APS Bulletin December 1994
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Fauna from the Tyrannosaurus Rex Excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan
The Fauna from the Tyrannosaurus rex Excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan Tim T. Tokaryk 1 and Harold N. Bryant 2 Tokaryk, T.T. and Bryant, H.N. (2004): The fauna from the Tyrannosaurus rex excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan; in Summary of Investigations 2004, Volume 1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004-4.1, CD-ROM, Paper A-18, 12p. Abstract The quarry that contained the partial skeleton of the Tyrannosaurus rex, familiarly known as “Scotty,” has yielded a diverse faunal and floral assemblage. The site is located in the Frenchman River valley in southwestern Saskatchewan and dates from approximately 65 million years, at the end of the Cretaceous Period. The faunal assemblage from the quarry is reviewed and the floral assemblage is summarized. Together, these assemblages provide some insight into the biological community that lived in southwestern Saskatchewan during the latest Cretaceous. Keywords: Frenchman Formation, Maastrichtian, Late Cretaceous, southwestern Saskatchewan, Tyrannosaurus rex. 1. Introduction a) Geological Setting The Frenchman Formation, of latest Maastrichtian age, is extensively exposed in southwestern Saskatchewan (Figure 1; Fraser et al., 1935; Furnival, 1950). The lithostratigraphic units in the formation consist largely of fluvial sandstones and greenish grey to green claystones. Outcrops of the Frenchman Formation are widely distributed in the Frenchman River valley, southeast of Eastend. Chambery Coulee, on the north side of the valley, includes Royal Saskatchewan Museum (RSM) locality 72F07-0022 (precise locality data on file with the RSM), the site that contained the disarticulated skeleton of a Tyrannosaurus rex. McIver (2002) subdivided the stratigraphic sequence at this locality into “lower” and “upper” beds. -
Postcranial Anatomy of Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Postkraniala Anatomin Hos Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea)
Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 320 Postcranial Anatomy of Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Postkraniala anatomin hos Tanius sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Niclas H. Borinder INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 320 Postcranial Anatomy of Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Postkraniala anatomin hos Tanius sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Niclas H. Borinder ISSN 1650-6553 Copyright © Niclas H. Borinder and the Department of Earth Sciences, Uppsala University Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2015 Abstract Postcranial Anatomy of Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Niclas H. Borinder Tanius sinensis Wiman, 1929 was one of the first hadrosauroid or “duck-billed” taxa erected from China, indeed one of the very first non-avian dinosaur taxa to be erected based on material from the country. Since the original description by Wiman in 1929, the anatomy of T. sinensis has received relatively little attention in the literature since then. This is unfortunate given the importance of T. sinensis as a possible non-hadrosaurid hadrosauroid i.e. a member of Hadrosauroidea outside the family of Hadrosauridae, living in the Late Cretaceous, at a time when most non-hadrosaurid hadro- sauroids had become replaced by the members of Hadrosauridae. To gain a better understanding of the anatomy of T. sinensis and its phylogenetic relationships, the postcranial anatomy of it is redescribed. T. sinensis is found to have a mosaic of basal traits like strongly opisthocoelous cervical vertebrae, the proximal end of scapula being dorsoventrally wider than the distal end, the ratio between the proximodistal length of the metatarsal III and the mediolateral width of this element being greater than 4.5. -
Competition Structured a Late Cretaceous Megaherbivorous Dinosaur Assemblage Jordan C
