Overview of Gene Targeting by Homologous Recombination 4.29.10

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Gene Targeting by Homologous Recombination 4.29.10 Overview of Gene Targeting by Homologous UNIT 4.29 Recombination The analysis of mutant organisms and cell tion of the mutation present in the targeting lines has been important in determining the construct into the target gene. Once identified, function of specific proteins. Until recently, mutant ES cell clones can be microinjected into mutants were produced by mutagenesis fol- a normal blastocyst in order to produce a lowed by selection for a particular phenotypic chimeric mouse. Because many ES cell lines change. Recent technological advances in gene retain the ability to differentiate into every cell targeting by homologous recombination in type present in the mouse, the chimera can have mammalian systems enable the production of tissues, including the germ line, with contribu- mutants in any desired gene (Mansour, 1990; tion from both the normal blastocyst and the Robertson, 1991; Zimmer, 1992). This technol- mutant ES cells. Breeding germ-line chimeras ogy can be used to produce mutant mouse yields animals that are heterozygous for the strains and mutant cell lines. Because most mutation introduced into the ES cell, and that mammalian cells are diploid, they contain two can be interbred to produce homozygous mu- copies, or alleles, of each gene encoded on an tant mice. autosomal (nonsex) chromosome. In most Homologous recombination can also be cases, both alleles must be inactivated to pro- used to produce homozygous mutant cell lines. duce a discernible phenotypic change in a mu- Previously, inactivation of both alleles of a gene tant. The conversion from heterozygosity to required two rounds of homologous recombi- homozygosity is accomplished by breeding in nation and selection (te Riele et al., 1990; Cruz the case of mouse strains and by direct selection et al., 1991; Mortensen et al., 1991). Now, in cell lines. however, inactivation of both alleles of many Bacteriophage recombinases such as Cre genes requires only a single round of homolo- and its recognition sequence, loxP, have also gous recombination using a single targeting allowed spatial control of knockouts. Another construct (Mortensen et al., 1992). The ho- recombinase system, the yeast Flp/FRT system, mozygous mutant cells can then be analyzed can also be used (Fiering et al., 1993, 1999). for phenotypic changes to determine the func- The control can function along actual spatial tion of the gene. coordinates when a viral gene transfer system is used, or in a cell type- or tissue-specific ANATOMY OF TARGETING fashion when restricted promoters are em- CONSTRUCTS ployed. Adding temporal regulation of Cre, Two basic configurations of constructs are such as that achievable with the tetracycline- used for homologous recombination: insertion regulatable expression system (see CPMB UNIT constructs and replacement constructs (Fig. 16.21 and APPENDIX 1A in this manual), allows 4.29.1). Each can be used for different pur- temporal control as well. poses in specific situations, as discussed be- To produce a mutant mouse strain by ho- low. The insertion construct contains a region mologous recombination, two major elements of homology to the target gene cloned as a are needed. An embryonic stem (ES) cell line single continuous sequence, and is linearized capable of contributing to the germ line, and a by cleavage of a unique restriction site within targeting construct containing target-gene se- the region of homology. Homologous recom- quences with the desired mutation. Maintain- bination introduces the insertion construct se- ing ES cells in their undifferentiated state is a quences into the homologous site of the target major task during gene targeting (see CPMB UNIT gene, interrupting normal target-gene struc- 23.3 and APPENDIX 1A in this manual). This usually ture by adding sequences. As a result, the is accomplished by growing cells on a layer of normal gene can be regenerated from the mu- feeder cells (see CPMB UNIT 23.2 and APPENDIX 1A tated target gene by an intrachromosomal re- in this manual). The targeting construct is then combination event. transfected into cultured ES cells (see UNIT 4.30). The replacement construct is the second, ES cell lines are derived from the inner cell more commonly used construct. It contains two mass of a blastocyst-stage embryo. Homolo- regions of homology to the target gene located gous recombination occurs