Highly Efficient Transient Gene Expression and Gene Targeting in Primate Embryonic Stem Cells with Helper-Dependent Adenoviral Vectors

Total Page:16

File Type:pdf, Size:1020Kb

Highly Efficient Transient Gene Expression and Gene Targeting in Primate Embryonic Stem Cells with Helper-Dependent Adenoviral Vectors Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors Keiichiro Suzuki*, Kaoru Mitsui*, Emi Aizawa*, Kouichi Hasegawa†‡, Eihachiro Kawase§, Toshiyuki Yamagishi¶, Yoshihiko Shimizuʈ, Hirofumi Suemori†, Norio Nakatsuji§**, and Kohnosuke Mitani*†† *Division of Gene Therapy, Research Center for Genomic Medicine, ¶Department of Anatomy and ʈDepartment of Pathology, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; and †Laboratory of Embryonic Stem Cell Research, Stem Cell Research Center and §Department of Development and Differentiation, Institute for Frontier Medical Sciences, and **Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Communicated by C. Thomas Caskey, University of TexasϪHouston Health Science Center, Houston, TX, July 23, 2008 (received for review April 18, 2008) Human embryonic stem (hES) cells are regarded as a potentially gene expression in Ϸ100% of cells have not been established (9, unlimited source of cellular materials for regenerative medicine. 10). Furthermore, unlike mES cells, in which gene targeting via For biological studies and clinical applications using primate ES HR has been used routinely with great success, there are few cells, the development of a general strategy to obtain efficient studies using gene targeting in hES cells (11–17). Gene targeting gene delivery and genetic manipulation, especially gene targeting study in nonhuman primate ES cells has not yet been reported. via homologous recombination (HR), would be of paramount Although three investigative groups have reported that HPRT1 importance. However, unlike mouse ES (mES) cells, efficient strat- gene targeting was achieved in hES cells by using electroporation egies for transient gene delivery and HR in hES cells have not been (11, 12, 17), the frequencies of HR were extremely low at Ϸ1 ϫ established. Here, we report that helper-dependent adenoviral 10Ϫ6 per cell, and the percentages of targeted to random vectors (HDAdVs) were able to transfer genes in hES and cyno- chromosomal integration were also low (Ϸ2%). Obviously, more molgus monkey (Macaca fasicularis) ES (cES) cells efficiently. With- efficient gene targeting methods would be required to generate out losing the undifferentiated state of the ES cells, transient gene models for therapeutic applications in transplantation medicine Ϸ transfer efficiency was 100%. Using HDAdVs with homology and human diseases by using hES cells. arms, approximately one out of 10 chromosomal integrations of Adenoviral vectors (AdVs) efficiently transduce a broad range Ϸ the vector was via HR, whereas the rate was only 1% with other of cell types and have been used extensively in preclinical and gene delivery methods. Furthermore, in combination with nega- clinical studies of gene therapy (18, 19). Although an E1-deleted Ϸ tive selection, 45% of chromosomal integrations of the vector AdV was used for gene transfer into hES cells, the transduction were targeted integrations, indicating that HDAdVs would be a efficiency (11%) was low (20). Helper-dependent AdVs powerful tool for genetic manipulation in hES cells and potentially (HDAdVs) were originally developed to overcome host immune in other types of human stem cells, such as induced pluripotent responses against E1-deleted AdVs in vivo (21, 22). Because of stem (iPS) cells. the complete removal of viral genes from the vector genome, HDAdVs are generally less cytotoxic than E1-deleted AdVs, gene delivery ͉ human embryonic stem cell which allows them to be used at higher multiplicities of infection (MOIs) (22). In addition, we previously showed that the ex- mbryonic stem (ES) cells have the property of self-renewal panded cloning capacity of HDAdVs, which permits the inser- Eand pluripotency to differentiate into various cell types tion of larger segments of homologous DNA for HR, is advan- SCIENCES derived from the three embryonic germ layers: the ectoderm, tageous in that it obtains highly efficient gene repair via HR in APPLIED BIOLOGICAL mesoderm, and endoderm (1, 2). Thus, ES cells represent an mES cells (23). The frequency of HR were extremely high at excellent model to study basic developmental biology, the po- Ϸ2.2 ϫ 10Ϫ3 per cell, and the percentage of HR to random tential for drug discovery, and an unlimited source of various cell integration was Ͼ50%. types and tissues for transplantation therapy of many diseases. In this report, we investigated whether HDAdVs are superior Mouse ES (mES) cells are the best characterized, in which the for transferring genes into primate ES cells, and transient gene methods for genetic modification, including gene targeting via transfer efficiencies of Ϸ98% were achieved while maintaining homologous recombination (HR), have been well established, the pluripotency in both cES and hES cells. When