Targeting the Src Pathway Enhances the Efficacy of Selective FGFR Inhibitors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Adaptive Stress Signaling in Targeted Cancer Therapy Resistance
Oncogene (2015) 34, 5599–5606 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc REVIEW Adaptive stress signaling in targeted cancer therapy resistance E Pazarentzos1,2 and TG Bivona1,2 The identification of specific genetic alterations that drive the initiation and progression of cancer and the development of targeted drugs that act against these driver alterations has revolutionized the treatment of many human cancers. Although substantial progress has been achieved with the use of such targeted cancer therapies, resistance remains a major challenge that limits the overall clinical impact. Hence, despite progress, new strategies are needed to enhance response and eliminate resistance to targeted cancer therapies in order to achieve durable or curative responses in patients. To date, efforts to characterize mechanisms of resistance have primarily focused on molecular events that mediate primary or secondary resistance in patients. Less is known about the initial molecular response and adaptation that may occur in tumor cells early upon exposure to a targeted agent. Although understudied, emerging evidence indicates that the early adaptive changes by which tumor cells respond to the stress of a targeted therapy may be crucial for tumo r cell survival during treatment and the development of resistance. Here we review recent data illuminating the molecular architecture underlying adaptive stress signaling in tumor cells. We highlight how leveraging this knowledge could catalyze novel strategies to minimize -
Targeted Therapies in Advanced Cholangiocarcinoma: a Focus on FGFR Inhibitors
medicina Review Targeted Therapies in Advanced Cholangiocarcinoma: A Focus on FGFR Inhibitors Alessandro Rizzo Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy; [email protected] Abstract: Despite advanced diseases continuing to be associated with grim prognoses, the past decade has witnessed the advent of several novel treatment options for cholangiocarcinoma (CCA) patients. In fact, CCA has emerged as a heterogeneous group of malignancies harboring potentially druggable mutations in approximately 50% of cases, and thus, molecularly targeted therapies have been actively explored in this setting. Among these, fibroblast growth factor receptor (FGFR) inhibitors have reported important results, as witnessed by the FDA approval of pemigatinib in previously treated metastatic CCA patients harboring FGFR2 fusion or other rearrangements. Herein, we provide an overview of available evidence on FGFR inhibitors in CCA, especially focusing on the development, pitfalls and challenges of emerging treatments in this setting. Keywords: FGFR; cholangiocarcinoma; targeted therapies; intrahepatic cholangiocarcinoma; pemi- gatinib 1. Introduction Citation: Rizzo, A. Targeted Cholangiocarcinoma (CCA) encompasses a group of heterogeneous, rare and aggres- Therapies in Advanced sive malignancies, including intrahepatic cholangiocarcinoma (iCCA) and extrahepatic Cholangiocarcinoma: A Focus on cholangiocarcinoma (eCCA), with the latter further subclassified into perihilar (pCCA) FGFR Inhibitors. Medicina 2021, 57, and distal (dCCA) cholangiocarcinoma [1–3]. CCAs account for approximately 3% of 458. https://doi.org/10.3390/ all gastrointestinal cancers worldwide and 10–15% of all primary liver tumors [4–6]. As medicina57050458 suggested by several studies, these subgroups of hepatobiliary tumors not only develop from different anatomical locations, but vary widely in terms of epidemiology, biology, Academic Editor: Zygmunt Warzecha prognosis, and etiology [7–9]. -
New Horizons for Precision Medicine in Biliary Tract Cancers