in a small number on either side of a mutation (usually a positive Gene Cloning, of the transfected cells, resulting in introduc- selectable marker; see below). Homologous Expression, and Mutagenesis Contributed by Richard Mortensen 4.29.1 Current Protocols in Neuroscience (2002) 4.29.1-4.29.10 Copyright © 2002 by John Wiley & Sons, Inc. Supplement 21 insertion construct replacement construct neo neo ∗ ∗ ∗ ∗ 2 3 2 3 1 2 3 4 1 2 3 4 neo neo ∗ ∗ ∗ ∗ 1 2 3 2 3 4 1 2 3 4 Homologous sequences Nonhomologous sequences construct and target gene positive selectable marker target gene vector Figure 4.29.1 Two configurations of constructs used for homologous recombination. Numbers indicate target-gene sequences in the genome. An asterisk indicates homologous target-gene sequences in the construct. Replacement constructs substitute their sequences (2*, neo, and 3*) for the endogenous target-gene sequences (2 and 3). Insertion constructs add their sequences (2*, neo, and 3*) to the endogenous target gene, resulting in tandem duplication and disruption of the normal gene structure. recombination proceeds by a double cross-over Positive-Negative Selection event that replaces the target-gene sequences The most commonly used method for elimi- with the replacement-construct sequences. Be- nating cells in which the construct integrated cause no duplication of sequences occurs, the into the genome randomly, thus further enrich- normal gene cannot be regenerated. ing for homologous recombinants, is known as positive-negative selection. It is only applicable METHODS OF ENRICHMENT FOR to replacement constructs (Fig. 4.29.2; Man- HOMOLOGOUS RECOMBINANTS sour et al., 1988). In these constructs, a negative selectable marker (e.g., herpes simplex virus Positive Selection by Drug-Resistance thymidine kinase, HSV-TK) is included outside Gene the region of homology to the target gene. In Nearly all constructs used for homologous the presence of the TK gene, the cells are recombination rely on the positive selection sensitive to acyclovir and its analogs (e.g., of a drug-resistance gene (e.g., neomycin or gancyclovir, GANC). The HSV-TK enzyme neo) that is also used to interrupt and mutate activates these drugs, resulting in their incor- the target gene. When either insertion or re- poration into growing DNA, causing chain ter- placement constructs are linearized, the drug- mination and cell death. During homologous resistance gene is flanked by two regions of recombination, sequences outside the regions homology to the target gene. Selection of the of homology to the target gene are lost due to cells using drugs (e.g., G418) eliminates the crossing over. In contrast, during random inte- great majority of transformants that have not gration all sequences in the construct tend to be stably incorporated the construct (see CPMB UNIT retained because recombination usually occurs 9.5 and APPENDIX 1A in this manual). However, in at the ends of the construct. The presence of the many of the surviving clones the construct has TK gene can be selected against by growing the incorporated into the genome not by homolo- cells in gancyclovir; the homologous recombi- gous recombination but rather through random nants will be G418-resistant and gancyclovir- Overview of Gene integration. Therefore, methods to enrich for resistant, whereas clones in which the construct Targeting by Homologous homologous recombinant clones have been de- integrated randomly will be G418-resistant and Recombination veloped. gancyclovir-sensitive. In some cases, TK is 4.29.2 Supplement 21 Current Protocols in Neuroscience homologous recombination random integration neo TK neo TK ∗ ∗ ∗ ∗ 2 3 2 3 1 2 3 4 neo neo TK ∗ ∗ ∗ ∗ 1 2 3 4 2 3 cell phenotype: G418R G418R GANCR GANCS Homologous sequences Nonhomologous sequences construct and target gene positive selectable marker target gene negative selectable marker vector promoter Figure 4.29.2 Enrichment for homologous recombinants by positive-negative selection using the TK gene. Homologous recombination involving cross-overs on either side of the neo gene results in loss of the TK gene. Random integration tends to preserve the TK gene. The presence of TK can be selected against because any cell expressing the gene will be killed by gancyclovir (GANC). Although both homologous recombinants and clones in which the construct integrated randomly are G418-resistant, only homologous recombinants are gancyclovir-resistant. The construct is shown linearized so that the plasmid vector sequences remain