www.nature.com/scientificreports OPEN Competition structured a Late Cretaceous megaherbivorous dinosaur assemblage Jordan C. Mallon 1,2 Modern megaherbivore community richness is limited by bottom-up controls, such as resource limitation and resultant dietary competition. However, the extent to which these same controls impacted the richness of fossil megaherbivore communities is poorly understood. The present study investigates the matter with reference to the megaherbivorous dinosaur assemblage from the middle to upper Campanian Dinosaur Park Formation of Alberta, Canada. Using a meta-analysis of 21 ecomorphological variables measured across 14 genera, contemporaneous taxa are demonstrably well-separated in ecomorphospace at the family/subfamily level. Moreover, this pattern is persistent through the approximately 1.5 Myr timespan of the formation, despite continual species turnover, indicative of underlying structural principles imposed by long-term ecological competition. After considering the implications of ecomorphology for megaherbivorous dinosaur diet, it is concluded that competition structured comparable megaherbivorous dinosaur communities throughout the Late Cretaceous of western North America. Te question of which mechanisms regulate species coexistence is fundamental to understanding the evolution of biodiversity1. Te standing diversity (richness) of extant megaherbivore (herbivores weighing ≥1,000 kg) com- munities appears to be mainly regulated by bottom-up controls2–4 as these animals are virtually invulnerable to top-down down processes (e.g., predation) when fully grown. Tus, while the young may occasionally succumb to predation, fully-grown African elephants (Loxodonta africana), rhinoceroses (Ceratotherium simum and Diceros bicornis), hippopotamuses (Hippopotamus amphibius), and girafes (Girafa camelopardalis) are rarely targeted by predators, and ofen show indiference to their presence in the wild5. -
Longrich-Sankey-Texacephale-10.Pdf
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Cretaceous Research 31 (2010) 274–284 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Texacephale langstoni, a new genus of pachycephalosaurid (Dinosauria: Ornithischia) from the upper Campanian Aguja Formation, southern Texas, USA Nicholas R. Longrich a,*, Julia Sankey b, Darren Tanke c a Department of Geology, Yale University, P.O. Box 208109, New Haven, CT 06520-8109, USA b Department of Physics and Geology, California State University, Stanislaus, One University Circle, Turlock, California 95382, USA c Royal Tyrrell Museum, P.O. Box 7500, Drumheller, Alberta T0J 0Y0, Canada article info abstract Article history: Recent work in the Campanian Aguja Formation of Big Bend, Texas, has resulted in the recovery of two Received 16 June 2009 frontoparietal domes from a new genus of pachycephalosaur. Texacephale langstoni gen. et sp. nov. is Accepted in revised form diagnosed by a tall, arched nasal boss, flange-like processes articulating the dome with the peripheral 14 December 2009 elements, and a low pedicel separating the cerebral fossa from the skull roof. -
Map 600: a New 1:1 000 000 Bedrock Geology Map of Alberta G.J
Map 600: A New 1:1 000 000 Bedrock Geology Map of Alberta G.J. Prior*, Alberta Geological Survey, 402, 4999-98th Ave., Edmonton, Alberta [email protected] B. Hathway, Alberta Geological Survey, 402, 4999-98th Ave., Edmonton, Alberta P. Glombick, Alberta Geological Survey, 402, 4999-98th Ave., Edmonton, Alberta D.I. Pana, Alberta Geological Survey, 402, 4999-98th Ave., Edmonton, Alberta C.J. Banks, Alberta Geological Survey, 402, 4999-98th Ave., Edmonton, Alberta D.C. Hay, Neftex Petroleum Consultants, 97 Milton Park, Abingdon, Oxfordshire, England C.L. Schneider, University of Alberta, 116 St. and 85 Ave., Edmonton, Alberta M. Grobe, Alberta Geological Survey, 402, 4999-98th Ave, Edmonton, Alberta R. Elgr, Alberta Geological Survey, 402, 4999-98th Ave, Edmonton, Alberta J.A. Weiss, Alberta Geological Survey, 402, 4999-98th Ave, Edmonton, Alberta Summary Map 600 is the new 1:1 000 000 bedrock geology map of Alberta prepared by the Alberta Geological Survey (AGS). This map supersedes Map 236 (Hamilton et al., 1999) and Map 27 (Green, 1972). Map 600 represents the compilation of existing geological maps and new geological mapping by staff of the Alberta Geological Survey (AGS). The representation of the Canadian Shield and Athabasca Basin is based on compilation. The geology of the Rocky Mountains and the Rocky Mountain Foothills is also the product of compilation with rare instances of new geological interpretation (e.g. the interpretation of bedrock geology beneath drift-filled valleys). The Devonian geology of northeast Alberta is also largely a product of compilation with some reinterpretation based, in part, on field observations. -