HDAdVs with and many murine models of human disease became available. sequences homologous to the host HPRT1 locus were used, one However, human ES (hES) cells differ from mES cells in many aspects such as the expression of cell surface markers and in 10 chromosomal integrations of the vector was via HR. response to leukemia inhibitory factor (LIF) (3–7). Further- Furthermore, in combination with negative selection, approxi- more, ethical, cultural, and legal perspectives are potential mately half of the drug resistant colonies were targeted at the barriers against a usage of human ES cells. For these reasons, HPRT1 gene via HR. These results suggest that gene transfer nonhuman primate ES cells, such as those that we previously established from cynomolgus monkey (Macaca fasicularis) (8), Author contributions: K.S., H.S., N.N., and K. Mitani designed research; K.S., K. Mitsui, E.A., provide research tools by which to understand properties and K.H., E.K., T.Y., and Y.S. performed research; and K.S. and K. Mitani wrote the paper. behaviors of hES cells. Because of the phylogenetic closeness The authors declare no conflict of interest. between monkeys and humans, cynomolgus monkey ES (cES) ‡Present address: Eli and Edythe Broad Center for Regenerative Medicine and Stem and hES cells show similarities, such as cell surface marker Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, expression and low cloning efficiency, making cES cells a useful CA 90033. resource for biological and preclinical research before the clin- ††To whom correspondence should be addressed. E-mail: [email protected]. ical usage of hES cells. This article contains supporting information online at www.pnas.org/cgi/content/full/ However, mainly because of fragility to experimental manip- 0806976105/DCSupplemental. ulation of primate ES cells, methodologies to achieve transient © 2008 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0806976105 PNAS ͉ September 16, 2008 ͉ vol. 105 ͉ no. 37 ͉ 13781–13786 Downloaded by guest on September 26, 2021 Fig. 1. Transient gene expression in primate ES cells using HDAdVs. (A) Transient gene expression efficiencies in cES cells. CMK6 cells were infected with HDAdVenus-geo-TK, pseudotyped with Ad5 (open bars) or Ad5/35 fiber (filled bars), at various MOIs. The average of three independent experiments is shown with a standard error bar. (B) Time course of transient gene expression in cES cells. CMK6 cells were infected with HDAdVenus-geo-TK, pseudotyped with Ad5 fiber, at an MOI of 300. The average of three independent experiments is shown with a standard error bar. (C) Transient gene expression efficiencies in hES cells. KhES-1 subline 1 cells were infected with HDAdVenus-geo-TK, pseudotyped with Ad5 fiber (open bars) or Ad5/35 fiber (filled bars), at various MOIs or were transduced with pHDAdVenus-geo-TK plasmid DNA using FuGENE HD (gray bar). The average of three independent experiments is shown with a standard error bar. *, P Ͻ 0.05, t test, between Ad5 and Ad5/35 fibers. (D) Cytotoxicity after HDAdV infection of hES cells. KhES-1 cells were infected with HDAdVenus-geo-TK, pseudotyped with Ad5 (open bars) or Ad5/35 fiber (filled bars), at various MOIs or were transduced with pHDAdVenus-geo-TK plasmid DNA using FuGENE HD (gray bar). The average of three independent experiments is shown with a standard error bar. *, P Ͻ 0.05, t test, between noninfected and infected cells. (E) Expression of stem cell markers in HDAdV-infected hES cells. KhES-1 cells were infected with HDAdVenus-geo-TK, pseudotyped with Ad5 or Ad5/35 fiber, at various MOIs. Nuclei were stained by 4Ј,6-diamidino-2-phenylindole (DAPI). The merge shows costaining of Venus and POU5F1. (Scale bars, 200 ␮m.) mediated by HD AdVs would be a powerful technology for Ad5/35 fiber. To examine the time course of transient gene genetic manipulation in primate ES cells. expression with HDAdVs in cES cells, Venus-positive cells were analyzed by FACS at time points ranging from 12 h to 11 days Results after infection. Gene expression peaked at 2 days after infection Transient Gene Expression in cES Cells. To examine the applicability and was hardly detectable 7 days after infection (Fig. 1B), of HDAdVs for gene expression in cES and hES cells, we first indicating strong but transient gene expression in dividing ES investigated the efficiency of transient gene expression with cells as expected. To assess whether HDAdV-infected cells HDAdVs. We constructed pHDAdVenus-geo-TK, an HDAdV maintained ES cell characteristics, we examined colocalization DNA containing the Venus gene, which encodes a brighter of the undifferentiated ES cell marker Pou5f1 (Oct3/4) and the mutant of the yellow fluorescent protein (24). This HDAdV Venus proteins by immunostaining in cES cells, which were DNA was packaged into virus particles with human adenovirus infected at MOIs of 30–3,000 (data not shown). Pou5f1 expres- type 5 (Ad5) fiber or Ad5/35 fiber, the knob and shaft domains sion was observed in almost all Venus-positive cells, suggesting of which are derived form the Ad35 fiber (25).
