Provincial Lead Contact: Media Relations contact: Provincial Freshet and Flood Status Manager, River Forecast Centre & Flood Safety Provincial Information Coordination Officer Date: June 24th, 2021, 4:00 pm Freshet 12 - George Roman Tyler Hooper 2021 Water Management Branch, Public Affairs Officer Ministry of Forests, Lands, Natural Resource [email protected] Operations and Rural Development (FLNRORD) 250-213-8172 [email protected] 250-896-2725 Provincial Summary Several streams and rivers are flowing higher this week than seasonal due the unprecedented historic heat resulting in a number of Flood Warnings, Flood Watches and High Streamflow Advisories. In general, stream flows will begin to recede over the next week. The Fraser River is expected to rise into the weekend; however, flows are forecast to remain below their earlier 2021 peaks. Provincial staff, local government staff, First Nations, and other parties continue to monitor the situation and support the implementation of flood emergency preparedness, response, and recovery. The public is advised to stay clear of all fast-flowing rivers and streams and potentially unstable riverbanks during spring high streamflow periods. Weather (Current and Forecast) Temperatures have reduced from the historic heat we recently experienced. As the ridge that resulted in the high temperatures moves east there is increased risk of instability leading to thunder and lightening. Limited precipitation is expected over the next several days. Flood Warnings and Advisories River Conditions and Outlook Flood Warning The historic heat event has led to historic snow melt. Many streams responded to the extreme heat and high elevation snow and glacial • Upper Fraser River melt. -
The Security of the Caspian Sea Region
4. The Caspian Sea: threats to its biological resources and environmental security Igor Zonn I. Introduction The Caspian Sea is the world’s largest inland sea. Physiographically it is unique. It is the most productive body of water in the world1 and the only one that preserves the geno-fund of the sturgeon, the source of almost all the black caviar produced. About 10 million people live around the Caspian Sea and the occupations of many of them are connected with the sea, and first of all with fishing. By virtue of its oil and gas potential the Caspian has a place among the major world centres of hydrocarbon production. The rivers of the largest water catchment area in the world discharge into it from the industrial and production regions of the littoral states. This fact accounts for the periodic fluctuations of the sea level and for the nature and scale of pollution of the sea. As for the water body itself, there has always been a conflict between the use of its principal natural resources—biological resources (fishing of valuable fish species, first and foremost the sturgeon)—and the exploitation of hydrocarbons (the development of shelf and offshore oil and gas fields). This conflict has become especially acute since the breakup of the Soviet Union, as a result of which the legal status of the Caspian Sea changed, regulation of the exploitation of the sea’s resources has broken down, and the geopolitical interests of five different states conflict. These interests are those connected with military and political security, with shipping, with the exploitation of biological and mineral resources, and with environmental security. -
Types of Flooding
Designed for safer living® Focus on Types of flooding Designed for safer living® is a program endorsed by Canada’s insurers to promote disaster-resilient homes. About the Institute for Catastrophic Loss Reduction The Institute for Catastrophic Loss Reduction (ICLR), established in 1997, is a world-class centre for multidisciplinary disaster prevention research and communication. ICLR is an independent, not-for-profit research institute founded by the insurance industry and affiliated with Western University, London, Ontario. The Institute’s mission is to reduce the loss of life and property caused by severe weather and earthquakes through the identification and support of sustained actions that improve society’s capacity to adapt to, anticipate, mitigate, withstand and recover from natural disasters. ICLR’s mandate is to confront the alarming increase in losses caused by natural disasters and to work to reduce deaths, injuries and property damage. Disaster damage has been doubling every five to seven years since the 1960s, an alarming trend. The greatest tragedy is that many disaster losses are preventable. ICLR is committed to the development and communication of disaster prevention knowledge. For the individual homeowner, this translates into the identification of natural hazards that threaten them and their home. The Institute further informs individual homeowners about steps that can be taken to better protect their family and their homes. Waiver The content of this publication is to be used as general information only. This publication does not replace advice from professionals. Contact a professional if you have questions about specific issues. Also contact your municipal government for information specific to your area. -
2019 Freshet Update No. 1