attached to the TK gene. This configuration helps preserve the integrity of the TK gene. The superscript R denotes resistance and the superscript S denotes sensitivity. inactivated without homologous recombina- recombination occurs, a fusion protein is pro- tion; thus, the gancyclovir-resistant clones duced, driven by the endogenous target-gene must be screened to identify the true homolo- promoter. In contrast, when random integration gous recombinants. Other markers that are le- occurs, the selectable-marker protein is not thal to cells have also been used instead of TK usually produced. Therefore, homologous re- and gancyclovir (e.g., diphtheria toxin; Yagi et combinants are G418-resistant, whereas cells al., 1990). in which the construct integrated randomly are G418-sensitive. Constructs containing a pro- Endogenous Promoters moterless selectable marker can be constructed Constructs that rely on an endogenous pro- in either replacement or insertion structure and moter to express the positive selectable marker can result in dramatic enrichment for homolo- can also give enrichment of homologous re- gous recombinants. combinants (Fig. 4.29.3), but can only be used if the gene of interest is expressed in the cell TYPES OF MUTATIONS line.
Recommended publications
  • P1 Bacteriophage and Tol System Mutants
    P1 BACTERIOPHAGE AND TOL SYSTEM MUTANTS Cari L. Smerk A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2007 Committee: Ray A. Larsen, Advisor Tami C. Steveson Paul A. Moore Lee A. Meserve ii ABSTRACT Dr. Ray A. Larsen, Advisor The integrity of the outer membrane of Gram negative bacteria is dependent upon proteins of the Tol system, which transduce cytoplasmic-membrane derived energy to as yet unidentified outer membrane targets (Vianney et al., 1996). Mutations affecting the Tol system of Escherichia coli render the cells resistant to a bacteriophage called P1 by blocking the phage maturation process in some way. This does not involve outer membrane interactions, as a mutant in the energy transucer (TolA) retained wild type levels of phage sensitivity. Conversely, mutations affecting the energy harvesting complex component, TolQ, were resistant to lysis by bacteriophage P1. Further characterization of specific Tol system mutants suggested that phage maturation was not coupled to energy transduction, nor to infection of the cells by the phage. Quantification of the number of phage produced by strains lacking this protein also suggests that the maturation of P1 phage requires conditions influenced by TolQ. This study aims to identify the role that the TolQ protein plays in the phage maturation process. Strains of cells were inoculated with bacteriophage P1 and the resulting production by the phage of viable progeny were determined using one step growth curves (Ellis and Delbruck, 1938). Strains that were lacking the TolQ protein rendered P1 unable to produce the characteristic burst of progeny phage after a single generation of phage.
    [Show full text]
  • Scalable Recombinase-Based Gene Expression Cascades
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.161430; this version posted June 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Scalable recombinase-based gene expression cascades One Sentence Summary: Recombinase-based gene circuits enable scalable and sequential gene modulation. Authors: Tackhoon Kim1,2, Benjamin Weinberg3, Wilson Wong3, Timothy K. Lu1,* Affiliations: 1 Research Lab of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 2 Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea 3 Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA. *Correspondence to: [email protected] (T.K.L) Abstract: Temporal modulation of multiple genes underlies sophisticated biological phenomena. However, there are few scalable and generalizable gene circuit architectures for the programming of sequential genetic perturbations. We describe a modular recombinase-based gene circuit architecture, comprising tandem gene perturbation cassettes (GPCs), that enables the sequential expression of multiple genes in a defined temporal order by alternating treatment with just two orthogonal ligands. We used tandem GPCs to sequentially express single-guide RNAs to encode transcriptional cascades and trigger the sequential accumulation of mutations. We built an all-in- one gene circuit that sequentially edits genomic loci, synchronizes cells at a specific stage within bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.161430; this version posted June 20, 2020.