Recommended publications
  • Gene Targeting in Plants: 25 Years Later HOLGER PUCHTA* and FRIEDRICH FAUSER
    Int. J. Dev. Biol. 57: 629-637 (2013) doi: 10.1387/ijdb.130194hp www.intjdevbiol.com Gene targeting in plants: 25 years later HOLGER PUCHTA* and FRIEDRICH FAUSER Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany ABSTRACT Only five years after the initiation of transgenic research in plants, gene targeting (GT) was achieved for the first time in tobacco. Unfortunately, the frequency of targeted integration via homologous recombination (HR) was so low in comparison to random integration that GT could not be established as a feasible technique in higher plants. It took another 25 years and great effort to develop the knowledge and tools necessary to overcome this challenge, at least for some plant species. In some cases, the overexpression of proteins involved in HR or the use of negative select- able markers improved GT to a certain extent. An effective solution to this problem was developed in 1996, when a sequence-specific endonuclease was used to induce a double-strand break (DSB) at the target locus. Thus, GT frequencies were enhanced dramatically. Thereafter, the main limitation was the absence of tools needed to induce DSBs at specific sites in the genome. Such tools became available with the development of zinc finger nucleases (ZFNs), and a breakthrough was achieved in 2005 when ZFNs were used to target a marker gene in tobacco. Subsequently, endogenous loci were targeted in maize, tobacco and Arabidopsis. Recently, our toolbox for genetic engineering has expanded with the addition of more types of site-specific endonucleases, meganucleases, transcription activator-like effector nucleases (TALENs) and the CRISPR/Cas system.
    [Show full text]
  • CRISPR-Cas9-Mediated Efficient Directed Mutagenesis and RAD51
    CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens Cécile Collonnier, Aline Epert, Kostlend Mara, François Maclot, Anouchka Guyon-Debast, Florence Charlot, Charles White, Didier Schaefer, Fabien Nogué To cite this version: Cécile Collonnier, Aline Epert, Kostlend Mara, François Maclot, Anouchka Guyon-Debast, et al.. CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51- independent gene targeting in the moss Physcomitrella patens. Plant Biotechnology Journal, Wiley, 2017, 15 (1), pp.122 - 131. 10.1111/pbi.12596. inserm-01904879 HAL Id: inserm-01904879 https://www.hal.inserm.fr/inserm-01904879 Submitted on 25 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Plant Biotechnology Journal (2017) 15, pp. 122–131 doi: 10.1111/pbi.12596 CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella
    [Show full text]
  • ES Cell Targeting Handbook
    TABLE OF CONTENTS Overview of ES Core Facility Introduction Generation of Gene-Targeted ES Cells Karyotyping of Positive ES Clones ES Cell Request Form General Information for the Generation of Targeted Cells Principles of Gene Targeting Requirements for the Design of Targeting Constructs Screening Assay for the Identification of Targeted ES Clones Overview of ES Cell Culture ES Cell Factors Affecting Successful Chimera Production FAQ Overview of ES Core Facility Our Mission The ES Core Facility (ECF) was founded by the NINDS Core Center Grant and was established to benefit the contributors of this proposal. The mission of ECF is to effectively produce ES cell lines with a high probability of germline transmission. Core Service Services provided by the Core for a typical project include: • Provide guidance on the design of targeting construct • Generate targeted ES cell lines for the production of chimeric mice • Karyotyping ES cells to be micro-injected into blastocysts Consultation is available from ECF directors and staff members on the entire procedures of generating gene knock-out mice. Application for Service Prior to the initiation of a project, a brief meeting is generally required between the investigator and ECF facility staff resulting in a mutually acceptable research strategy. This strategy will outline specifics of the project including knockout strategy, KO construct design, screening assays, and other procedural issues relevant to the generation of targeted ES cells. In addition, a completed service application form, signed by the principal investigator and approved by the Core Director, will also be required. The Core Director will prioritize the service requests according to the difficulty of the project and work load.