MEDIA RELEASE FOR IMMEDIATE RELEASE March 8, 2021 2021 Freshet Update #1 BRACEBRIDGE, ON – Springtime is fast approaching and flooding in low lying areas of the Town is a potential risk due to melting snow and spring rainfall. With the freshet events of 2019 still very clear in our minds, the Town of Bracebridge wishes to remind its residents and visitors that freshet preparations should be undertaken by those in areas prone to flooding. The Town of Bracebridge is committed to the safety of our residents and visitors, as well as the protection of property. With this in mind, we wish to keep the public informed so that they can be prepared to lessen the effects of flooding events should they occur this year. Town of Bracebridge emergency planning officials are working closely with their counterparts from the District Municipality of Muskoka and the other municipalities in Muskoka to ensure a consistent flow of information to the public in the event of a flood occurrence. As we progress through the 2021 spring freshet, the Town will issue freshet updates to assist in flood protection and mitigation. These updates may include: Ministry of Natural Resources and Forestry (MNRF) flood bulletins, road closure locations, sandbag availability, safety tips or other relevant flood information. The following information, together with supplementary items found on the Town’s website and the links contained in this update, provide valuable suggestions to assist property owners in preparation for the 2021 spring freshet: Ministry of Natural Resources and Forestry (MNRF) As part of their ongoing responsibilities for the management of area watersheds, the MNRF: • Monitors water levels in major Muskoka lakes and rivers, and regulates dams as appropriate to runoff conditions. -
Frontex · Western Balkans Annual Risk Analysis 2018 Table of Contents
Western Balkans Annual Risk Analysis 2018 Western Balkans Annual Risk Analysis 2018 Plac Europejski 6, 00-844 Warsaw, Poland T +48 22 205 95 00 F +48 22 205 95 01 [email protected] www.frontex.europa.eu Warsaw, April 2018 Risk Analysis Unit Frontex reference number: 10807/2018 PDF TT-AD-18-001-EN-N ISBN 978-92-9471-192-2 doi:10.2819/41268 Cover photo: Romanian border police All rights reserved. DISCLAIMERS This is a Frontex staff-working document. Its contents do not imply the expression of any opinion whatso- ever on the part of Frontex concerning the legal status of any country, territory or city or its authorities, or concerning the delimitation of its frontiers or boundaries. All maps, charts, figures and data included in this presentation are the sole property of Frontex and any unauthorised use is prohibited. Frontex disclaims any liability with respect to the boundaries, names and designations used on the map. Throughout this report, all references to Kosovo are marked with an asterisk (*) to indicate that this des- ignation is without prejudice to positions on status, and is in line with UNSCR 1244 and the ICJ Opinion on the Kosovo declaration of independence. ACKNOWLEDGMENTS The Western Balkans Annual Risk Analysis 2018 has been prepared by the Frontex Risk Analysis Unit. During the course of developing this product, many colleagues at Frontex and outside contributed to it and their assis- tance is hereby acknowledged with gratitude. 2 of 52 Frontex · Western Balkans Annual Risk Analysis 2018 Table of Contents Executive summary #5 1. -
Population Dynamics of the Eastern Oyster in the Northern Gulf of Mexico Benjamin S
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 Population dynamics of the eastern oyster in the northern Gulf of Mexico Benjamin S. Eberline Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Environmental Sciences Commons Recommended Citation Eberline, Benjamin S., "Population dynamics of the eastern oyster in the northern Gulf of Mexico" (2012). LSU Master's Theses. 567. https://digitalcommons.lsu.edu/gradschool_theses/567 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. POPULATION DYNAMICS OF THE EASTERN OYSTER IN THE NORTHERN GULF OF MEXICO A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The School of Natural Resources by Benjamin S. Eberline B.S., Virginia Polytechnic Institute and State University, 2009 May 2012 Acknowledgements I would like to thank the Louisiana Sea Grant College Program for funding this project. I would also like to thank all those who took extra time and willingly gave their expertise in order to further this project: Patrick Banks, Keith Ibos, Brian Lezina, and Gary Vitrano from Louisiana Department of Wildlife and Fisheries; Lane Simmons and Dave Walters from United States Geological Survey; and Dr. -
Turkey's Role in the Western Balkans
SWP Research Paper Stiftung Wissenschaft und Politik German Institute for International and Security Affairs Alida Vračić Turkey’s Role in the Western Balkans RP 11 December 2016 Berlin All rights reserved. © Stiftung Wissenschaft und Politik, 2016 SWP Research Papers are peer reviewed by senior researchers and the execu- tive board of the Institute. They reflect the views of the author(s). SWP Stiftung Wissenschaft und Politik German Institute for International and Security Affairs Ludwigkirchplatz 34 10719 Berlin Germany Phone +49 30 880 07-0 Fax +49 30 880 07-200 www.swp-berlin.org [email protected] ISSN 1863-1053 This research and its publi- cation have been enabled by the generous support of Stiftung Mercator, Essen. Table of Contents 5 Issues and Conclusions 7 Turkey’s Comeback in the Balkans 12 Turkey’s Economy and Non-state Actors in the Western Balkans 15 Turkish Military in the Balkans 18 Countries of Particular Interest to Turkey 18 Bosnia and Herzegovina 22 Kosovo 24 Macedonia 27 Can Old Animosities Die? Serbia-Turkey Relations 30 Turkey’s Activism as Seen from the Balkans 32 Western Balkans – EU’s Forgotten Post? 33 Outlook 34 Abbreviations Alida Vračić is IPC-Stiftung Mercator Fellow 2015/2016 at SWP Issues and Conclusions Turkey’s Role in the Western Balkans For the past two decades, Turkey has been rediscover- ing the Balkans. The end of the Cold War and the dis- solution of the former Yugoslavia in the 1990s and the subsequent violence were decisive points in Turkish foreign policy. New openings toward southeast Europe and the creation of new states greatly transformed the foreign policy strategies of Turkey, which was aiming for far-reaching political impact. -
