Biological Monitoring at Aiktak Island, Alaska in 2009

Total Page:16

File Type:pdf, Size:1020Kb

Biological Monitoring at Aiktak Island, Alaska in 2009 AMNWR 2010/04 BIOLOGICAL MONITORING AT AIKTAK ISLAND, ALASKA IN 2009 Slade F. Sapora, Allyson L. Larned, and Brie A. Drummond Key words: Aiktak Island, Alaska, Aleutian Islands, ancient murrelet, Cepphus columba, common murre, double-crested cormorant, fork-tailed storm-petrel, Fratercula cirrhata, Fratercula corniculata, glaucous-winged gull, horned puffin, Larus glaucescens, Leach’s storm-petrel, Oceanodroma furcata, Oceanodroma leucorhoa, pelagic cormorant, Phalacrocorax auritus, Phalacrocorax pelagicus, Phalacrocorax urile, pigeon guillemot, population trends, productivity, red-faced cormorant, Synthliboramphus antiquus, thick-billed murre, tufted puffin, Uria aalge, Uria lomvia. U.S. Fish and Wildlife Service Alaska Maritime National Wildlife Refuge 95 Sterling Highway, Suite 1 Homer, AK 99603 April 2010 Cite as: Sapora, S.F., A.L. Larned, and Brie A. Drummond. 2010. Biological monitoring at Aiktak Island, Alaska in 2009. U.S. Fish and Wildl. Serv. Rep., AMNWR 2010/04. Homer, Alaska. Southern coast of Aiktak Island, Alaska, in late July. TABLE OF CONTENTS Page INTRODUCTION ........................................................................................................................................... 1 STUDY AREA ............................................................................................................................................... 1 METHODS .................................................................................................................................................... 2 INTERESTING OBSERVATIONS ................................................................................................................ 5 ACKNOWLEDGMENTS ................................................................................................................................ 5 REFERENCES .............................................................................................................................................. 5 FIGURES AND TABLES ............................................................................................................................... 9 Fork-tailed storm-petrel ........................................................................................................................ 10 Breeding chronology ...................................................................................................................... 10 Reproductive performance ............................................................................................................. 13 Chick growth .................................................................................................................................. 17 Food habits .................................................................................................................................... 18 Leach’s storm-petrel ............................................................................................................................. 21 Breeding chronology ...................................................................................................................... 21 Reproductive performance ............................................................................................................. 24 Chick growth .................................................................................................................................. 28 Food habits .................................................................................................................................... 29 All storm-petrels .................................................................................................................................... 32 Reproductive performance ............................................................................................................. 32 Populations .................................................................................................................................... 36 Morphology .................................................................................................................................... 39 Band resightings ............................................................................................................................ 40 All cormorants ....................................................................................................................................... 41 Reproductive performance ............................................................................................................. 41 Populations .................................................................................................................................... 45 Black oystercatcher .............................................................................................................................. 46 Breeding chronology ...................................................................................................................... 46 Reproductive performance ............................................................................................................. 49 Populations .................................................................................................................................... 51 Glaucous-winged gull ........................................................................................................................... 53 Breeding chronology ...................................................................................................................... 53 Reproductive performance ............................................................................................................. 56 Populations .................................................................................................................................... 59 Food habits .................................................................................................................................... 65 Common murre ..................................................................................................................................... 72 Breeding chronology ...................................................................................................................... 72 Reproductive performance ............................................................................................................. 75 Thick-billed murre ................................................................................................................................. 77 Breeding chronology ...................................................................................................................... 77 Reproductive performance ............................................................................................................. 80 All murres .............................................................................................................................................. 82 Populations .................................................................................................................................... 82 Pigeon guillemot ................................................................................................................................... 86 Populations .................................................................................................................................... 86 i TABLE OF CONTENTS (continued) Page Ancient murrelet.................................................................................................................................... 90 Breeding chronology ...................................................................................................................... 90 Reproductive performance ............................................................................................................. 93 Horned puffin ........................................................................................................................................ 95 Breeding chronology ...................................................................................................................... 95 Reproductive performance ............................................................................................................. 98 Chick growth ................................................................................................................................ 100 Populations .................................................................................................................................. 101 Tufted puffin ........................................................................................................................................ 106 Breeding chronology .................................................................................................................... 106 Reproductive performance ........................................................................................................... 109 Chick growth ................................................................................................................................ 111 Populations .................................................................................................................................. 112 Food habits .................................................................................................................................