Published OnlineFirst August 17, 2017; DOI: 10.1158/2159-8290.CD-17-0245 REVIEW New Horizons for Precision Medicine in Biliary Tract Cancers Juan W. Valle1,2, Angela Lamarca1, Lipika Goyal3, Jorge Barriuso1,4, and Andrew X. Zhu3 ABSTRACT Biliary tract cancers (BTC), including cholangiocarcinoma and gallbladder cancer, are poor-prognosis and low-incidence cancers, although the incidence of intrahe- patic cholangiocarcinoma is rising. A minority of patients present with resectable disease but relapse rates are high; benefit from adjuvant capecitabine chemotherapy has been demonstrated.Cisplatin/ gemcitabine combination chemotherapy has emerged as the reference first-line treatment regimen; there is no standard second-line therapy. Selected patients may be suitable for liver-directed therapy (e.g., radioembolization or external beam radiation), pending confirmation of benefit in randomized studies. Initial trials targeting the epithelial growth factor receptor and angiogenesis pathways have failed to deliver new treatments. Emerging data from next-generation sequencing analyses have iden- tified actionable mutations (e.g.,FGFR fusion rearrangements and IDH1 and IDH2 mutations), with several targeted drugs entering clinical development with encouraging results. The role of systemic therapies, including targeted therapies and immunotherapy for BTC, is rapidly evolving and is the sub- ject of this review. Significance: The authors address genetic drivers and molecular biology from a translational per- spective, in an intent to offer a clear view of the recent past, present, and future of BTC. The review describes a state-of-the-art update of the current status and future directions of research and therapy in advanced BTC. Cancer Discov; 7(9); 1–20. -
Ponatinib Shows Potent Antitumor Activity in Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) Through Multikinase Inhibition Jessica D
Published OnlineFirst February 9, 2018; DOI: 10.1158/1078-0432.CCR-17-1928 Cancer Therapy: Preclinical Clinical Cancer Research Ponatinib Shows Potent Antitumor Activity in Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) through Multikinase Inhibition Jessica D. Lang1,William P.D. Hendricks1, Krystal A. Orlando2, Hongwei Yin1, Jeffrey Kiefer1, Pilar Ramos1, Ritin Sharma3, Patrick Pirrotte3, Elizabeth A. Raupach1,3, Chris Sereduk1, Nanyun Tang1, Winnie S. Liang1, Megan Washington1, Salvatore J. Facista1, Victoria L. Zismann1, Emily M. Cousins4, Michael B. Major4, Yemin Wang5, Anthony N. Karnezis5, Aleksandar Sekulic1,6, Ralf Hass7, Barbara C. Vanderhyden8, Praveen Nair9, Bernard E. Weissman2, David G. Huntsman5,10, and Jeffrey M. Trent1 Abstract Purpose: Small cell carcinoma of the ovary, hypercalcemic type three SWI/SNF wild-type ovarian cancer cell lines. We further (SCCOHT) is a rare, aggressive ovarian cancer in young women identified ponatinib as the most effective clinically approved that is universally driven by loss of the SWI/SNF ATPase subunits RTK inhibitor. Reexpression of SMARCA4 was shown to confer SMARCA4 and SMARCA2. A great need exists for effective targeted a 1.7-fold increase in resistance to ponatinib. Subsequent therapies for SCCOHT. proteomic assessment of ponatinib target modulation in Experimental Design: To identify underlying therapeutic vul- SCCOHT cell models confirmed inhibition of nine known nerabilities in SCCOHT, we conducted high-throughput siRNA ponatinib target kinases alongside 77 noncanonical ponatinib and drug screens. Complementary proteomics approaches pro- targets in SCCOHT. Finally, ponatinib delayed tumor dou- filed kinases inhibited by ponatinib. Ponatinib was tested for bling time 4-fold in SCCOHT-1 xenografts while reducing efficacy in two patient-derived xenograft (PDX) models and one final tumor volumes in SCCOHT PDX models by 58.6% and cell-line xenograft model of SCCOHT. -
Novel Targets and Strategies in Glioblastomas