    [Show full text]
  • Gene Targeting in Plants: 25 Years Later HOLGER PUCHTA* and FRIEDRICH FAUSER
    Int. J. Dev. Biol. 57: 629-637 (2013) doi: 10.1387/ijdb.130194hp www.intjdevbiol.com Gene targeting in plants: 25 years later HOLGER PUCHTA* and FRIEDRICH FAUSER Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany ABSTRACT Only five years after the initiation of transgenic research in plants, gene targeting (GT) was achieved for the first time in tobacco. Unfortunately, the frequency of targeted integration via homologous recombination (HR) was so low in comparison to random integration that GT could not be established as a feasible technique in higher plants. It took another 25 years and great effort to develop the knowledge and tools necessary to overcome this challenge, at least for some plant species. In some cases, the overexpression of proteins involved in HR or the use of negative select- able markers improved GT to a certain extent. An effective solution to this problem was developed in 1996, when a sequence-specific endonuclease was used to induce a double-strand break (DSB) at the target locus. Thus, GT frequencies were enhanced dramatically. Thereafter, the main limitation was the absence of tools needed to induce DSBs at specific sites in the genome. Such tools became available with the development of zinc finger nucleases (ZFNs), and a breakthrough was achieved in 2005 when ZFNs were used to target a marker gene in tobacco. Subsequently, endogenous loci were targeted in maize, tobacco and Arabidopsis. Recently, our toolbox for genetic engineering has expanded with the addition of more types of site-specific endonucleases, meganucleases, transcription activator-like effector nucleases (TALENs) and the CRISPR/Cas system.
    [Show full text]
  • CRISPR-Cas9-Mediated Efficient Directed Mutagenesis and RAD51
    CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens Cécile Collonnier, Aline Epert, Kostlend Mara, François Maclot, Anouchka Guyon-Debast, Florence Charlot, Charles White, Didier Schaefer, Fabien Nogué To cite this version: Cécile Collonnier, Aline Epert, Kostlend Mara, François Maclot, Anouchka Guyon-Debast, et al.. CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51- independent gene targeting in the moss Physcomitrella patens. Plant Biotechnology Journal, Wiley, 2017, 15 (1), pp.122 - 131. 10.1111/pbi.12596. inserm-01904879 HAL Id: inserm-01904879 https://www.hal.inserm.fr/inserm-01904879 Submitted on 25 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Plant Biotechnology Journal (2017) 15, pp. 122–131 doi: 10.1111/pbi.12596 CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella
    [Show full text]
  • ES Cell Targeting Handbook
    TABLE OF CONTENTS Overview of ES Core Facility Introduction Generation of Gene-Targeted ES Cells Karyotyping of Positive ES Clones ES Cell Request Form General Information for the Generation of Targeted Cells Principles of Gene Targeting Requirements for the Design of Targeting Constructs Screening Assay for the Identification of Targeted ES Clones Overview of ES Cell Culture ES Cell Factors Affecting Successful Chimera Production FAQ Overview of ES Core Facility Our Mission The ES Core Facility (ECF) was founded by the NINDS Core Center Grant and was established to benefit the contributors of this proposal. The mission of ECF is to effectively produce ES cell lines with a high probability of germline transmission. Core Service Services provided by the Core for a typical project include: • Provide guidance on the design of targeting construct • Generate targeted ES cell lines for the production of chimeric mice • Karyotyping ES cells to be micro-injected into blastocysts Consultation is available from ECF directors and staff members on the entire procedures of generating gene knock-out mice. Application for Service Prior to the initiation of a project, a brief meeting is generally required between the investigator and ECF facility staff resulting in a mutually acceptable research strategy. This strategy will outline specifics of the project including knockout strategy, KO construct design, screening assays, and other procedural issues relevant to the generation of targeted ES cells. In addition, a completed service application form, signed by the principal investigator and approved by the Core Director, will also be required. The Core Director will prioritize the service requests according to the difficulty of the project and work load.
