Transcriptional Interference by RNA Polymerase III Affects Expression of the Polr3e Gene
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementary Materials
DEPs in osteosarcoma cells comparing to osteoblastic cells Biological Process Protein Percentage of Hits metabolic process (GO:0008152) 29.3 29.3% cellular process (GO:0009987) 20.2 20.2% localization (GO:0051179) 9.4 9.4% biological regulation (GO:0065007) 8 8.0% developmental process (GO:0032502) 7.8 7.8% response to stimulus (GO:0050896) 5.6 5.6% cellular component organization (GO:0071840) 5.6 5.6% multicellular organismal process (GO:0032501) 4.4 4.4% immune system process (GO:0002376) 4.2 4.2% biological adhesion (GO:0022610) 2.7 2.7% apoptotic process (GO:0006915) 1.6 1.6% reproduction (GO:0000003) 0.8 0.8% locomotion (GO:0040011) 0.4 0.4% cell killing (GO:0001906) 0.1 0.1% 100.1% Genes 2179Hits 3870 biological adhesion apoptotic process … reproduction (GO:0000003) , 0.8% (GO:0022610) , 2.7% locomotion (GO:0040011) ,… immune system process cell killing (GO:0001906) , 0.1% (GO:0002376) , 4.2% multicellular organismal process (GO:0032501) , metabolic process 4.4% (GO:0008152) , 29.3% cellular component organization (GO:0071840) , 5.6% response to stimulus (GO:0050896), 5.6% developmental process (GO:0032502) , 7.8% biological regulation (GO:0065007) , 8.0% cellular process (GO:0009987) , 20.2% localization (GO:0051179) , 9. -
Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father. -
The Conserved Structure of Plant Telomerase RNA Provides the Missing Link for an Evolutionary Pathway from Ciliates to Humans
The conserved structure of plant telomerase RNA provides the missing link for an evolutionary pathway from ciliates to humans Jiarui Songa, Dhenugen Logeswaranb,1, Claudia Castillo-Gonzáleza,1, Yang Lib, Sreyashree Bosea, Behailu Birhanu Aklilua, Zeyang Mac,d, Alexander Polkhovskiya,e, Julian J.-L. Chenb,2, and Dorothy E. Shippena,2 aDepartment of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843; bSchool of Molecular Sciences, Arizona State University, Tempe, AZ 85287; cNational Maize Improvement Center of China, China Agricultural University, 100193 Beijing, China; dCollege of Agronomy and Biotechnology, China Agricultural University, 100193 Beijing, China; and eCenter of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russian Federation Edited by Thomas R. Cech, University of Colorado Boulder, Boulder, CO, and approved October 24, 2019 (received for review September 4, 2019) Telomerase is essential for maintaining telomere integrity. Although transcribed by RNA polymerase III (Pol III) (6, 7). The La-related telomerase function is widely conserved, the integral telomerase protein P65 in Tetrahymena recognizes the 3′ poly-U tail of TR RNA (TR) that provides a template for telomeric DNA synthesis has and bends the RNA to facilitate telomerase RNP assembly (8, 9). diverged dramatically. Nevertheless, TR molecules retain 2 highly In contrast, fungi maintain much larger TR molecules (900 to conserved structural domains critical for catalysis: a template- 2,400 nt) that are transcribed by RNA polymerase II (Pol II) (3). proximal pseudoknot (PK) structure and a downstream stem-loop The 3′ end maturation of fungal TRs requires components of the structure. Here we introduce the authentic TR from the plant canonical snRNA biogenesis pathway and results in RNP assembly Arabidopsis thaliana, called AtTR, identified through next-generation sequencing of RNAs copurifying with Arabidopsis TERT. -
WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US). -
Supplementary Material Computational Prediction of SARS
Supplementary_Material Computational prediction of SARS-CoV-2 encoded miRNAs and their putative host targets Sheet_1 List of potential stem-loop structures in SARS-CoV-2 genome as predicted by VMir. Rank Name Start Apex Size Score Window Count (Absolute) Direct Orientation 1 MD13 2801 2864 125 243.8 61 2 MD62 11234 11286 101 211.4 49 4 MD136 27666 27721 104 205.6 119 5 MD108 21131 21184 110 204.7 210 9 MD132 26743 26801 119 188.9 252 19 MD56 9797 9858 128 179.1 59 26 MD139 28196 28233 72 170.4 133 28 MD16 2934 2974 76 169.9 71 43 MD103 20002 20042 80 159.3 403 46 MD6 1489 1531 86 156.7 171 51 MD17 2981 3047 131 152.8 38 87 MD4 651 692 75 140.3 46 95 MD7 1810 1872 121 137.4 58 116 MD140 28217 28252 72 133.8 62 122 MD55 9712 9758 96 132.5 49 135 MD70 13171 13219 93 