    [Show full text]
  • Gene Targeting in Plants
    The EMBO Journal vol.7 no.13 pp.4021 -4026, 1988 Gene targeting in plants Jerzy Paszkowski, Markus Baur, Although integration of transforming DNA into the Augustyn Bogucki and Ingo Potrykus homologous chromosomal DNA occurs efficiently in yeast, other fungi and Dictyostelium discoideum (Hinnen et al., Friedrich Miescher Institut, PO Box 2543, CH4002 Basel, 1978; De Lozanne et al., 1987; Miller et al., 1987), Switzerland non-homologous ('illegitimate') integration of foreign DNA Present address: Swiss Federal Institute of Technology, Institute of into the genome of higher eukaryotic cells makes it difficult Plant Sciences, ETH-Zentrum, Universitatstrasse 2, CH-8092 Zurich, to assay the frequency of gene targeting to a desired locus. Switzerland Only recently has the application of selection (Lin et al., Communicated by J.-D.Rochaix 1985; Thomas et al., 1986; Doetschman et al., 1987; Song et al., 1987; Thomas and Capecchi, 1987) and screening Although the generation of transgenic plants is now (Smithies et al., 1985) systems allowed comparison of the routine, the integration of foreign genetic information has frequencies of homologous and illegitimate integration of so far been at random sites in the genome. We now transformed DNA in cultured mammalian cells. In plants present evidence for directed integration into a predicted the high transformation frequencies reported for DNA location in the host plant genome. Protoplasts of molecules with no homology to the plant genome (Shillito transgenic tobacco (Nicotiana tabacum) plants carrying et al., 1985; Negrutiu et al., 1987) indicate efficient copies of a partial, non-functional drug-resistance gene illegitimate integration. Therefore, the detection of gene in the nuclear DNA were used as recipients for DNA targeting through homologous DNA recombination requires molecules containing the missing part of the gene.
    [Show full text]
  • E Cient Targeted Gene Insertion in Maize Using Agrobacterium
    Ecient Targeted Gene Insertion in Maize using Agrobacterium-Mediated Delivery Sergei Svitashev ( [email protected] ) Corteva Agriscience https://orcid.org/0000-0003-1667-7430 Dave Peterson Corteva Agriscience Pierjuigi Barone Corteva Agriscience https://orcid.org/0000-0002-2579-0913 Brian Lenderts Corteva Agriscience Chris Schwartz Corteva Agriscience Lanie Feigenbutz Corteva Agriscience Grace St. Clair Corteva Agriscience Spencer Jones Department of Molecular Engineering, Corteva Agriscience™ Agriculture Division of DowDuPont™ Article Keywords: Genome Editing, Gene Knock-outs, Nucleotide Replacement, Vector Design, Trait Product Development Posted Date: December 22nd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-99643/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on May 2nd, 2021. See the published version at https://doi.org/10.1111/pbi.13613. Page 1/17 Abstract CRISPR-Cas is a powerful DNA double strand break technology with wide-ranging applications in plant genome modication. However, the eciency of genome editing depends on various factors including plant genetic transformation processes and types of modications desired. Agrobacterium infection is the preferred method of transformation and delivery of editing components into the plant cell. While this method has been successfully used to generate gene knock-outs in multiple crops, precise nucleotide replacement and especially gene insertion into a pre-dened genomic location remain highly challenging. Here we report an ecient, heritable, selectable marker-free site-specic gene insertion in maize using Agrobacterium-mediated delivery. Advancements in maize transformation and new vector design enabled targeted insertion with frequencies as high as 8–10%.