Baby Hadrosaurid Material Associated with an Unusually High Abundance of Troodon Teeth from the Horseshoe Canyon Formation, Upper Cretaceous, Alberta, Canada
GAIA Nº 15, LISBOA/LISBON, DEZEMBRO/DECEMBER 1998, pp. 123-133 (ISSN: 0871-5424) BABY HADROSAURID MATERIAL ASSOCIATED WITH AN UNUSUALLY HIGH ABUNDANCE OF TROODON TEETH FROM THE HORSESHOE CANYON FORMATION, UPPER CRETACEOUS, ALBERTA, CANADA Michael J. RYAN Royal Tyrrell Museum. Box 7500, DRUMHELLER, ALBERTA T0J 0Y0. CANADA E-mail: [email protected] Philip J. CURRIE Royal Tyrrell Museum. Box 7500, Drumheller, ALBERTA T0J 0Y0. CANADA James D. GARDNER Laboratory for Vertebrate Paleontology and Department of Biological Sciences, University of Alberta. EDMONTON, ALBERTA T6G 2E9. CANADA Matthew K. VICKARYOUS Vertebrate Morphology and Palaeontology Research Group, Department. of Biological Sciences, University of Calgary. CALGARY, ALBERTA T2N 1N4. CANADA Jason M. LAVIGNE Ichnology Research Group, University of Alberta. Edmonton, ALBERTA T6G 2E9. CANADA ABSTRACT: A new microvertebrate site (»72 Ma) in the Horseshoe Canyon Formation, south- central Alberta, is a deflational lag in interbedded silty shales. The site represents deposi- tion on a waterlogged coastal plain »100 km to the west of the Bearpaw Sea. Approximately two-thirds (n=224) of the 388 elements recovered from this site belong to indeterminate had- rosaurids. Forty of these are from baby-sized individuals, suggesting that a nesting site of unknown size was located nearby. These fossils are notable for being the first occurrence of baby dinosaurs in the formation and the geologically youngest occurrence of baby dino- saurs in Canada. The next most common taxon (17% of elements) is the small theropod Troodon, represented by abundant teeth (n=65). Troodon teeth are normally rare in Upper Cretaceous sites in southern Alberta. The large number of Troodon teeth at the new site sug- gests a non-random association with the baby hadrosaurid elements, and is potentially in- dicative of predation. -
Tyrannosaurids (Dinosauria) of Asia and North America
Aspects of Nonmarine Cretaceous Geology Tyrannosaurids (Dinosauria) of Asia and North America KENNETH CARPENTER Oklahoma Museum of Natural History, University of Oklahoma, Norman, Oklahoma 73019, U.S. A. * ' ABSTRACT The theropod family Tyrannosauridae (Dinosauria) is composed of four genera and seven species. All taxa are known from nearly complete skeletons and/or skulls, thus making it one of the best documented large theropod families. The stratigraphic and palaeobiogeographic distribution of the Tyrannosauridae extends from the lower Campanian to upper Maastrichtian of North America,and to the Campanian-Maas- trichtian of Asia. INTRODUCTION Tyrannosaurid theropods are known only from the Upper Cretaceous of Asia and North America. Their earliest record is a fragmentary skeleton (genus unknown) from the lower Campanian Eagle Ford Sandstone of Montana (U.S.A. ) (Gilmore, 1920). By the upper Campanian, however, tyrannosaurids occur through out the western Interior and Gulf Coast of North America. They are known to have survived until the latest Maastrichtian in the Western Interior. In Asia, tyran nosaurids are known only from the Nemegt Formation estimated to be Campanian- Maastrichtian in age (Fox, 1978). Their apparent absence from upper Maastrichtian deposits in Asia is probably not due to extinction, but due to the lack of upper Maas trichtian deposits. The earliest tyrannosaurids described were the result of explorations by the geo logical surveys of Canada and the United States. The first specimen consisted of sev eral isolated and scattered teeth collected from the Judith River Formation of Mon tana. These were the first theropod teeth found in North America and were named Deinodon horridusby Leidy (1857). -