Novel Targets And Strategies in Glioblastomas Patrick Y. Wen, M.D. Center For Neuro-Oncology Dana Farber/Brigham and Women’s Cancer Center Division of Neuro-Oncology, Department of Neurology Brigham and Women’s Hospital Harvard Medical School DISCLOSURES • RhStResearch Support • Adv isory Boar d – Amgen – Merck – Astra Zeneca – Novartis – Boehringer Ingelheim – Vascular Biogenic – Esai – NeOnc Inc – EliiExelixis • Speaker – Genentech/Roche – Merck – Geron – Genentech/Roche – Medimmune – Merck – NtiNovartis – Sanofi-Aventis – Vascular Biogenics Treatment of High -Grade Gliomas Milest ones in Neuro‐OlOncology AlApprovals Radiotherapy TMZ up front TMZ for for GBM Lomustine relapsed AA Avastin for accelerated recurrent Carmustine Gliadel wafer approval GBM 1970 1980 1990 2000 2010 First US First US Macdonald commercial CT RANO commercial criteria: Brain Tumor Clinical Trial Criteria Levin criteria: MRI MRI + steroids; WHO Pathology Endpoints CT scans ASCO Criteria Workshop Workshop Technology Advances AA=anaplastic astrocytoma; CT=computed tomography; GBM=glioblastoma multiforme; MRI=magnetic resonance imaging; RANO=Response Assessment in Neuro‐Oncology. VEGF: Aflibercept VEGFR: Axitinib, Brivanib, Cabozantinib, Cediranib, Dasatinib, Foretinib, Lenvatinib, Nintedanib, Pazopanib, Pegdinetanib, Sorafenib, Sunitinib, Vandetanib Ang: CVX 060, Trebananib Tie-2: Cabozantinib EGF: ABT-806, Cetuximab, FGFR: Brivanib, Lenvatinib, Nintedanib Nimotuzumab, Panitumumab CXCR4:Plerixafor: Plerixafor HGF: Rilotumumab IL-2: Basiliximab, Daclizumab ECM BLOOD -
Current and Novel Therapeutic Opportunities for Systemic Therapy in Biliary Cancer
www.nature.com/bjc REVIEW ARTICLE Current and novel therapeutic opportunities for systemic therapy in biliary cancer José J. G. Marin1,2, Maria Giuseppina Prete3,4, Angela Lamarca5,6, Simona Tavolari7, Ana Landa-Magdalena8, Giovanni Brandi9, Oreste Segatto10, Arndt Vogel11, Rocío I. R. Macias1,2, Pedro M. Rodrigues8, Adelaida La Casta8, Joachim Mertens12, Cecilia M. P. Rodrigues13, Maite G. Fernandez-Barrena14, Ana Da Silva Ruivo15, Marco Marzioni16, Giulia Mentrasti16, Pilar Acedo17, Patricia Munoz-Garrido18, Vincenzo Cardinale19, Jesus M. Banales2,8,20, Juan W. Valle 5,6, John Bridgewater 21, Chiara Braconi 3, on behalf of the working group 6 of the COST-action 18122 (Euro-Cholangio-NET) as part of the European Network for the study of Cholangiocarcinoma (ENSCCA) Biliary tract cancers (BTCs) are a group of rare and aggressive malignancies that arise in the biliary tree within and outside the liver. Beyond surgical resection, which is beneficial for only a small proportion of patients, current strategies for treating patients with BTCs include chemotherapy, as a single agent or combination regimens, in the adjuvant and palliative setting. Increased characterisation of the molecular landscape of these tumours has facilitated the identification of molecular vulnerabilities, such as IDH mutations and FGFR fusions, that can be exploited for the treatment of BTC patients. Beyond targeted therapies, active research avenues explore the development of novel therapeutics that target the crosstalk between cancer and stroma, the cellular pathways involved in the regulation of cell death, the chemoresistance phenotype and the dysregulation of RNA. In this review, we discuss the therapeutic opportunities currently available in the management of BTC patients, and explore the strategies that can support the implementation of precision oncology in BTCs, including novel molecular targets, liquid biopsies and patient-derived predictive tools. -
Gefitinib Or Lapatinib with Foretinib Synergistically Induce a Cytotoxic Effect in Melanoma Cell Lines