130.2 131 164 MD95 18782 18820 79 124.7 184 173 MD121 24086 24135 99 123.1 45 176 MD96 19046 19086 75 123.1 179 196 MD19 3197 3236 76 120.4 49 200 MD86 17048 17083 73 119.8 428 223 MD75 14534 14600 137 117 51 228 MD50 8824 8870 94 115.8 79 234 MD129 25598 25642 89 115.6 354 Reverse Orientation 6 MR61 19088 19132 88 197.8 271 10 MR72 23563 23636 148 188.8 286 11 MR11 3775 3844 136 185.1 116 12 MR94 29532 29582 94 184.6 271 15 MR43 14973 15028 109 183.9 226 27 MR14 4160 4206 89 170 241 34 MR35 11734 11792 111 164.2 37 52 MR5 1603 1652 89 152.7 118 53 MR57 18089 18132 101 152.7 139 94 MR8 2804 2864 122 137.4 38 107 MR58 18474 18508 72 134.9 237 117 MR16 4506 4540 72 133.8 311 120 MR34 10010 10048 82 132.7 245 133 MR7 2534 2578 90 130.4 75 146 MR79 24766 24808 75 127.9 59 150 MR65 21528 21576 99 127.4 83 180 MR60 19016 19049 70 122.5 72 187 MR51 16450 16482 75 121 363 190 MR80 25687 25734 96 120.6 75 198 MR64 21507 21544 70 120.3 35 206 MR41 14500 14542 84 119.2 94 218 MR84 26840 26894 108 117.6 94 Sheet_2 List of stable stem-loop structures based on MFE. -
Termination of RNA Polymerase II Transcription by the 5’-3’ Exonuclease Xrn2
TERMINATION OF RNA POLYMERASE II TRANSCRIPTION BY THE 5’-3’ EXONUCLEASE XRN2 by MICHAEL ANDRES CORTAZAR OSORIO B.S., Universidad del Valle – Colombia, 2011 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Molecular Biology Program 2018 This thesis for the Doctor of Philosophy degree by Michael Andrés Cortázar Osorio has been approved for the Molecular Biology Program by Mair Churchill, Chair Richard Davis Jay Hesselberth Thomas Blumenthal James Goodrich David Bentley, Advisor Date: Aug 17, 2018 ii Cortázar Osorio, Michael Andrés (Ph.D., Molecular Biology) Termination of RNA polymerase II transcription by the 5’-3’ exonuclease Xrn2 Thesis directed by Professor David L. Bentley ABSTRACT Termination of transcription occurs when RNA polymerase (pol) II dissociates from the DNA template and releases a newly-made mRNA molecule. Interestingly, an active debate fueled by conflicting reports over the last three decades is still open on which of the two main models of termination of RNA polymerase II transcription does in fact operate at 3’ ends of genes. The torpedo model indicates that the 5’-3’ exonuclease Xrn2 targets the nascent transcript for degradation after cleavage at the polyA site and chases pol II for termination. In contrast, the allosteric model asserts that transcription through the polyA signal induces a conformational change of the elongation complex and converts it into a termination-competent complex. In this thesis, I propose a unified allosteric-torpedo mechanism. Consistent with a polyA site-dependent conformational change of the elongation complex, I found that pol II transitions at the polyA site into a mode of slow transcription elongation that is accompanied by loss of Spt5 phosphorylation in the elongation complex. -
Whole-Genome Expression Analysis of Mammalian-Wide Interspersed
Dna Research, 2017, 24(1), 59–69 doi: 10.1093/dnares/dsw048 Advance Access Publication Date: 17 December 2016 Full Paper Full Paper Whole-genome expression analysis of mammalian-wide interspersed repeat elements in human cell lines Davide Carnevali1, Anastasia Conti1,†, Matteo Pellegrini2 and Giorgio Dieci1,* 1Department of Life Sciences, University of Parma, Parma, Italy, and 2Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095 723, USA *To whom correspondence should be addressed. Tel. þ39 0521 905649. Fax. þ39 0521 905151. Email: [email protected] †Present address: The San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milano, Italy Edited by Dr. Minoru Ko Received 13 August 2016; Accepted 9 October 2016 Abstract With more than 500,000 copies, mammalian-wide interspersed repeats (MIRs), a sub-group of SINEs, represent 2.5% of the human genome and one of the most numerous family of poten- tial targets for the RNA polymerase (Pol) III transcription machinery. Since MIR elements ceased to amplify 130 myr ago, previous studies primarily focused on their genomic impact, while the issue of their expression has not been extensively addressed. We applied a dedicated bioin- formatic pipeline to ENCODE RNA-Seq datasets of seven human cell lines and, for the first time, we were able to define the Pol III-driven MIR transcriptome at single-locus resolution. While the majority of Pol III-transcribed MIR elements are cell-specific, we discovered a small set of ubiquitously transcribed MIRs mapping within Pol II-transcribed genes in antisense orien- tation that could influence the expression of the overlapping gene. -