    [Show full text]
  • Identification and Analysis of Recombineering Functions from Gram-Negative and Gram-Positive Bacteria and Their Phages
    Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages Simanti Datta, Nina Costantino, Xiaomei Zhou, and Donald L. Court† Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702 Edited by Sankar Adhya, National Institutes of Health, Bethesda, MD, and approved December 12, 2007 (received for review September 25, 2007) We report the identification and functional analysis of nine genes but linear DNA recombination studies with RecET have used ␭ from Gram-positive and Gram-negative bacteria and their phages Gam to inhibit nucleases (4). that are similar to lambda (␭) bet or Escherichia coli recT. Beta and For recombineering, either a dsDNA PCR product (1, 4, RecT are single-strand DNA annealing proteins, referred to here as 15–17) or an oligonucleotide (oligo) (18–21) carrying short recombinases. Each of the nine other genes when expressed in E. (Ϸ50-bp) segments homologous to the target sequences can be coli carries out oligonucleotide-mediated recombination. To our used. These linear DNA substrates are precisely recombined in knowledge, this is the first study showing single-strand recombi- vivo by the phage proteins to target DNA on any replicon. When nase activity from diverse bacteria. Similar to bet and recT, most of linear dsDNA is used for recombination, both the exonuclease these other recombinases were found to be associated with pu- and single-strand annealing protein are required. For optimal tative exonuclease genes. Beta and RecT in conjunction with their recombination, RecBCD should be inactivated, either by muta- cognate exonucleases carry out recombination of linear double- tion or by ␭ Gam (1, 15, 22).
    [Show full text]
  • Highly Efficient Transient Gene Expression and Gene Targeting in Primate Embryonic Stem Cells with Helper-Dependent Adenoviral Vectors
    Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors Keiichiro Suzuki*, Kaoru Mitsui*, Emi Aizawa*, Kouichi Hasegawa†‡, Eihachiro Kawase§, Toshiyuki Yamagishi¶, Yoshihiko Shimizuʈ, Hirofumi Suemori†, Norio Nakatsuji§**, and Kohnosuke Mitani*†† *Division of Gene Therapy, Research Center for Genomic Medicine, ¶Department of Anatomy and ʈDepartment of Pathology, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; and †Laboratory of Embryonic Stem Cell Research, Stem Cell Research Center and §Department of Development and Differentiation, Institute for Frontier Medical Sciences, and **Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Communicated by C. Thomas Caskey, University of TexasϪHouston Health Science Center, Houston, TX, July 23, 2008 (received for review April 18, 2008) Human embryonic stem (hES) cells are regarded as a potentially gene expression in Ϸ100% of cells have not been established (9, unlimited source of cellular materials for regenerative medicine. 10). Furthermore, unlike mES cells, in which gene targeting via For biological studies and clinical applications using primate ES HR has been used routinely with great success, there are few cells, the development of a general strategy to obtain efficient studies using gene targeting in hES cells (11–17). Gene targeting gene delivery and genetic manipulation, especially gene targeting study in nonhuman primate ES cells has not yet been reported. via homologous recombination (HR), would be of paramount Although three investigative groups have reported that HPRT1 importance. However, unlike mouse ES (mES) cells, efficient strat- gene targeting was achieved in hES cells by using electroporation egies for transient gene delivery and HR in hES cells have not been (11, 12, 17), the frequencies of HR were extremely low at Ϸ1 ϫ established.