www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 26), pp: 18254-18268 Research Paper Gefitinib or lapatinib with foretinib synergistically induce a cytotoxic effect in melanoma cell lines Ewelina Dratkiewicz1, Katarzyna Pietraszek-Gremplewicz1, Aleksandra Simiczyjew1, Antonina Joanna Mazur1 and Dorota Nowak1 1Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland Correspondence to: Dorota Nowak, email: [email protected] Keywords: melanoma; EGFR inhibitor; MET inhibitor; foretinib; lapatinib Received: October 26, 2017 Accepted: February 25, 2018 Published: April 06, 2018 Copyright: Dratkiewicz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Melanoma is an aggressive cancer type with a high mortality rate and an elevated resistance to conventional treatment. Recently, promising new tools for anti-melanoma targeted therapy have emerged including inhibitors directed against frequently overexpressed receptors of growth factors implicated in the progression of this cancer. The ineffectiveness of single-targeted therapy prompted us to study the efficacy of treatment with a combination of foretinib, a MET (hepatocyte growth factor receptor) inhibitor, and gefitinib or lapatinib, EGFR (epidermal growth factor receptor) inhibitors. We observed a synergistic cytotoxic effect for the combination of foretinib and lapatinib on the viability and proliferation of the examined melanoma cell lines. This combination of inhibitors significantly decreased Akt and Erk phosphorylation, while the drugs used independently were insufficient. Additionally, after treatment with pairs of inhibitors, cells became larger, with more pronounced stress fibers and abnormally shaped nuclei. -
A Phase II Study of Infigratinib (BGJ398)
A phase II study of infigratinib (BGJ398), an FGFR-selective tyrosine kinase inhibitor (TKI), in patients with previously-treated advanced cholangiocarcinoma containing FGFR2 fusions Javle M,1 Kelley RK,2 Roychowdhury S,3 Weiss K-H,4 Abou-Alfa GK,5 Macarulla T,6 Sadeghi S,7 Waldschmidt D,8 Zhu A,9 Goyal L,9 Borad M,10 Yong WP,11 Borbath I,12 El-Khoueiry A,13 Philip P,14 Moran S,15 Ye Y,15 Ising M,16 Lewis N,17 Bekaii-Saab T10 1MD Anderson Cancer Center, Houston, TX, USA; 2University of California, San Francisco, CA, USA; 3Ohio State Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA; 4University Hospital Heidelberg, Germany; 5Memorial Sloan Kettering Cancer Center, New York, NY, USA; 6Hospital Vall d’Hebron, Barcelona, Spain; 7University of California, Los Angeles, CA, USA; 8Klinikum de Universität zu Köln, Cologne, Germany; 9Massachusetts General Hospital, Boston, MA, USA; 10Mayo Clinic Arizona, Scottsdale, AZ, USA; 11National University Cancer Institute, Singapore; 12Cliniques Universitaires St Luc Bruxelles, Brussels, Belgium; 13USC/Kenneth Norris Comprehensive Cancer Center, Los Angeles, CA, USA; 14Karmanos Cancer Institute, Detroit, MI, USA; 15QED Therapeutics, San Francisco, CA, USA; 16Novartis, Florham Park, NJ, USA; 17Novartis Pharmaceutical Corporation, East Hanover, NJ, USA #LBA28 Background Treatment Figure 2. Open-label, phase II study design Figure 3. Efficacy of infigratinib in FGFR2 fusion-positive Table 4. Infigratinib safety profile: any grade AEs ≥20% cholangiocarcinoma Number of patients (%) Any grade Grade 3/4 ■ Patients received infigratinib 125 mg once daily for 21 days followed 100 Hyperphosphatemia 52 (73.2) 9 (12.7) ■ Cholangiocarcinomas are often diagnosed at an advanced FGFR2 Amplification + Fusion by 7 days off in 28-day cycles. -
Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG . -
Biliary Tract Cancers
Biliary Tract Cancers Miguel Navarro Salamanca BTCs are quite challenging to treat BTCs Background • Uncommon. • Increasing incidence and mortality globally. • Most patient are diagnosed with no resecable disease. • Associated with poor outcomes. • Need of new drugs. Khan SA, et al. J Hepatol. 2012;56:848-854. Biliary tract cancers are a diverse set of neoplasms arising from the biliary tract epithelium …. Why doesn´t one size fits all? Valle et al. Cancer Discovery.2017 Why doesn´t one size fits all? Valle et al. Cancer Discovery.2017 Why doesn´t one size fits all? Such differences are worth taking into account at time of treatment planning, research, and clinical trial design. Surgery • Biliary tract cancers usually present at an advanced stage, and only approximately 20% of tumors are considered resectable. • Surgery is the primary curative treatment option for early-stage biliary tract cancer. Adjuvant therapy • Need