Cranial Anatomy of Tyrannosaurid Dinosaurs from the Late Cretaceous of Alberta, Canada
Cranial anatomy of tyrannosaurid dinosaurs from the Late Cretaceous of Alberta, Canada PHILIP J. CURRIE Currie, P.J. 2003. Cranial anatomy of tyrannosaurid dinosaurs from the Late Cretaceous of Alberta, Canada. Acta Palaeontologica Polonica 48 (2): 191–226. Beautifully preserved, nearly complete theropod skeletons from Alberta (Canada) allow re−evaluation of the taxonomic status of North American tyrannosaurids. It is concluded that the most parsimonious interpretation of relationships leads to the separation of the two species of Albertosaurus (sensu Russell 1970) into Gorgosaurus libratus from the Campanian Dinosaur Park Formation and Albertosaurus sarcophagus from the upper Campanian/lower Maastrichtian Horseshoe Canyon Formation. Albertosaurus and Gorgosaurus are closely related, but can be distinguished from each other by more characters than are known to justify generic distinction within another tyrannosaurid clade that includes Daspletosaurus, Tarbosaurus and Tyrannosaurus. Daspletosaurus is known from multiple species that cover extensive geographic, eco− logical and temporal ranges, and it is sensible to maintain its generic distinction from Tyrannosaurus. All tyrannosaurid species have consistent ontogenetic trends. However, one needs to be cautious in assessing ontogenetic stage because many characters are size−dependent rather than age−dependent. There are relatively few osteological differences that can distinguish tyrannosaurid species at any age. For example, Nanotyrannus lancensis is probably a distinct species from Tyrannosaurus rex because there is no evidence of ontogenetic reduction of tooth counts in any other tyrannosaurid spe− cies. Some characters that are good for separating mature tyrannosaurids, such as differences in the sizes and shapes of maxillary fenestrae, are not useful for identifying the species of juveniles. -
Western Interior Seaway
() . Paleogeo.graphy of the Late Cretaceous of the Western Interior otMfddle North America+ j?'oal .Blstribution anct,Sedimen~cumulation By Laura N. Robinson Roberts and Mark A. Kirschbaum U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1561 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1995 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or finn names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Roberts, Laura N. Robinson. Paleogeography of the Late Cretaceous of the western interior of middle North America : coal distribution and sediment accumulation I by Laura N. Robinson Roberts and Mark A. Kirschbaum. p. em.- (U.S. Geological Survey professional paper ; 1561) Includes bibliographical references. Supt. of Docs. no.: I 19.16: 1561 1. Paleogeography-Cretaceous. 2. Paleogeography-West (U.S.). 3. Coal Geology-West (U.S.). I. Kirschbaum, Mark A. II. Title. III. Series. QE50 1.4.P3R63 1995 553.2'1'0978-dc20 94-39032 CIP CONTENTS Abstract........................................................................................................................... 1" Introduction ................................................................................................................... Western Interior Seaway ... .. ... ... ... .. .. .. -
Vertebrate Anatomy Morphology Palaeontology ISSN 2292-1389 Published 4 May, 2020 Meeting Logo Design: © Francisco Riolobos, 2019 Editors: Alison M
Vertebrate Anatomy Morphology Palaeontology ISSN 2292-1389 Published 4 May, 2020 Meeting Logo Design: © Francisco Riolobos, 2019 Editors: Alison M. Murray, Victoria Arbour and Robert B. Holmes © 2020 by the authors DOI 10.18435/vamp29365 Vertebrate Anatomy Morphology Palaeontology is an open access journal http://ejournals.library.ualberta.ca/index.php/VAMP Article copyright by the author(s). This open access work is distributed under a Creative Commons Attribution 4.0 International (CC By 4.0) License, meaning you must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. Canadian Society of Vertebrate Palaeontology 2020 Abstracts 8th Annual