Recommended publications
  • The Mark of the Japanese Murrelet (Synthliboramphus Wumizusume): a Study of Song and Stewardship in Japan’S Inland Sea
    Claremont Colleges Scholarship @ Claremont Pomona Senior Theses Pomona Student Scholarship 2019 The aM rk of the Japanese Murrelet (Synthliboramphus wumizusume): A study of song and stewardship in Japan’s Inland Sea Charlotte Hyde The Mark of the Japanese Murrelet (Synthliboramphus wumizusume): A study of song and stewardship in Japan’s Inland Sea Charlotte Hyde In partial fulfillment of the Bachelor of Arts Degree in Environmental Analysis, 2018-2019 academic year, Pomona College, Claremont, California Readers: Nina Karnovsky Wallace Meyer Acknowledgements I would first like to thank Professor Nina Karnovsky for introducing me to her work in Kaminoseki and for allowing me to join this incredible project, thereby linking me to a community of activists and scientists around the world. I am also so appreciative for her role as my mentor throughout my years as an undergraduate and for helping me develop my skills and confidence as a scholar and ecologist. Thank you also to my reader Wallace Meyer for his feedback on my writing and structure. I am so thankful for the assistance of Char Miller, who has worked tirelessly to give valuable advice and support to all seniors in the Environmental Analysis Department throughout their thesis journeys. Thank you to Marc Los Huertos for his assistance with R and data analysis, without which I would be hopelessly lost. I want to thank my peers in the Biology and Environmental Analysis departments for commiserating with me during stressful moments and for providing a laugh, hug, or shoulder to cry on, depending on the occasion. Thank you so much to my parents, who have supported me unconditionally throughout my turbulent journey into adulthood and who have never doubted my worth as a person or my abilities as a student.
    [Show full text]
  • Alaska Peninsula and Aleutian Islands Management Area Herring Sac Roe and Food and Bait Fisheries Annual Management Report, 2002
    ALASKA PENINSULA AND ALEUTIAN ISLANDS MANAGEMENT AREA HERRING SAC ROE AND FOOD AND BAIT FISHERIES ANNUAL MANAGEMENT REPORT, 2002 By Matthew T. Ford Charles Burkey Jr. and Robert L. Murphy Regional Information Report1 No. 4K03-11 Alaska Department of Fish and Game Division of Commercial Fisheries 211 Mission Road Kodiak, Alaska 99615 March 2003 1 The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished division reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting of recently collected information, reports in this series undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or the Division of Commercial Fisheries. AUTHORS Matthew T. Ford is the Alaska Peninsula and Aleutian Islands Management Area Assistant Herring Biologist and Alaska Peninsula-Southeastern District Salmon Assistant Management Biologist for Region IV, Alaska Department of Fish and Game, Division of Commercial Fisheries, 211 Mission Road, Kodiak, Alaska, 99615. Charles Burkey Jr. is the Alaska Peninsula and Aleutian Islands Management Areas Herring Biologist and Alaska Peninsula-Southeastern District Salmon Management Biologist for Region IV, Alaska Department of Fish and Game, Division of Commercial Fisheries, 211 Mission Road, Kodiak, Alaska, 99615. Robert L. Murphy is the North Alaska Peninsula Area Herring Biologist and North Alaska Peninsula Salmon Management Biologist for Region IV, Alaska Department of Fish and Game, Division of Commercial Fisheries, 211 Mission Road, Kodiak, Alaska, 99615.
    [Show full text]
  • Ancient Murrelet Synthliboramphus Antiquus
    Major: Ancient Murrelet Synthliboramphus antiquus colony attendance at Langara 233 ANCIENT MURRELET SYNTHLIBORAMPHUS ANTIQUUS COLONY ATTENDANCE AT LANGARA ISLAND ASSESSED USING OBSERVER COUNTS AND RADAR IN RELATION TO TIME AND ENVIRONMENTAL CONDITIONS HEATHER L. MAJOR1,2 1Centre for Wildlife Ecology, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada 2Current address: Department of Biological Sciences, University of New Brunswick, P.O. Box 5050, Saint John, NB E2L 4L5, Canada ([email protected]) Received 10 June 2016, accepted 26 July 2016 SUMMARY MAJOR, H.L. 2016. Ancient Murrelet Synthliboramphus antiquus colony attendance at Langara Island assessed using observer counts and radar in relation to time and environmental conditions. Marine Ornithology 44: 233–240. The decision to attend a colony on any given day or night is arguably the result of a trade-off between survival and reproductive success. It is often difficult to study this trade-off, as monitoring patterns of colony attendance for nocturnal burrow-nesting seabirds is challenging. Here, I 1) examined the effectiveness of monitoring Ancient Murrelet colony arrivals using marine radar, and 2) evaluated differences in colony attendance behavior in relation to time, light, and weather. I found a strong correlation between the number of Ancient Murrelets counted by observers in the colony and the number of radar targets counted, with estimated radar target counts being ~95 times higher than observer counts. My hypothesis that patterns of colony attendance are related to environmental conditions (i.e. light and weather) and that this relationship changes with time after sunset was supported.