RNA Polymerase III Interferes with Ty3 Integration
FEBS 18345 FEBS Letters 405 (1997) 305-311 RNA polymerase III interferes with Ty3 integration Charles M. Connolly1, Suzanne B. Sandmeyer* Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697-4025, USA Received 8 January 1997; revised version received 12 February 1997 verse transcription of Ty3 RNA in association with the VLP, Abstract Ty3, a gypsylike retrotransposon of budding yeast, integrates at the transcription initiation site of genes transcribed the DNA copy is integrated into the host genome in a process by RNA polymerase III (pol III). It was previously shown that mediated by Ty3 integrase (IN) [12]. Ty3 IN is a homologue integration in vitro requires intact promoter elements and the pol of retroviral IN. Recombinant retroviral IN has been demon- III transcription factors TFIIIB and TFIIIC. In order to test the strated to have in vitro 3'-end processing and strand-transfer effect of pol III on integration, increasing amounts of a pol Ill- activities (reviewed in [13]). Although Ty3 IN has been dem- containing fraction were added to Ty3 in vitro integration onstrated to be required in vivo for 3'-end processing and reactions. The pol Ill-containing fraction was inhibitory to integration of Ty3 DNA, integration activity has only been integration. These results are consistent with a model where the observed in vitro in association with a VLP fraction [14]. Ty3 integration complex and pol III recognize similar features of the stable transcription complex and compete with each other for Despite the many similarities between retroviruses and Ty3 access to the transcription initiation site. -
Ncrna Synthesis Ny RNA Polymerase
“The functional characterization of mammalian non-coding Y RNAs” Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät I – Biowissenschaften – der Martin-Luther-Universität Halle-Wittenberg, vorgelegt von Herrn Marcel Köhn geb. am 04.01.1983 in Wolgast Öffentlich verteidigt am 30.10.2015 Gutachter: Prof. Dr. Stefan Hüttelmaier (Halle, Deutschland) Prof. Dr. Elmar Wahle (Halle, Deutschland) Prof. Dr. Daniel Zenklusen (Montreal, Kanada) Contents Abstract 1. Non-coding RNAs (ncRNAs) 2. NcRNA synthesis by RNA polymerase III 2.1. NcRNAs transcribed from type I and II POLIII-genes 2.2. NcRNAs transcribed from type III POLIII-genes 3. The non-coding Y RNAs 3.1. Evolution of Y RNAs 3.2. Y RNA genes and expression patterns 3.3. Processing of Y RNAs 3.4. Subcellular localization of Y RNAs 3.5. Y RNA-associated proteins 3.6. The Y RNA core proteins – La and Ro60 3.7. A paradigm of accessory Y RNA-binding proteins – IGF2BPs 3.8. The characterization of Y RNPs 3.9. The association of Y3/Y3** with mRNA 3’-end processing factors 4. Y RNA functions 4.1. The role of Y RNAs in DNA replication and cell growth 4.2. Y RNAs as modulators of Ro60 function and cellular stress 5. The role of Y3/Y3** in the 3’-end processing of histone mRNAs 5.1. The depletion of Y RNAs and their impact on pre-mRNA processing 5.2. The evolutionary conservation of Y3’s role in histone mRNA processing 5.3. Y3** ncRNA is essential for histone mRNA processing 5.4. -
'Distal 16P12.2 Microdeletion' in a Patient with Autosomal Recessive
Journal of Genetics (2019) 98:56 © Indian Academy of Sciences https://doi.org/10.1007/s12041-019-1107-0 RESEARCH NOTE ‘Distal 16p12.2 microdeletion’ in a patient with autosomal recessive deafness-22 ELISA TASSANO1,∗, PATRIZIA RONCHETTO1, ANNALISA CALCAGNO2, PATRIZIA FIORIO1, GIORGIO GIMELLI1, VALERIA CAPRA3 and MARCELLO SCALA3 1 Laboratorio di Citogenetica, and 2 Department of Pediatrics, and 3 UOC Neurochirurgia, Istituto Giannina Gaslini, 16147 Genova, Italy *For correspondence. E-mail: [email protected] Received 7 January 2019; revised 30 January 2019; accepted 31 January 2019; published online 1 June 2019 Abstract. The 16p12.2 chromosome band contains three large segmental duplications: BP1, BP2 and BP3, providing a substrate for recombination and recurrent chromosomal rearrangements. The ‘16p12.2 microdeletion’ is a recurrent deletion comprised between BP2 and BP3, associated with variable clinical findings. We identified a heterozygous 16p12.2 microdeletion spanning