Salt Intrusions in Siberian River Estuaries
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center 27 Harmsetal. Salt intrusions in Siberian river estuaries: Observations and model experimentsinObandYenisei I.H.Harms1*,U.Hübner1,J.O.Backhaus1,M.Kulakov2,V.Stanovoy2,O.V.Stepanets3,L.A. Kodina3,R.Schlitzer4. 1InstituteforOceanography,UniversityHamburg,Germany 2ArcticandAntarcticResearchInstitute(AARI),St.Petersburg,Russia 3VernadskyInstituteofGeochemistryandAnalyticalChemistry,RussianAcademyofSciences,ul.Kosygina19, Moscow,119991,Russia 4AlfredWegenerInstituteforPolarandMarineResearch,Columbusstrasse2,27568Bremerhaven, Germany Abstract Observations in Siberian river estuaries show a very pronounced vertical stratification duringsummer.InparticularintheYeniseiEstuary,salinityprofilesarestronglyaffected,not onlybyfreshwaterrunoff,butalsobybottomfollowingsaltintrusionsthatpenetrateactively intotheestuary. Inordertostudytheestuarinevariabilityandtoinvestigatethephysicsbehindthesesalt intrusions, two different numerical circulation models are applied to the Kara Sea and the estuariesofObandYenisei.The3-D,baroclinicmodelsarebasedontherealistictopography, forcedwithwind,tidesandriverrunoff. Modelresultsfromsummerrevealageneralnorthwardflowofriverwateratthesurface out of the estuaries. Near the bottom, however, a south-westward transport of saline water from the Taymyr coast towards theestuariesprevails.Asaltintrusionoccursduringstrong runoffwhenthedirectionofthewind-inducedoffshoretransportisalignedwiththeaxisof -
Russia Inflicting Crimes Against Humanity Upon the Crimean Tartars
American University International Law Review Volume 36 Issue 2 Article 6 2021 Repeating History: Russia Inflicting Crimes Against Humanity Upon the Crimean Tartars Katerina Dee Follow this and additional works at: https://digitalcommons.wcl.american.edu/auilr Part of the International Humanitarian Law Commons, and the International Law Commons Recommended Citation Katerina Dee (2021) "Repeating History: Russia Inflicting Crimes Against Humanity Upon the Crimean Tartars," American University International Law Review: Vol. 36 : Iss. 2 , Article 6. Available at: https://digitalcommons.wcl.american.edu/auilr/vol36/iss2/6 This Comment or Note is brought to you for free and open access by the Washington College of Law Journals & Law Reviews at Digital Commons @ American University Washington College of Law. It has been accepted for inclusion in American University International Law Review by an authorized editor of Digital Commons @ American University Washington College of Law. For more information, please contact [email protected]. REPEATING HISTORY RUSSIA INFLICTING CRIMES AGAINST HUMANITY UPON THE CRIMEAN TATARS KATERINA DEE I. INTRODUCTION............................................................. II. BACKGROUND............................................................... A. TURMOIL IN CRIMEA AN OVERVIEW OF THE CRIMEAN TATARS’ HISTORY AND OF RUSSIA’S ACTIONS SINCE ............................................................................. The Crimean Tatars A History of Displacement and Marginalization..................................................... -
An Assessment of the Flux of Radionuclide Contamination Through the Ob and Yenisei Rivers and Estuaries to the Kara Sea
NO9700007 An Assessment of the Flux of Radionuclide Contamination Through the Ob and Yenisei Rivers and Estuaries to the Kara Sea THERESA PALUSZKIEWICZ1, LYLE F. HIBLER1, MARSHALL C. RICHMOND2, DON J. BRADLEY2 ''Pacific Northwest Laboratory, Battelle Marine Sciences Laboratory, 1529 West Sequim Bay Road, Sequim, WA 98382, USA . 2Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352, USA. Introduction Extensive radioactive contamination (about 63,000 PBq) has been discharged to the environment of the West Siberian Basin. The former Soviet Union (FSU) nuclear program has been operating for the last 50 years; most of its facilities are located in the West Siberian Basin. These nuclear facilities include three sites for reprocessing spent fuel from the FSU's production reactors: Mayak, Tomsk-7, and Krasnoyarsk-26 (Fig. 1). These are believed to be responsible for the majority of the radioactive contamination that is in the major river systems, the Ob and Yenisei, which feed into the Arctic Ocean through the Kara Sea. Extensive radioactive contamination has been reported in surface water reservoirs, and large amounts of radioactive contamination have been discharged to injection sites that are adjacent to tributaries of the Ob and Yenisei Rivers. A massive release of radionuclide contaminants could result if floods, reservoir failures, or containment failures were to occur (Foley, 1991; Bradley, 1991, 1992a, 1992b; Bradley and Schneider, 1990). The Ob River system consists of the contaminant release sites (FSU nuclear defense sites on land), the terrestrial, ground, and surface waters that link the contaminant release sites to the rivers, the Ob River, its tributaries, the estuary, and the confluence region where the estuaries of the Ob and Yenisei mix and flow into the Kara Sea (Fig.