    [Show full text]
  • Biological Monitoring at Aiktak Island, Alaska in 2016
    AMNWR 2017/02 BIOLOGICAL MONITORING AT AIKTAK ISLAND, ALASKA IN 2016 Sarah M. Youngren, Daniel C. Rapp, and Nora A. Rojek Key words: Aiktak Island, Alaska, Aleutian Islands, ancient murrelet, Cepphus columba, common murre, double-crested cormorant, fork-tailed storm-petrel, Fratercula cirrhata, Fratercula corniculata, glaucous-winged gull, horned puffin, Larus glaucescens, Leach’s storm-petrel, Oceanodroma furcata, Oceanodroma leucorhoa, pelagic cormorant, Phalacrocorax auritus, Phalacrocorax pelagicus, Phalacrocorax urile, pigeon guillemot, population trends, productivity, red-faced cormorant, Synthliboramphus antiquus, thick-billed murre, tufted puffin, Uria aalge, Uria lomvia. U.S. Fish and Wildlife Service Alaska Maritime National Wildlife Refuge 95 Sterling Highway, Suite 1 Homer, AK 99603 January 2017 Cite as: Youngren, S. M., D. C. Rapp, and N. A. Rojek. 2017. Biological monitoring at Aiktak Island, Alaska in 2016. U.S. Fish and Wildl. Serv. Rep., AMNWR 2017/02. Homer, Alaska. Tufted puffins flying along the southern coast of Aiktak Island, Alaska. TABLE OF CONTENTS Page INTRODUCTION ........................................................................................................................................... 1 STUDY AREA ............................................................................................................................................... 1 METHODS ...................................................................................................................................................
    [Show full text]
  • Specimen Record of a Long-Billed Murrelet from Eastern Washington, with Notes on Plumage and Morphometric Differences Between Long-Billed and Marbled Murrelets
    SPECIMEN RECORD OF A LONG-BILLED MURRELET FROM EASTERN WASHINGTON, WITH NOTES ON PLUMAGE AND MORPHOMETRIC DIFFERENCES BETWEEN LONG-BILLED AND MARBLED MURRELETS CHRISTOPER W. THOMPSON, WashingtonDepartment of Fish and Wildlife, 16018 Mill Creek Blvd., Mill Creek, Washington98012, and Burke Museum,Box 353100, Universityof Washington,Seattle, Washington 98195 KEVIN J. PULLEN, ConnerMuseum, Washington State University, Pullman, Wash- ington 99164 RICHARD E. JOHNSON, Conner Museumand School of BiologicalSciences, WashingtonState University,Pullman, Washington 99164 ERICB. CUMMINS, WashingtonDepartment of Fishand Wildlife, 600 CapitolWay North, Olympia,Washington 98501 ABSTRACT:On 14 August2001, RobertDice found a Brachyramphusmurrelet approximately12 mileseast of Pomeroyin easternWashington state more than 200 milesfrom the nearestmarine waters. The bird died later that day. It had begun definitiveprebasic body molt, but not flightfeather molt. Necropsy indicated that the birdwas a female,probably in her secondcalendar year. Johnson and Thompson identifiedthe birdas a Long-billedMurrelet, Brachyramphus perdix, on the basisof plumageand measurements;it is the firstspecimen of thisspecies for Washington state. Contrary to many recent publicationsstating that Long-billedand Marbled Murreletshave white and brownunder wing coverts, respectively, we confirmedthat bothspecies typically have white under wing coverts prior to definitiveprebasic molt andbrown under wing coverts after this molt. Absence of anyextensive storm systems in the North Pacificin
    [Show full text]
  • Aleutian Islands
    Journal of Global Change Data & Discovery. 2018, 2(1): 109-114 © 2018 GCdataPR DOI:10.3974/geodp.2018.01.18 Global Change Research Data Publishing & Repository www.geodoi.ac.cn Global Change Data Encyclopedia Aleutian Islands Liu, C.1* Yang, A. Q.2 Hu, W. Y.1 Liu, R. G.1 Shi, R. X.1 1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2. Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing100101,China Keywords: Aleutian Islands; Fox Islands; Four Mountains Islands; Andreanof Islands; Rat Islands; Near Islands; Kommandor Islands; Unimak Island; USA; Russia; data encyclopedia The Aleutian Islands extends latitude from 51°12′35″N to 55°22′14″N and longitude about 32 degrees from 165°45′10″E to 162°21′10″W, it is a chain volcanic islands belonging to both the United States and Russia[1–3] (Figure 1, 2). The islands are formed in the northern part of the Pacific Ring of Fire. They form part of the Aleutian Arc in the Northern Pacific Ocean, extending about 1,900 km westward from the Alaska Peninsula to- ward the Kamchatka Peninsula in Russia, Figure 1 Dataset of Aleutian Islands in .kmz format and mark a dividing line between the Ber- ing Sea to the north and the Pacific Ocean to the south. The islands comprise 6 groups of islands (east to west): the Fox Islands[4–5], islands of Four Mountains[6–7], Andreanof Islands[8–9], Rat Islands[10–11], Near Is- lands[12–13] and Kommandor Islands[14–15].
    [Show full text]
  • Aleutian Islands Management Area Food and Bait Herring Management
    ALEUTIAN ISLANDS MANAGEMENT AREA FOOD AND BAIT HERRING MANAGEMENT PLAN, 1998 By Mark J Witteveen and Rodney D. Campbell Regional Information Report! No. 4K98-8 Alaska Department ofFish and Game Commercial Fisheries Management and Development Division 211 Mission Road Kodiak, Alaska March 1998 'The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished division reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting of recently collected information, reports in this series undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or the Commercial Fisheries Management and Development Division. TABLE OF CONTENTS LIST OF TABLES . LIST OF FIGURES . LIST OF APPENDICES . INTRODUCTION . MANAGEMENT PLAN . 2 Registration Requirements For Fishing Vessels, Tenders, And Processors .. 2 Fishing Periods . 2 Catch Reporting . 2 Fish Tickets . 3 Gillnet And Seine Specifications . 3 Aircraft . 3 Industry and ADF&G Cooperation .. 3 Test Fishing . 3 Aleutian Islands "Dutch Harbor" Commercial Food And Bait Fishery .. 4 Gear Testing . 4 Harvest Projection For The 1998 Fishery .. 4 LITERATURE CITED . 6 TABLES . 7 FIGURES . 9 APPENDIX 13 LIST OF TABLES 1. Aleutian Islands area "Dutch Harbor" food and bait herring fisheries historical summary, 1929-97 7 2. Aleutian Islands area "Dutch Harbor" commercial food and bait herring fishery, including landing date, days fished, preseason Togiak spawning biomass, guideline harvest level, harvest, and number ofvessels, 1981-97................
    [Show full text]
  • Volume 40, Number 2 Fall 2013
    PACIFIC SEABIRDS A Publication of the Pacific Seabird Group Volume 40, Number 2 Fall 2013 PACIFIC SEABIRD GROUP Dedicated to the Study and Conservation of Pacific Seabirds and Their Environment The Pacific Seabird Group (PSG) was formed in 1972 due to the need for better communication among Pacific seabird researchers. PSG provides a forum for the research activities of its members, promotes the conservation of seabirds, and informs members and the public of issues relating to Pacific Ocean seabirds and their environment. PSG members include research scientists, conservation professionals, and members of the public from all parts of the Pacific Ocean. The group also welcomes seabird professionals and enthusiasts in other parts of the world. PSG holds annual meetings at which scientific papers and symposia are presented; abstracts for meetings are published on our web site. The group is active in promoting conservation of seabirds, including seabird/fisheries interactions, monitoring of seabird populations, seabird restoration following oil spills, establishment of seabird sanctuaries, and endangered species. Policy statements are issued on conservation issues of critical importance. PSG’s journals are Pacific Seabirds (formerly the PSG Bulletin) and Marine Ornithology. Other publications include symposium volumes and technical reports; these are listed near the back of this issue. PSG is a member of the International Union for Conservation of Nature (IUCN), the Ornithological Council, and the American Bird Conservancy. Annual dues for membership are $30 (individual and family); $24 (student, undergraduate and graduate); and $900 (Life Membership, payable in five $180 installments). Dues are payable to the Treasurer; see the PSG web site, or the Membership Order Form next to inside back cover.