between BP1 and BP2 in a child evaluated for short stature and mild dyslexia. Unexpectedly, the mother carried the same deletion in the homozygous state and suffered from severe hearing loss. Detailed family history revealed consanguinity of the maternal grandparents. The 16p12.2 microdeletion is a rare condition and contains only three genes: METTL9, IGSF6 and OTOA of which the OTOA is considered responsible for DFNB22 hearing loss (MIM: 607039) under its homozygous condition. A number of OTOA mutations have been described, whereas very few cases of a 16p12.2 microdeletion similar to that observed in our family have been reported. In conclusion, we describe a rare ‘distal 16p12.2 microdeletion’ widening the phenotypic spectrum associated with the recurrent 16p12.2 microdeletion and support the causative role of OTOA microdeletion in hearing impairment. -
RNA Polymerase III Subunit Architecture and Implications for Open Promoter Complex Formation
RNA polymerase III subunit architecture and implications for open promoter complex formation Chih-Chien Wua,b, Franz Herzogc, Stefan Jennebachd, Yu-Chun Lina, Chih-Yu Paia, Ruedi Aebersoldc,e, Patrick Cramerd, and Hung-Ta Chena,1 aInstitute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China; bDepartment of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan 112, Republic of China; cDepartment of Biology, Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule Zurich, CH-8093 Zurich, Switzerland; dGene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; and eFaculty of Science, University of Zurich, CH-8006 Zurich, Switzerland Edited by E. Peter Geiduschek, University of California at San Diego, La Jolla, CA, and approved October 3, 2012 (received for review July 11, 2012) Transcription initiation by eukaryotic RNA polymerase (Pol) III relies subcomplexes and their contacts with the 12-subunit polymerase on the TFIIE-related subcomplex C82/34/31. Here we combine cross- core. The C37/53 dimerization module was positioned into the linking and hydroxyl radical probing to position the C82/34/31 electron density adjacent to the lobe domain of the C128 subunit subcomplex around the Pol III active center cleft. The extended on one side of the polymerase cleft, similar to the localization of winged helix (WH) domains 1 and 4 of C82 localize to the polymerase the TFIIF dimerization module and the A49/34.5 dimerization domains clamp head and clamp core, respectively, and the two WH module on Pol II and Pol I, respectively (23–25). -
Clinical Utility Gene Card For: 16P12.2 Microdeletion
European Journal of Human Genetics (2017) 25, doi:10.1038/ejhg.2016.158 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/17 www.nature.com/ejhg CLINICAL UTILITY GENE CARD Clinical utility gene card for: 16p12.2 microdeletion Lucilla Pizzo1, Joris Andrieux2, David J Amor3 and Santhosh Girirajan*,1,4 European Journal of Human Genetics (2017) 25, doi:10.1038/ejhg.2016.158; published online 16 November 2016 1. DISEASE CHARACTERISTICS and altered brain activity.5 Limited functional information is available 1.1 Name of the disease (synonyms) on PDZD9, C16orf52 and VWA3A. Even though the basic functionality 16p12.1 microdeletion (hg18/NCBI36). Please note that the updated has been reported for some genes within the region, their exact role release of the human reference genome (hg19/GRCh37) annotates this towards pathogenicity owing to the 16p12.2 deletion is not known, region as 16p12.2. highlighting the need for in-depth molecular studies of these genes. 1.2 OMIM# of the disease 1.6 Analytical methods 136570. The presence of the deletion can be detected by genome-wide or 1.3 Name of the analysed genes or DNA/chromosome segments targeted approaches that determine copy number in the region. Recent Chromosome 16p12.2 (hg19 chr16:g.(?_ 21950000)_(22470000_?)del). studies using genome-wide technologies such as comparative genomic hybridization and SNP microarrays have enabled discovery of this microdeletion, which otherwise would have been missed by lower 1.4 OMIM# of the gene(s) resolution assays such as chromosomal banding techniques. The UQCRC2 (*191329); EEF2K (*606968); CDR2 (*117340); PDZD9 (no accuracy of estimation of the deletion size depends on the type of OMIM entry); C16orf52 (no OMIM entry); VWA3A (no OMIM microarray used (targeted or whole genome) and the density of probes entry); and POLR3E (no OMIM entry).