    [Show full text]
  • Concentrating Mechanisms and Development of Molecular Tools for Chlamydomonas Reinhardtii
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses and Dissertations in Biochemistry Biochemistry, Department of 12-2013 Transcriptomic Analyses of the CO2-Concentrating Mechanisms and Development of Molecular Tools for Chlamydomonas reinhardtii Andrew J. Brueggeman University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biochemdiss Part of the Biochemistry Commons, and the Molecular Biology Commons Brueggeman, Andrew J., "Transcriptomic Analyses of the CO2-Concentrating Mechanisms and Development of Molecular Tools for Chlamydomonas reinhardtii" (2013). Theses and Dissertations in Biochemistry. 13. https://digitalcommons.unl.edu/biochemdiss/13 This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses and Dissertations in Biochemistry by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TRANSCRIPTOMIC ANALYSES OF THE CO2-CONCENTRATING MECHANISM AND DEVELOPMENT OF MOLECULAR TOOLS FOR CHLAMYDOMONAS REINHARDTII by Andrew J Brueggeman A Dissertation Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Biochemistry Under the Supervision of Professor Donald P. Weeks Lincoln, Nebraska December, 2013 TRANSCRIPTOMIC ANALYSES OF THE CO2-CONCENTRATING MECHANISM AND DEVELOPMENT OF MOLECULAR TOOLS FOR CHLAMYDOMONAS REINHARDTII Andrew J Brueggeman, Ph.D. University of Nebraska, 2013 Advisor: Donald P. Weeks Microalgae, such as Chlamydomonas reinhardtii, account for a large percentage of photosynthesis that occurs on the planet. Many algae possess a Carbon- Concentrating Mechanism, or CCM, that actively transports inorganic carbon (Ci) into the cell to create artificially high internal levels of CO2, enhancing their rate of carbon fixation.
    [Show full text]
  • Improved CRISPR Genome Editing Using Small Highly Active and Specific Engineered RNA-Guided Nucleases
    ARTICLE https://doi.org/10.1038/s41467-021-24454-5 OPEN Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases Moritz J. Schmidt1,4, Ashish Gupta1,4, Christien Bednarski1,4, Stefanie Gehrig-Giannini1, Florian Richter1, Christian Pitzler1, Michael Gamalinda1, Christina Galonska1, Ryo Takeuchi2, Kui Wang2, Caroline Reiss2, Kerstin Dehne1, Michael J. Lukason3, Akiko Noma2, Cindy Park-Windhol2, Mariacarmela Allocca2, Albena Kantardzhieva2, Shailendra Sane2, Karolina Kosakowska2, Brian Cafferty2, Jan Tebbe1, Sarah J. Spencer3, ✉ Scott Munzer2, Christopher J. Cheng2, Abraham Scaria2, Andrew M. Scharenberg2, André Cohnen 1,5 & 1234567890():,; ✉ Wayne M. Coco 1,5 Streptococcus pyogenes (Spy) Cas9 has potential as a component of gene therapeutics for incurable diseases. One of its limitations is its large size, which impedes its formulation and delivery in therapeutic applications. Smaller Cas9s are an alternative, but lack robust activity or specificity and frequently recognize longer PAMs. Here, we investigated four uncharacterized, smaller Cas9s and found three employing a “GG” dinucleotide PAM similar to SpyCas9. Protein engineering generated synthetic RNA-guided nucleases (sRGNs) with editing efficiencies and specificities exceeding even SpyCas9 in vitro and in human cell lines on disease-relevant targets. sRGN mRNA lipid nanoparticles displayed manufacturing advantages and high in vivo editing efficiency in the mouse liver. Finally, sRGNs, but not SpyCas9, could be packaged into all-in-one AAV particles with a gRNA and effected robust in vivo editing of non-human primate (NHP) retina photoreceptors. Human gene therapy efforts are expected to benefit from these improved alternatives to existing CRISPR nucleases. 1 Bayer AG, Leverkusen, Germany. 2 Casebia Therapeutics LLC, Cambridge, MA, USA.