    [Show full text]
  • Image Acquisition in 2016
    ShoreZone Imaging and Mapping 2016 Kalen Morrow Coastal and Ocean Resources Umnak Island – Bering Sea ShoreZone Partner Meeting - October 2016 Aleutian Islands - Day 1 - April 8, 2016 Day 1 – Beaver Inlet, Unalaska Island Day 1 - Unalaska Day 1 – Unalaska Airport Day 2 – April 9, 2016 Day 2 – Akun Island Day 2 – Akutan Day 2 – Tigalda Island Day 2 – Akun Island Day 3 – April 10, 2016 Day 3 – Sedanka Island Day 4 – April 11, 2016 Day 4 – Fort Glenn, Umnak Island Day 4 – Umnak Island, Bering Sea Day 4 – Umnak Island, Bering Sea Day 4 – Nikolski Day 5 – April 12, 2016 Day 5 – Unalaska Island, Pacific Ocean Day 5 - Unalaska Island, Bering Sea Day 6 – April 13, 2016 Day 6 – Unalaska Island, Snow Squall Day 6 – Akutan Island, Lava Field Day 6 – Cathedral Rocks, Unalaska Island Day 7 – April 14, 2016 Day 7 – Official Team Photo Day 7 – Unalaska Island, Bering Sea Day 7 – Western End of Unalaska Island Alaska Peninsula Alaska Peninsula - Day 1 - May 5, 2016 Day 1 – Liftoff Day 1 – Williwaw on Wide Bay Day 1 – Alinchak Bay Day 1 – Landing Day 2 – May 6, 2016 Day 2 – Imuya Bay Day 2 – Wide Bay Day 3 – May 7, 2016 Day 3 – Chignik Day 3 – Nakalilok Bay Day 4 – May 8, 2016 Day 4 – Chirikof Island Day 4 – Semidi Islands Day 5 – May 9, 2016 Day 5 – Kuiukta Bay Day 5 – Devils Bay Day 6 – May 10, 2016 Day 6 – Kujulik Bay Day 6 – Hook Bay Day 7 – May 11, 2016 Day 7 – Chankliut Island Day 7 – Ross Cove Mammals Mammals Kuskokwim Bay, Yukon Delta Mapping Trees and Shrubs BioBand Kuskokwim Bay, Yukon Delta Mapping Estimated Actual Shoreline 2014 2 750 m 3 Shoreline Matches 2003 Aerial Image 1 2 3 1 Best Available Shoreline 2014 ShoreZone Imagery Umnak Island – Bering Sea [email protected].
    [Show full text]
  • Distribution and Population Status of Whiskered Auklet in the Aleutian Islands, Alaska
    DISTRIBUTION AND POPULATION STATUS OF WHISKERED AUKLET IN THE ALEUTIAN ISLANDS, ALASKA G. VERNON BYRD, Hawaiian Islands NWR, P.O. Box 87, Kilauea, Kauai, Hawaii 96754 DANIEL D. GIBSON, Universityof AlaskaMuseum, Fairbanks, Alaska 99701 The little known WhiskeredAuklet (Aethiapygrnaea) occurs only in the Aleutian(Figure 1), Commanderand Kurilislands of the North Pacific. In the Aleutian Islands it occurs from Unimak Pass to the Near Islands (Kesseland Gibson 1978), but the only documented nesting records are from Umnak Island (R.J. Gordon in litt.), Chagulak Island (Murie 1959), Atka Island (Turner 1886), and Buldir Island (Knudtsonand Byrd in press). This paper summarizesnew informationon the distributionof WhiskeredAuklet in the AleutianIslands, and providesa significantly higher estimateof the minimum population. METHODS Duringthe period 1972-1974 we were aboardthe R/V Aleutian Tern as it traveledto everymajor island in the Aleutians.In 1972 and 1974 nearlythe entireisland chain was traversed. In 1972 the trip was made during the breedingseason, but in 1974 observations were made in April, prior to nesting.In 1973 observationswere con- fined to the eastern Aleutians. Travel was generally confined to daylighthours so that continuousobservations could be made. One or two observerscounted birds within approximately 300 m of both sidesof the ship. The Aleutian Tern traveledat 16 km/h except when near islandswhen the speedwas reduced to as low as 8 km/h. Islandgroups within the Aleutiansare identifiedas follows:1) Fox Islands - Unimak Pass to Umnak Island (the area of each island groupends 16 km westof the westernmostisland, to includebirds associatedwith nestingcolonies); 2) Islandsof Four Mountains- Um- nak Island to Amukta Island; 3) Andreanor Islands- Amukta Island to UnalgaIsland; 4) Rat Islands- UnalgaIsland to BuldirIsland; 5) Near Islands - Buldir Island to Attu Island.