Meeting Canadian Society of Vertebrate Palaeontology June 6–7, 2020 Victoria, B.C. Abstracts 9 Vertebrate Anatomy Morphology Palaeontology 8:7–66 10 Canadian Society of Vertebrate Palaeontology 2020 Abstracts Message from the Host Committee 20 April 2020 2020 has proven to be a strange and disruptive year for the Canadian vertebrate palaeontology community. A novel coronavirus, Covid-19, began circulating in China in December 2019, and had made its way to North America in January 2020, with the first cases reported in Canada on January 25th. Although concern about the impacts of this new virus were mounting throughout February, business seemed to be moving ahead as usual in most of our lives. -
Weishampel Chap 22
TWENTY-TWO Basal Ceratopsia YOU HAILU PETER DODSON Ceratopsia consists of Psittacosauridae and Neoceratopsia, the Skull and Mandible latter formed by numerous basal taxa and Ceratopsidae. Con- sequently, this chapter on basal ceratopsians includes psittaco- The skull of basal ceratopsians (figs. 22.3–22.5) is pentangular in saurids and nonceratopsid neoceratopsians. Psittacosauridae is dorsal view, with a narrow beak, a strong laterally flaring jugal, a monogeneric (Psittacosaurus) clade consisting of 10 species, and a caudally extended frill. The beak is round in psittaco- while basal Neoceratopsia is formed by 11 genera, with 12 species saurids and pointed in basal neoceratopsians. The jugal horn of basal Neoceratopsia being recognized (table 22.1). Psittaco- is more pronounced in psittacosaurids than in basal neocera- saurids are known from the Early Cretaceous of Asia, whereas topsians. The frill is incipient in psittacosaurids and small but basal neoceratopsians come from the latest Jurassic (Chaoyang- variably developed in basal neoceratopsians. The preorbital saurus youngi, Zhao et al. 1999; Swisher et al. 2002) to the latest portion of the skull is dorsoventrally deep, especially in psit- Cretaceous in Asia and North America. Basal ceratopsians are tacosaurids, and rostrocaudally short in both psittacosaurids small (1–3 m long), bipedal or quadrupedal herbivores (figs. and the most basal members of neoceratopsians such as Ar- 22.1, 22.2). Several taxa are extremely abundant and are repre- chaeoceratops. sented by growth series from hatchlings to adults. Sexual di- The external naris is highly positioned, especially in psitta- morphism in Protoceratops is well supported (Dodson 1976; cosaurids, bounded by the premaxilla ventrally and the nasal Lambert et al. -
Vertebrate Anatomy Morphology Palaeontology ISSN 2292-1389 Published 2 May, 2019 Meeting Logo Design: Robin Sissons Editors: Alison M
Vertebrate Anatomy Morphology Palaeontology ISSN 2292-1389 Published 2 May, 2019 Meeting Logo Design: Robin Sissons Editors: Alison M. Murray, Aaron LeBlanc and Robert B. Holmes © 2019 by the authors DOI 10.18435/vamp29349 Vertebrate Anatomy Morphology Palaeontology is an open access journal http://ejournals.library.ualberta.ca/index.php/VAMP Article copyright by the author(s). This open access work is distributed under a Creative Commons Attribution 4.0 International (CC By 4.0) License, meaning you must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. Canadian Society of Vertebrate Palaeontology 2019 Abstracts 7th Annual Meeting Canadian Society of Vertebrate Palaeontology May 10-13, 2019 Grande Prairie, Alberta Abstracts 1 Vertebrate Anatomy Morphology Palaeontology 7:1–58 Host Committee Lisa Buckley, Director, Peace Region Palaeontology Research Centre Derek Larson, Assistant Curator, Philip J. Currie Dinosaur Museum Aaron LeBlanc, NSERC Postdoctoral Fellow, Department of Biological Sciences, University of Alberta Rich McCrea, Adjunct Researcher, Peace Region Palaeontology Research Centre Corwin Sullivan, Philip J. Currie Professor of Vertebrate Palaeontology, Department of Biological Sciences, University of Alberta and Curator, Philip J. Currie Dinosaur Museum Matthew Vavrek, Cutbank Palaeontological Consulting 2 Canadian Society of Vertebrate Palaeontology 2019 Abstracts A Maastrichtian-aged leptoceratopsid from the Sustut River, northern BC, and potential for new vertebrate fossil discoveries in the Sustut Basin Victoria M.