    [Show full text]
  • Two Mind Genes in Physcomitrella Patens Are Functionally Redundant
    © 2005 The Japan Mendel Society Cytologia 70(1): 87–92, 2005 Two minD Genes in Physcomitrella patens Are Functionally Redundant Ryuuichi D. Itoh1,*, Katsuaki Takechi2, Akihiro Hayashida2, Shin-ichiro Katsura1 and Hiroyoshi Takano2 1 Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903–0213, Japan 2 Graduate School of Science and Technology, Kumamoto University, Kumamoto 860–8555, Japan Received January 18, 2005; accepted January 26, 2005 Summary We investigated two genes that encode a homolog of the bacterial cell division site de- terminant MinD, PpMinD1 and PpMinD2, which were previously identified in the moss Physcomitrella patens. Southern analysis suggested that the P. patens genome does not contain minD genes other than PpMinD1 and PpMinD2. Molecular phylogenetic analysis and the results of a tran- sient expression assay using MinD : green fluorescent protein (GFP) fusions implied that PpMinD1 and PpMinD2 are cyanobacterium-derived, closely related genes encoding chloroplast-targeted MinD proteins. Disruption of the genomic PpMinD1 or PpMinD2 locus had no detectable effects on plastid division. This implies that there is functional redundancy in the two minD genes in P. patens. Key words Chloroplast division, gene targeting, knockout, minD, moss, Physcomitrella patens. The genes essential for plastid division have been identified in Arabidopsis thaliana, and most encode proteins that are homologous to bacterial cell division proteins such as FtsZ, ARC11/MinD, MinE, ARTEMIS, ARC6/Ftn2 (for review, see Osteryoung and Nunnari 2003), and GC1/SulA (Maple et al. 2004, Raynaud et al. 2004). The involvement of prokaryote-type cell division factors in plastid division is quite reasonable in view of the endosymbiotic theory, which holds that plastids arose from cyanobacteria engulfed by endocytosis.
    [Show full text]
  • Efficient Gene Targeting Mediated by Adeno-Associated Virus and DNA
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors MOLECULAR AND CELLULAR BIOLOGY, May 2003, p. 3558–3565 Vol. 23, No. 10 0270-7306/03/$08.00ϩ0 DOI: 10.1128/MCB.23.10.3558–3565.2003 Copyright © 2003, American Society for Microbiology. All Rights Reserved. Efficient Gene Targeting Mediated by Adeno-Associated Virus and DNA Double-Strand Breaks Matthew H. Porteus,1* Toni Cathomen,2 Matthew D. Weitzman,2 and David Baltimore1 California Institute of Technology, Pasadena, California 91125,1 and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 920372 Received 18 November 2002/Returned for modification 6 January 2003/Accepted 3 March 2003 Gene targeting is the in situ manipulation of the sequence of an endogenous gene by the introduction of homologous exogenous DNA. Presently, the rate of gene targeting is too low for it to be broadly used in mammalian somatic cell genetics or to cure genetic diseases. Recently, it has been demonstrated that infection with recombinant adeno-associated virus (rAAV) vectors can mediate gene targeting in somatic cells, but the mechanism is unclear. This paper explores the balance between random integration and gene targeting with rAAV. Both random integration and spontaneous gene targeting are dependent on the multiplicity of infection (MOI) of rAAV. It has previously been shown that the introduction of a DNA double-stranded break (DSB) in a target gene can stimulate gene targeting by several-thousand-fold in somatic cells. Creation of a DSB stimulates the frequency of rAAV-mediated gene targeting by over 100-fold, suggesting that the mechanism of rAAV-mediated gene targeting involves, at least in part, the repair of DSBs by homologous recombination.