    [Show full text]
  • Gene Targeting in Plants
    The EMBO Journal vol.7 no.13 pp.4021 -4026, 1988 Gene targeting in plants Jerzy Paszkowski, Markus Baur, Although integration of transforming DNA into the Augustyn Bogucki and Ingo Potrykus homologous chromosomal DNA occurs efficiently in yeast, other fungi and Dictyostelium discoideum (Hinnen et al., Friedrich Miescher Institut, PO Box 2543, CH4002 Basel, 1978; De Lozanne et al., 1987; Miller et al., 1987), Switzerland non-homologous ('illegitimate') integration of foreign DNA Present address: Swiss Federal Institute of Technology, Institute of into the genome of higher eukaryotic cells makes it difficult Plant Sciences, ETH-Zentrum, Universitatstrasse 2, CH-8092 Zurich, to assay the frequency of gene targeting to a desired locus. Switzerland Only recently has the application of selection (Lin et al., Communicated by J.-D.Rochaix 1985; Thomas et al., 1986; Doetschman et al., 1987; Song et al., 1987; Thomas and Capecchi, 1987) and screening Although the generation of transgenic plants is now (Smithies et al., 1985) systems allowed comparison of the routine, the integration of foreign genetic information has frequencies of homologous and illegitimate integration of so far been at random sites in the genome. We now transformed DNA in cultured mammalian cells. In plants present evidence for directed integration into a predicted the high transformation frequencies reported for DNA location in the host plant genome. Protoplasts of molecules with no homology to the plant genome (Shillito transgenic tobacco (Nicotiana tabacum) plants carrying et al., 1985; Negrutiu et al., 1987) indicate efficient copies of a partial, non-functional drug-resistance gene illegitimate integration. Therefore, the detection of gene in the nuclear DNA were used as recipients for DNA targeting through homologous DNA recombination requires molecules containing the missing part of the gene.
    [Show full text]
  • Cre/Lox-Mediated Chromosomal Integration of Biosynthetic Gene Clusters for Heterologous Expression in Aspergillus Nidulans
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.20.457072; this version posted August 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Cre/lox-mediated chromosomal integration of biosynthetic gene clusters for heterologous expression in Aspergillus nidulans Indra Roux1, Yit-Heng Chooi1 1 School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia. Correspondence to: [email protected] Abstract Building strains for stable long-term heterologous expression of large biosynthetic pathways in filamentous fungi is limited by the low transformation efficiency or genetic stability of current methods. Here, we developed a system for targeted chromosomal integration of large biosynthetic gene clusters in Aspergillus nidulans based on site-specific recombinase mediated cassette exchange. We built A. nidulans strains harbouring a chromosomal landing pad for Cre/lox-mediated recombination and demonstrated efficient targeted integration of a 21.5 kb heterologous region in a single step. We further evaluated the integration at two loci by analysing the expression of a fluorescent reporter and the production of a heterologous polyketide. We compared chromosomal expression at those landing loci to episomal AMA1- based expression, which also shed light on uncharacterised aspects of episomal expression in filamentous fungi.
    [Show full text]
  • Coupling Recombinase-Mediated Cassette Exchange with Somatic Hypermutation for Antibody Affinity Maturation in CHO Cells
    ARTICLE Coupling Recombinase-Mediated Cassette Exchange With Somatic Hypermutation for Antibody Affinity Maturation in CHO Cells Chuan Chen,1,2 Nan Li,1,2 Yun Zhao,1 Haiying Hang1 1 Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; telephone: þ86-10-64888473; fax: þ86-10-64888473; e-mail: [email protected] 2 University of Chinese Academy of Sciences, Beijing, China Introduction ABSTRACT: Heterologous expression of activation-induced cytidine deaminase (AID) can induce somatic hypermutation Technologies such as phage (de Bruin et al., 1999; Huse et al., 1992; (SHM) for genes of interest in various cells, and several research Smith, 1985; Winter et al., 1994), yeast (Boder and Wittrup, 1997; groups (including ours) have successfully improved antibody affinity in mammalian or chicken cells using AID-induced SHM. These Feldhaus et al., 2003), and bacterial displays (Francisco and affinity maturation systems are time-consuming and inefficient. In Georgiou, 1994; Mazor et al., 2009; Qiu et al., 2010) have been used this study, we developed an antibody affinity maturation platform in for antibody affinity maturation in vitro. In recent years, Chinese hamster ovary (CHO) cells by coupling recombinase- mammalian cell surface display has also been developed (Akamatsu mediated cassette exchange (RMCE) with SHM. Stable CHO cell et al., 2007; Higuchi et al., 1997; Ho et al., 2006; Wolkowicz et al., clones containing a single copy puromycin resistance gene (PuroR) expression cassette flanked by recombination target sequences (FRT 2005); it has advantages in protein folding, post-translational and loxP) being able to highly express a gene of interest placed in the modification, and code usage (Ho et al., 2006).