for effective adjuvant therapy. • Older randomised studies were not sufficiently statistically powered to define a standard of care. • Meta-analysis (of mostly retrospective data) has suggested improved overall survival with adjuvant treatment. Takada T, et al. Cancer 2002; 95: 1685–95. Neoptolemos JP,et al.JAMA 2012; 308: 147–56 Horgan AM, et al. J Clin Oncol 2012; 30: 1934–40. Adjuvant therapy Two recent randomised studies did NOT show a significant benefit of: • gemcitabine • gemcitabine plus oxaliplatin (GEMOX regimen) Adjuvant therapy BILCAP: Study Design Open-label, randomized, controlled phase III trial 753 patients -
Targeting the Src Pathway Enhances the Efficacy of Selective FGFR Inhibitors
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.04.025544; this version posted April 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Targeting the Src pathway enhances the efficacy of selective FGFR inhibitors in cancers with FGFR3 alterations Nadia Carvalho Lima1, Eliza Atkinson1, Tom D Bunney2, Matilda Katan2, Paul H. Huang1 1) Division of Molecular Pathology, The Institute of Cancer Research, London, UK 2) Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK Correspondence to: Paul H Huang Division of Molecular Pathology Institute of Cancer Research 237 Fulham Road London SW3 6JB United Kingdom Email: [email protected] Keywords FGFR3, Src, urothelial cancer, bladder cancer, cell signalling, cancer therapeutics 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.04.025544; this version posted April 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Selective FGFR inhibitors such as infigratinib (BGJ398) and erdafitinib (JNJ-42756493) have been evaluated in clinical trials for cancers with FGFR3 molecular alterations, particularly in urothelial carcinoma patients. However, a substantial proportion of these patients (up to 50%) display intrinsic resistance to these drugs and receive minimal clinical benefit. -
1 Bridgebio Pharma's Affiliate QED Therapeutics and Helsinn Group
BridgeBio Pharma’s Affiliate QED Therapeutics and Helsinn Group Announce Strategic Collaboration to Co-Develop and Commercialize Infigratinib in Oncology ■ BridgeBio, through its Affiliate QED (“BridgeBio”), and Helsinn to co- commercialize infigratinib for oncology and all other indications other than skeletal dysplasia indications in the U.S. and equally share profits ■ Helsinn Group will have an exclusive license to co-develop, manufacture and commercialize infigratinib in such indications outside of the U.S., excluding China, Hong Kong and Macau ■ BridgeBio will be eligible to receive more than $2 billion USD in upfront, regulatory and commercial milestone payments ■ BridgeBio retains full rights to infigratinib for use in skeletal dysplasias, including for achondroplasia PALO ALTO, Calif. and LUGANO, Switzerland – March 31, 2021 – BridgeBio Pharma, Inc. (Nasdaq: BBIO), through its affiliate QED Therapeutics, Inc., and Helsinn Group today announced a global collaboration and licensing agreement (the “Agreement”) to further develop and commercialize QED Therapeutics’ FGFR1-3 inhibitor, infigratinib, in oncology and all other indications except for skeletal dysplasias (including achondroplasia). Completion of the Agreement is subject to regulatory review and customary closing conditions, which are expected to occur in the second quarter of 2021. Infigratinib is an orally administered, ATP-competitive, tyrosine kinase inhibitor that is designed to inhibit FGFR, and being investigated for treatment of individuals with FGFR-driven conditions, including cholangiocarcinoma (bile duct cancer), urothelial carcinoma (urinary tract and bladder cancer), and other FGFR-driven cancers. Under the terms of the Agreement, BridgeBio will retain all rights to infigratinib in skeletal dysplasia, including achondroplasia. Subject to U.S. Food and Drug Administration (“FDA”) approval, QED and Helsinn will co-commercialize infigratinib in oncology indications in the U.S.