    [Show full text]
  • ANCIENT MURRELET Synthliboramphus Antiquus
    Alaska Seabird Information Series ANCIENT MURRELET Synthliboramphus antiquus Conservation Status ALASKA: Highly Imperiled N. AMERICAN: High Risk GLOBAL: Least Concern Breed Eggs Incubation Fledge Nest Feeding Behavior Diet June-Aug 1-2 33-36+ d 1-4 d burrow surface dive crustaceans, fish Life History and Distribution The Ancient Murrelet (Synthliboramphus antiquus) is unique among seabirds in rearing its chicks entirely at sea. Successful mating leads to two comparatively enormous eggs, each weighing approximately one-quarter of the female's weight. Only 2-4 days after hatching, without ever having been fed, the downy youngsters leave the nest and follow the adult birds to the sea. The chicks remain with their parents for at least one month after leaving the colony. This behavior and their nocturnal habits appear to be adaptations to reduce predation on adults. Ancient Murrelets have a relatively low adult annual mortality rate. Jones Ian Copyright These murrelets normally breed in colonies on forested islands or those covered in grass or dense forbs. Alaska Seasonal Distribution Nests are usually burrows dug in soft soil, but cavities AK Region Sp S F W under tree roots and shallow holes under grass tussocks are Southeastern * U U U U also used. Crevices in rocks or among boulders are less Southcoastal * U U U U frequently occupied. Southwestern * C C C C Ancient Murrelets are pigeon-sized birds with a black Central - - - - cap, gray back, cream-colored bill, and pale blue legs and feet. During the breeding season, they have a white stripe Western + R R - over the eye and a black throat patch.
    [Show full text]
  • Comparative Reproductive Ecology of the Auks (Family Alcidae) with Emphasis on the Marbled Murrelet
    Chapter 3 Comparative Reproductive Ecology of the Auks (Family Alcidae) with Emphasis on the Marbled Murrelet Toni L. De Santo1, 2 S. Kim Nelson1 Abstract: Marbled Murrelets (Brachyramphus marmoratus) are breed on the Farallon Islands in the Pacific Ocean (Common comparable to most alcids with respect to many features of their Murre, Pigeon Guillemot, Cassin’s Auklet, Rhinoceros Auklet, reproductive ecology. Most of the 22 species of alcids are colonial and Tufted Puffin) are presented by Ainley (1990), Ainley in their nesting habits, most exhibit breeding site, nest site, and and others (1990a, b, c) and Boekelheide and others (1990). mate fidelity, over half lay one egg clutches, and all share duties Four inshore fish feeding alcids of the northern Pacific Ocean of incubation and chick rearing with their mates. Most alcids nest on rocky substrates, in earthen burrows, or in holes in sand, (Kittlitz’s Murrelet, Pigeon Guillemot, Spectacled Guillemot, around logs, or roots. Marbled Murrelets are unique in choice of and Marbled Murrelet) are reviewed by Ewins and others nesting habitat. In the northern part of their range, they nest on (1993) (also see Marshall 1988a for a review of the Marbled rocky substrate; elsewhere, they nest in the upper canopy of coastal Murrelet). The Ancient Murrelet, another inhabitant of the coniferous forest trees, sometimes in what appear to be loose northern Pacific Ocean, has been reviewed by Gaston (1992). aggregations. Marbled Murrelet young are semi-precocial as are Alcids that nest in small, loosely-aggregated colonies, as most alcids, yet they hatch from relatively large eggs (relative to isolated pairs, or in areas less accessible to researchers, have adult body size) which are nearly as large as those of the precocial not been well studied.
    [Show full text]