    [Show full text]
  • Overview of Gene Targeting by Homologous Recombination 4.29.10
    Overview of Gene Targeting by Homologous UNIT 4.29 Recombination The analysis of mutant organisms and cell tion of the mutation present in the targeting lines has been important in determining the construct into the target gene. Once identified, function of specific proteins. Until recently, mutant ES cell clones can be microinjected into mutants were produced by mutagenesis fol- a normal blastocyst in order to produce a lowed by selection for a particular phenotypic chimeric mouse. Because many ES cell lines change. Recent technological advances in gene retain the ability to differentiate into every cell targeting by homologous recombination in type present in the mouse, the chimera can have mammalian systems enable the production of tissues, including the germ line, with contribu- mutants in any desired gene (Mansour, 1990; tion from both the normal blastocyst and the Robertson, 1991; Zimmer, 1992). This technol- mutant ES cells. Breeding germ-line chimeras ogy can be used to produce mutant mouse yields animals that are heterozygous for the strains and mutant cell lines. Because most mutation introduced into the ES cell, and that mammalian cells are diploid, they contain two can be interbred to produce homozygous mu- copies, or alleles, of each gene encoded on an tant mice. autosomal (nonsex) chromosome. In most Homologous recombination can also be cases, both alleles must be inactivated to pro- used to produce homozygous mutant cell lines. duce a discernible phenotypic change in a mu- Previously, inactivation of both alleles of a gene tant. The conversion from heterozygosity to required two rounds of homologous recombi- homozygosity is accomplished by breeding in nation and selection (te Riele et al., 1990; Cruz the case of mouse strains and by direct selection et al., 1991; Mortensen et al., 1991).
    [Show full text]
  • Efficient Gene Targeting by Homologous Recombination in Rice
    RESEARCH ARTICLE Efficient gene targeting by homologous recombination in rice Rie Terada1, Hiroko Urawa1, Yoshishige Inagaki1,2, Kazuo Tsugane1, and Shigeru Iida1* Published online: 9 September 2002, doi:10.1038/nbt737 Modification of genes through homologous recombination, termed gene targeting, is the most direct method to characterize gene function. In higher plants, however, the method is far from a common practice. Here we describe an efficient and reproducible procedure with a strong positive/negative selection for gene targeting in rice, which feeds more than half of the world’s population and is an important model plant. About 1% of select- ed calli and their regenerated fertile plants were heterozygous at the targeted locus, and only one copy of the selective marker used was found at the targeted site in their genomes. The procedure’s applicability to other genes will make it feasible to obtain various gene-targeted lines of rice. Rice (Oryza sativa L.) is an important staple food for more than half of genomic sequence is well characterized3,4,6. As a model gene to be http://www.nature.com/naturebiotechnology the world’s population and is a model plant for other cereal species1–3. targeted, we chose the gene Waxy, which encodes granule-bound With the elucidation of the entire genome sequence of rice3–6, it is starch synthase, a key enzyme in amylose synthesis (Fig. 1)16,17.We becoming clear that a large proportion of predicted rice genes have no selected Waxy because its mutations affect the quality and quanti- recognizable homologs in Arabidopsis, in which <10% of putative ty of rice grain and because the associated phenotype in pollen genes have been studied experimentally7.
    [Show full text]
  • Homologous DNA Recombination in Vertebrate Cells
    Colloquium Homologous DNA recombination in vertebrate cells Eiichiro Sonoda*†, Minoru Takata*‡, Yukiko M. Yamashita*, Ciaran Morrison§, and Shunichi Takeda*†¶ *Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan; †CREST (Core Research for Evolutional Science and Technology), JST (Japan Science and Technology), Kawaguchi, Japan; ‡Department of Immunology, Kawasaki Medical School, Kurashiki, Japan; and §Institute of Cell and Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom The RAD52 epistasis group genes are involved in homologous DNA Using this reasoning we have been able to investigate distinct as recombination, and their primary structures are conserved from well as overlapping roles of independent repair pathways by yeast to humans. Although biochemical studies have suggested knocking out multiple genes involved in DNA repair in DT40 that the fundamental mechanism of homologous DNA recombina- cells. Second, the extremely rapid growth rate of DT40 cells, with tion is conserved from yeast to mammals, recent studies of verte- a doubling time of 8–10 h, makes it easy to perform phenotypic brate cells deficient in genes of the RAD52 epistasis group reveal analysis. Third, the absence of functional p53 in DT40 cells offers that the role of each protein is not necessarily the same as that of an additional advantage in the analysis of mutant cells exhibiting the corresponding yeast gene product. This review addresses the genome instability (15). DNA lesions in such mutant cells would roles and mechanisms of homologous recombination-mediated elevate the level of p53 product, leading to the decrease in the repair with a special emphasis on differences between yeast and cloning efficiency of cells, significantly reducing the growth rate, vertebrate cells.
    [Show full text]