    [Show full text]
  • Efficient Genome Engineering by Targeted Homologous
    ARTICLE Received 14 Oct 2013 | Accepted 2 Dec 2013 | Published 13 Jan 2014 | Updated 20 Feb 2015 DOI: 10.1038/ncomms4045 Efficient genome engineering by targeted homologous recombination in mouse embryos using transcription activator-like effector nucleases Daniel Sommer1, Annika E. Peters1, Tristan Wirtz1,w, Maren Mai1, Justus Ackermann2, Yasser Thabet1, Ju¨rgen Schmidt3, Heike Weighardt4, F. Thomas Wunderlich2, Joachim Degen5, Joachim L. Schultze1 & Marc Beyer1 Generation of mouse models by introducing transgenes using homologous recombination is critical for understanding fundamental biology and pathology of human diseases. Here we investigate whether artificial transcription activator-like effector nucleases (TALENs)— powerful tools that induce DNA double-strand breaks at specific genomic locations—can be combined with a targeting vector to induce homologous recombination for the introduction of a transgene in embryonic stem cells and fertilized murine oocytes. We describe the gen- eration of a conditional mouse model using TALENs, which introduce double-strand breaks at the genomic locus of the special AT-rich sequence-binding protein-1 in combination with a large 14.4 kb targeting template vector. We report successful germline transmission of this allele and demonstrate its recombination in primary cells in the presence of Cre-recombinase. These results suggest that TALEN-assisted induction of DNA double-strand breaks can facilitate homologous recombination of complex targeting constructs directly in oocytes. 1 Genomics and Immunoregulation, LIMES Institute, University of Bonn, Carl-Troll-Strasse 31, D-53115 Bonn, Germany. 2 Max Planck Institute for Neurological Research and Institute for Genetics, University of Cologne, Gleuelerstrasse 50, D-50931 Cologne, Germany. 3 Department of Experimental Therapy, University Hospital Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn, Germany.
    [Show full text]
  • Elucidating Recombination Mediator Function Using Biophysical Tools
    biology Review Elucidating Recombination Mediator Function Using Biophysical Tools Camille Henry 1,* and Sarah S. Henrikus 2,* 1 Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA 2 Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK * Correspondence: [email protected] (C.H.); [email protected] (S.S.H.); Tel.: +1-608-472-3019 (C.H.) Simple Summary: This review recapitulates the initial knowledge acquired with genetics and bio- chemical experiments on Recombination mediator proteins in different domains of life. We further address how recent in vivo and in vitro biophysical tools were critical to deepen the understanding of RMPs molecular mechanisms in DNA and replication repair, and unveiled unexpected features. For instance, in bacteria, genetic and biochemical studies suggest a close proximity and coordination of action of the RecF, RecR and RecO proteins in order to ensure their RMP function, which is to over- come the single-strand binding protein (SSB) and facilitate the loading of the recombinase RecA onto ssDNA. In contrary to this expectation, using single-molecule fluorescent imaging in living cells, we showed recently that RecO and RecF do not colocalize and moreover harbor different spatiotemporal behavior relative to the replication machinery, suggesting distinct functions. Finally, we address how new biophysics tools could be used to answer outstanding questions about RMP function. Abstract: The recombination mediator proteins (RMPs) are ubiquitous and play a crucial role in genome stability. RMPs facilitate the loading of recombinases like RecA onto single-stranded (ss) DNA coated by single-strand binding proteins like SSB. Despite sharing a common function, RMPs are the products of a convergent evolution and differ in (1) structure, (2) interaction partners and (3) Citation: Henry, C.; Henrikus, S.S.
    [Show full text]